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Aim. To identify novel candidate genes and gene sets for diabetes.Methods. We performed an integrative analysis of genome-wide
association studies (GWAS) and expression quantitative trait loci (eQTLs) data for diabetes. Summary data was driven from a
large-scale GWAS of diabetes, totally involving 58,070 individuals. eQTLs dataset included 923,021 cis-eQTL for 14,329 genes and
4,732 trans-eQTL for 2,612 genes. Integrative analysis of GWAS and eQTLs data was conducted by summary data-basedMendelian
randomization (SMR). To identify the gene sets associatedwith diabetes, the SMR single gene analysis results were further subjected
to gene set enrichment analysis (GSEA). A total of 13,311 annotated gene sets were analyzed in this study. Results. SMR analysis
identified 6 genes significantly associated with fasting glucose, such as C11ORF10 (𝑝 value = 6.04 × 10−8), MRPL33 (𝑝 value = 1.24
× 10−7), and FADS1 (𝑝 value = 2.39 × 10−7). Gene set analysis identified HUANG_FOXA2_TARGETS_UP (false discovery rate =
0.047) associated with fasting glucose. Conclusion. Our study provides novel clues for clarifying the genetic mechanism of diabetes.
This study also illustrated the good performance of SMR approach and extended it to gene set association analysis for complex
diseases.

1. Introduction

Diabetes is a group of metabolic diseases, mainly charac-
terized by raised blood glucose over a prolonged period.
Without effective treatments, diabetes will lead to serious
secondary disorders, such as heart disease, stroke, chronic
kidney failure, and foot ulcers. During the past decades, the
prevalence of diabetes continues to increase, caused by aging,
obesity, smoking, and other unhealthy lifestyle factors [1].
It was estimated that 334 million individuals would suffer
diabetes in 2025 [1]. Diabetes has become one of the major
public health problems, bringing heavy economic burden to
the society.

Genetic factors contribute greatly to the development
of diabetes. Extensive genetic studies have been conducted
and identified a group of susceptibility genes for diabetes,
such as PTEN [2], SREBF1 [3], JAZF1 [4], BCL2 [5], and
FAM19A2 [5]. However, the genetic risk of diabetes explained
by the identified loci was limited, suggesting the existence

of undiscovered susceptibility loci for diabetes. The missing
heritability can partly be attributed to the regulatory genetic
variants, which aremostly locating outside genes and ignored
by traditional genetic studies.

Expression quantitative trait loci (eQTLs) are a group of
important regulatory loci, which can regulate gene expression
levels. The disease-associated SNPs identified by GWAS are
significantly enriched in eQTLs, supporting the implication
of eQTLs in the pathogenesis of complex diseases [6].
Through genome-wide detecting associations between gene
transcript abundance and genomic polymorphisms, a large
amount of eQTLs has been identified in human genome [7,
8]. Recently, summary data-based Mendelian randomization
(SMR) analysis was proposed to utilize extensive published
GWAS as well as eQTLs data. SMR is capable of integrating
GWAS summary and eQTLs annotation data to identify novel
causal genes, the expression levels of which are associated
with target diseases [9]. SMR showed a high power for
identifying novel causal genes of complex diseases [9].
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In this study, we conducted a genome-wide single gene
and gene sets expression association analysis for diabetes.
SMR was first applied to a large-scale GWAS data for
screening novel susceptibility genes of diabetes. To gain
insight into the biological significance of identified genes,
we extended SMR to gene set enrichment analysis (GSEA).
SMR gene-level analysis results were subjected to GSEA
for identifying diabetes associated gene sets with known
functional information.

2. Methods

2.1. GWAS Summary Datasets. A large-scale GWAS meta-
analysis summary data of diabetes was used in this study
[10]. Briefly, this GWAS comprised 58,070 individuals from
29 studies involved in the Meta-Analysis of Glucose and
Insulin related traits Consortium. Fasting glucose and fasting
insulin were measured from whole blood, plasma, or serum
samples. Detailed information of measurements of fasting
glucose and fasting insulin is summarized in Supplementary
Table S1 and Table S2 in Supplementary Material available
online at https://doi.org/10.1155/2017/1758636. Commercial
platforms were used for genome-wide SNP genotyping, such
as Affymetrix 500K SNP array, Illumina 550K, and Perlegen
600K. Imputation was conducted byMACH [11] or IMPUTE
[12] against the HapMap CEU reference genome (build 36).
The GWAS meta-analysis was conducted by joint meta-
analytical approach [13]. Detailed information of cohorts,
genotyping, imputation, meta-analysis, and quality control
approaches can be found in the published studies [10].

2.2. SMR Single Gene Analysis. The GWAS meta-analysis
summary data of diabetes was input into SMR for single gene
expression association analysis of fasting glucose and insulin
resistance. SMR is capable of integrating GWAS results with
eQTLs annotation information to evaluate the relationships
between gene expression levels and complex traits [9]. We
applied the eQTLs annotation dataset built by Westra et al.
[14]. Briefly, these eQTLs datasets were driven from a meta-
analysis of 5,311 peripheral blood samples and replicated in
another 2,775 samples. Illumina whole-genome Expression
BeadChips were used for gene expression profiling. SNP
genotyping was conducted using commercial platforms, such
as Illumina 610K quad arrays and Illumina HumanHap300
arrays. Imputation was conducted using MACH [11] or
IMPUTE [12] against the HapMap 2 reference panels. 923,021
cis-eQTL for 14,329 gene expression probes and 4,732 trans-
eQTL for 2,612 gene expression probes were identified at false
discovery rate (FDR) < 0.05 [14]. An expression association
testing 𝑝 value for each gene was calculated by SMR. After
Bonferroni correction, the genes with SMR 𝑝 values < 9.28 ×
10−6 (0.05/5389) were considered as significant genes in our
study.

2.3. Gene Set Enrichment Analysis. To reveal the functional
significance of identified genes, the SMR single gene
expression association testing results were further subjected
to GSEA [15].The gene set annotation database (msigdb.v5.1)

Table 1: List of candidate genes identified by SMR for fasting
glucose.

Gene Top SNP MAF SMR
𝛽 𝑝 value

C11ORF10 rs174547 0.331 −0.059 6.04 × 10−8

MRPL33 rs3736594 0.258 −0.118 1.24 × 10−7

FADS1 rs174548 0.301 −0.067 2.39 × 10−7

ACP2 rs901746 0.297 −0.050 1.74 × 10−6

NR1H3 rs901746 0.297 −0.051 1.78 × 10−6

SNX17 rs1260320 0.392 −0.072 2.19 × 10−6

Note. MAF, minor allele frequency.

was obtained from the GSEAMolecular Signatures Database
(http://software.broadinstitute.org/gsea/msigdb/index.jsp).
5,000 permutations were conducted to calculate the FDR
adjusted 𝑝 value of each gene set [16]. Significant gene sets
were identified at FDR adjusted 𝑝 value < 0.05. Detailed
GSEA procedures can be found in our previous studies [17].

3. Results

3.1. SMR Single Gene Expression Association Analysis. A total
of 5,389 genes with both GWAS summary and eQTLs data
were analyzed in this study. After strict Bonferroni correc-
tion, SMR identified 6 genes significantly associatedwith fast-
ing glucose (Table 1), including C11ORF10 (𝑝 value = 6.04 ×
10−8), MRPL33 (𝑝 value = 1.24 × 10−7), FADS1 (𝑝 value =
2.39 × 10−7), ACP2 (𝑝 value = 1.74 × 10−6), NR1H3 (𝑝 value =
1.78 × 10−6), and SNX17 (𝑝 value = 2.19 × 10−6).

For fasting insulin, SMR detected suggestive association
signals for 7 genes (Table 2), includingATRIP (𝑝 value=9.68×
10−5), MRPL33 (𝑝 value = 9.75 × 10−6), ATRIP (𝑝 value = 1.90
× 10−4), POLR1E (𝑝 value = 2.60 × 10−4), AMT (𝑝 value =
3.44 × 10−4), TNFSF13 (𝑝 value = 4.55 × 10−4), and POLR1E
(𝑝 value = 7.82 × 10−4).

3.2. Gene Set Enrichment Analysis. A total of 10,987
annotated gene sets were analyzed in this study. GSEA
observed significant association between HUANG_FOXA2_
TARGETS_UP gene ontology (GO) term and fasting glucose
(FDR adjusted 𝑝 value = 0.047). For fasting insulin, GSEA
detected suggestive association signal for chr8p23 GO term
(FDR adjusted 𝑝 value = 0.063).

4. Discussion

It is a challenge to reveal the biological significances of
identified loci by GWAS, especially a large part of significant
loci locating outside genes [9]. To better understand the
genetic basis and make full use of published GWAS data of
diabetes, we conducted an eQTL-based single gene and gene
set expression association analysis for diabetes. We identified
multiple genes and gene sets associated with fasting glucose
or fasting insulin.
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Table 2: List of candidate genes identified by SMR for fasting insulin.

Gene Top SNP MAF SMR
𝛽 𝑝 value

ATRIP rs2228561 0.129 −0.070 9.68 × 10−5

MRPL33 rs3736594 0.258 −0.067 9.75 × 10−5

ATRIP rs2228561 0.129 −0.084 1.90 × 10−4

POLR1E rs10758435 0.166 −0.026 2.60 × 10−4

AMT rs1050088 0.429 0.031 3.44 × 10−4

TNFSF13 rs9898876 0.193 −0.037 4.55 × 10−4

POLR1E rs10973396 0.168 −0.028 7.82 × 10−4

Note. MAF, minor allele frequency.

SMR analysis observed the most significant association
between fasting glucose and C11ORF10. C11ORF10 is close
to another significant gene FADS1 identified by SMR. It
has been demonstrated that C11ORF10 played an important
role in fatty acid and glucose metabolism [18]. Zabaneh and
Balding reported that C11ORF10 and FADS1 were signifi-
cantly associated with metabolic syndrome [19]. Powell et al.
observed that FADS1 knockout mice presented less glucose
and insulin excursions during oral glucose tolerance tests
along with lower fasting glucose, insulin, triglyceride, and
total cholesterol levels [20]. Yao et al. suggested that FADS1-
FADS2 gene cluster was significantly associated with type
2 diabetes [21]. Cormier et al. observed that FADS gene
cluster could modulate plasma fasting glucose and fasting
insulin levels in response to n-3 polyunsaturated fatty acids
supplementation [22].

SNX17 is another notable gene associated with fasting
glucose. SNX17 encodes sorting nexin 17, which involves
receptor binding and phosphatidylinositol binding. It has
been demonstrated that the eQTLs of SNX17was significantly
associated with glucometabolic phenotypes [23]. Adachi and
Tsujimoto found that SNX17 directly interacted with FEEL-
1/stabilin-1, which was implicated in the development of
diabetes [24].

TNFSF13 is significantly associated with fasting insulin in
this study. Gao et al. reported that the TNFSF13 level in serum
was significantly associatedwith the diabetic status of patients
with pancreatic ductal adenocarcinoma-associated diabetes
[25].

Besides confirming functional relevance of previously
reported candidate genes with diabetes, SMR analysis also
identified several novel candidate genes for diabetes, such as
MRPL33, ACP2, and NR1H3. To the best of our knowledge,
few efforts have been paid to investigate the potential roles of
these genes in the development of diabetes. Further biological
studies are warranted to confirm our finding and clarify the
potential roles of novel candidate genes in the pathogenesis
of diabetes.

Gene set analysis found that HUANG_FOXA2_
TARGETS_UP GO term was significantly associated with
fasting glucose. HUANG_FOXA2_TARGETS_UP compris-
es 45 genes, some of which have been suggested to be
implicated in the development of diabetes, such as KAT2B
and TNFAIP3. Rabhi et al. found that disruption of KAT2B

led to impaired insulin secretion and glucose intolerance
in mice [26]. They suggested that KAT2B was a key
transcriptional regulator in maintaining normal function of
adaptive 𝛽 cell [26]. TNFAIP3 was suggested to be associated
with type 1 diabetes [27].

In summary, we conducted a genome-wide integrative
analysis of GWAS and eQTLs data for diabetes. We identified
several novel candidate genes and gene sets associated with
the risk of diabetes. Our results provide new clues for clarify-
ing the genetic mechanism of diabetes.We also illustrated the
good performance of SMR approach and extended it to gene
set association analysis for complex diseases.
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