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Abstract

Motivation: In recent years, there has been great progress in the field of automated curation of bio-

medical networks and models, aided by text mining methods that provide evidence from literature.

Such methods must not only extract snippets of text that relate to model interactions, but also be

able to contextualize the evidence and provide additional confidence scores for the interaction in

question. Although various approaches calculating confidence scores have focused primarily on

the quality of the extracted information, there has been little work on exploring the textual uncer-

tainty conveyed by the author. Despite textual uncertainty being acknowledged in biomedical text

mining as an attribute of text mined interactions (events), it is significantly understudied as a

means of providing a confidence measure for interactions in pathways or other biomedical models.

In this work, we focus on improving identification of textual uncertainty for events and explore how

it can be used as an additional measure of confidence for biomedical models.

Results: We present a novel method for extracting uncertainty from the literature using a hybrid

approach that combines rule induction and machine learning. Variations of this hybrid approach

are then discussed, alongside their advantages and disadvantages. We use subjective logic theory

to combine multiple uncertainty values extracted from different sources for the same interaction.

Our approach achieves F-scores of 0.76 and 0.88 based on the BioNLP-ST and Genia-MK corpora,

respectively, making considerable improvements over previously published work. Moreover, we

evaluate our proposed system on pathways related to two different areas, namely leukemia and

melanoma cancer research.

Availability and implementation: The leukemia pathway model used is available in Pathway

Studio while the Ras model is available via PathwayCommons. Online demonstration of the uncer-

tainty extraction system is available for research purposes at http://argo.nactem.ac.uk/test. The

related code is available on https://github.com/c-zrv/uncertainty_components.git. Details on the

above are available in the Supplementary Material.

Contact: sophia.ananiadou@manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advances in computational modelling support experimental simu-

lations and facilitate biomedical pathway network analysis and

construction. The use of pathways and protein interaction networks

is becoming increasingly acknowledged and necessary (Pujol et al.,

2010), and there has been a surge in tools for visualization and pro-

cessing of such networks (Pavlopoulos et al., 2008). However,
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pathway curation (PC) and maintenance is still largely manual and

time-consuming, partly because of the vast amount of literature that

has to be reviewed.

Text mining can aid PC (Hoffmann et al., 2005; Oda et al.,

2008) and has already been used to link textual evidence from the

literature (Ananiadou et al., 2015; Miwa et al., 2013). Current

approaches focus on extracting bio-entities and interactions from

papers referring to a pathway, either as supporting evidence (Miwa

et al., 2013; Vailaya et al., 2005) or to reconstruct a specific path-

way (�Sari�c et al., 2005; Soliman et al., 2016). Methods for linking

evidence to interactions include extracting co-occuring entities,

relationships between entities, or extracting more complicated

interaction mentions (n-ary relations between entities) called events

(Fig. 1). Since providing simple evidence for each interaction is far

from sufficient, much work has focussed on providing measures

of quality and confidence for each interaction. So far, such ‘scoring’

efforts have focussed on using entity co-occurrence statistics

(Donaldson et al., 2003; Szklarczyk et al., 2011) or on employing

experimental assays and methods in terms of biomedical confidence

(Bader et al., 2004; Schaefer et al., 2012).

However, there has been little work on assessing the confidence

of related information in terms of the certainty of a statement based

on its textual context. Indeed, not all interactions mentioned in an

article constitute facts or certain observations. They can be part of a

hypothesis, a speculated outcome of an experiment, a case under in-

vestigation or a result attributed to an unclear external source

(Medlock, 2008). Uncertainty of this type has been recognized and

studied extensively for scientific documents, although mostly at the

sentence level. Moreover, uncertainty and negation are acknowl-

edged attributes of events and relations, annotated in the BioNLP

(Kim et al., 2009, 2011; Nédellec et al., 2013) and CLEF (Mowery

et al., 2014) shared tasks, but never as a separate task. Indeed, there

is little work focussing only on uncertainty of events and particularly

linking it with interactions in pathways and interaction networks.

We go beyond existing efforts by extracting events with uncer-

tainty values while relating them to existing pathway models. We

propose the use of (un)certainty as an additional measure of confi-

dence for interactions supported by evidence from literature.

(Un)certainty-based confidence will help humans not only to quickly

identify facts, but also to more rapidly synthesize hypotheses from

highly uncertain interactions that are otherwise not intuitive or

would be hard to identify in the literature.

We develop methods for (un)certainty identification of events

and we provide a framework for consolidating (un)certainty values

from several events to rank interactions accordingly. (Un)certainty is

analysed from a textual point of view, as an attribute of each event

in text, and consequently as an attribute of the corresponding inter-

action represented in a pathway.

We implement a hybrid framework that combines an automated

rule induction approach with machine learning to discriminate

between certain and uncertain interactions in text. As we show in

Section 4.1, the combination of a Random Forest classifier with rule

induction, which captures dependency patterns, boosts performance

in terms of both recall and precision. We evaluate our work on two

gold-standard corpora containing uncertain statements, which have

been annotated by domain experts: GENIA-MK (Thompson et al.,

2011) and BioNLP Shared Task (BioNLP-ST) data Our hybrid ap-

proach outperforms previously reported performance, obtaining an

F-score of 0.88 on GENIA-MK and 0.76 on the BioNLP-ST data.

We extract supporting evidence for interactions contained in a path-

way to determine the (un)certainty of each event. Subsequently, for

those interactions with multiple evidence passages, we consolidate

(un)certainty values from each event using subjective logic theory

(Jøsang, 2001). This allows us to rank interactions proposed for a

pathway model according to their associated (un)certainty, using a

score for each interaction that takes into account the textual (un)cer-

tainty for all evidence. We present the evaluation carried out by do-

main experts/curators against two use-cases, thus confirming the

validity of our approach.

2 Related work

Biomedical events (events for short) are centred around a trigger, i.e. a

word or word sequence that denotes the occurrence of the event and

the type of information expressed by it (referred to as the event type).

An event has one or more arguments which are semantically linked to

the trigger and contribute towards the event description. Arguments

can be either named entities (NEs), or events themselves, in which

case they are referred to as nested events, while the event that takes

another event as its argument is considered a complex event.

Arguments are categorized using semantic role labels that indicate the

nature of their contribution to the event. The same entity can partici-

pate in different events, potentially assuming different roles in each

event (Ananiadou et al., 2015; Van Landeghem et al., 2013). Figure 1

shows an example of event structures in biomedical literature.

The availability of a number of corpora annotated with events,

such as Genia (Kim et al., 2003), Multi-level Event Extraction

(MLEE) (Pyysalo et al., 2012), Gene Regulation Event Corpus

(GREC) (Thompson et al., 2009) and corpora used for the BioNLP-

ST has supported the training of supervised models for event extrac-

tion. State-of-the-art performance in event extraction surpasses 0.55,

reaching 0.76 in F-score for some event types (Björne and Tapio,

2015; Miwa and Ananiadou, 2015). This performance is high enough

to obtain meaningful instances of events, rendering event extraction

technology sufficiently mature to be used in a range of applications.

Events are used to represent various types of bio-molecular inter-

actions in scientific text, which can be mapped to pathway models

(Miwa et al., 2013; Björne et al., 2010; Rzhetsky et al., 2009).

The same event can occur in different documents, but may be

described as being more or less certain in each case, depending on

context (words or phrases that modify the event without being part

of it). As illustrated in Figure 2, the uncertainty of an event can be

attributed to different constructs ranging from speculation and

hedging to investigation or weaseling. Phenomena related to the ex-

pression of textual uncertainty have been studied at the sentence

level using different terms, such as epistemic modality, speculation,

factuality and hedging. Szarvas et al. (2012) propose a hierarchical

categorization which distinguishes two main classes: hypothetical

and epistemic uncertainty, while Medlock (2008) classify hedges as:

extrapolated conclusions, relays of hedges from other work, limited

knowledge, anaphoric hedging, questioning and hypothesis. Light

Fig. 1. Event structures according to the BioNLP schema. Event triggers are

enclosed in double-lined (green) boxes, while named entities (NEs) in single-

lined (blue) ones. Arguments of events are represented by arrows above the

words. We can observe that the Regulation event is a complex event, having

the Binding event as its Theme argument
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et al. (2004) categorized uncertain statements as having high or low

speculation. The BioScope corpus (Vincze et al., 2008) comprises

annotated biomedical sentences with speculation cues and their

scope (Scope is defined as the whole sub-phrase affected by a specu-

lation cue, as opposed to the event that is targeted by the cue).

Machine learning algorithms paired with dependency-based fea-

tures have proven to be particularly effective in detecting speculation

and scope both in the BioScope corpus and in the biomedical sub-

task of CoNLL 2010 that followed the cue-scope approach (Farkas

et al., 2010). Top performing systems in CoNLL 2010 achieved F-

scores close to 0.86 using Conditional Random Fields (Tang et al.,

2010). More recent approaches focus on optimizing scope detection,

using either dependency-based methods (Zhou et al., 2015; Zou

et al., 2013), or a combination of rule-based methods and machine

learning algorithms (Velldal et al., 2012).

In contrast to the cue-scope approach, the BioNLP-ST and the

GENIA-MK corpus introduce the idea of (un)certainty for a specific

event rather than a sub-phrase of a sentence (see Section 3.1). When

compared with performance reported for the cue-scope approach

tasks, the performance for the speculation identification subtask of

the BioNLP-ST was particularly low; the best result achieved on the

Epigenetics (EPI) task was an F-score of 0.38 (Björne and Salakoski,

2011). However, Stenetorp et al. (2012b) used a combination of rule-

based heuristics and a Support Vector Machine classifier using cue-

scope and event-based features, to obtain 0.52 F-score for the EPI

task, and to improve the results of the systems in the BioNLP 2011 by

at least 4%. On GENIA-MK, the best performance so far comes from

Kilicoglu et al. (2015), who obtained F-scores of 0.67 and 0.68, re-

spectively for the L1 and L2 classes of GENIA-MK annotations (see

Section 3.1). Currently there is no standard, commonly accepted cate-

gorization of uncertainty and epistemic modality in text (Rubinstein

et al., 2013). Thus, there are different interpretations of these concepts

across different corpora and experiments, leading to significant dis-

agreement in terms of how uncertainty is annotated in text.

Aiming for a wide coverage of diverse uncertainty expressions,

we chose to consider ‘uncertainty’ as corresponding to all cases

described in previous work as indications of speculation, hedging or

epistemic modality. The scope of our definition of uncertainty is

illustrated by the general categories represented in Figure 2, each

accompanied by example uncertainty cues. The categories are fur-

ther elaborated in the Supplementary Material, Section 2, in which

we also provide details of the coverage of such categories in different

corpora. Although not all of the uncertainty cues are equally strong

in terms of hedging an event, in this work we consider all events that

are modified by an expression belonging to one of the categories

shown in Figure 2 to be classed as uniformly uncertain, leading to a

binary classification problem definition for uncertainty.

Various studies have exploited text mining to support biomedical

network construction and PC (Hoffmann et al., 2005; Shatkay and

Feldman, 2003). Inferring a biomedical network from textual re-

sources is a complicated task, typically requiring the combination of

several text mining processes. Czarnecki and Shepherd (2014) analyse

the process of constructing protein–protein interaction (PPI) networks

and specify the necessary components for a text mining pipeline to

achieve this. Along the same lines, Subramani et al. (2015) extracts

potential protein relations from text, and uses databases to validate

them, map them to pathways and visualize the result. However, this

process seems dependent on the database information without add-

itional confidence measures. Malhotra et al. (2013) extracted hypoth-

esis statements (overlapping with uncertain statements) from text to

build hypothetical stage-specific disease networks. Although they de-

scribe different degrees of uncertainty they do not use this information

to rank interactions in the networks. Soliman et al. (2016) also present

the construction of an interaction network from text mining, but they

use reference interaction databases in order to classify the extracted

relations in terms of validity and knowledge novelty. Finally, although

not related to networks, Jilani et al. (2008) use speculation markers to

classify—in terms of confidence—statements from biomedical papers

relating to the apolipoprotein E gene.

Oda et al. (2008) links events to pathways while highlighting the

difficulties to map and integrate multiple textual fragments to the

same pathway node. PathText2 (Miwa et al., 2013) uses event ex-

traction and links evidence from the literature with pathway models

to return ranked evidence pertaining to the interactions described in

the model. STRING database (Szklarczyk et al., 2011) scores inter-

action networks based on co-occurrence statistics of the participat-

ing entities (along with experimental assay scoring). Donaldson

et al. (2003) also proposes a text mining approach to support PPI

curation and provides a confidence score based on the co-occurrence

of protein mentions. However, in that work, textual uncertainty ex-

pressed in the evidence passages was not considered, and there was

no distinction between certain and uncertain statements.

These past efforts contributed to the automation of PC and en-

hancement of biomedical networks, and illustrate potential uses of text-

ual uncertainty for biomedical purposes. However, the scope of each

application is limited and textual uncertainty is rarely considered when

linking evidence to pathways. In addition, in efforts to extract uncer-

tainty from biomedical corpora, there has often been a lack of experi-

mental evaluation or validation of an application by domain experts.

3 Materials and methods

We present our methods for assessing and ranking pathway inter-

actions based on (un)certainty. In Section 3.1, we describe the data-

sets and models that were used. Section 3.2 details our hybrid

approach for identification of uncertain events, while Section 3.3 de-

scribes the method used to combine multiple events mapping to the

same interaction in one consolidated value. The text-mining work-

flows based on our methods are available and described in the

Supplementary Material, Section 1.

3.1 Datasets, models and evaluation
To identify the uncertainty of events in text, we leverage the event-

annotated corpora developed for the BioNLP-ST, and the GENIA-

MK corpus, both for training and testing purposes.

Fig. 2. Uncertainty cues considered in the experiments grouped according to

category (Strong/Weak speculation, frequency, Admission of lack of know-

ledge, Weaseling). Word clouds were generated based on BioNLP-ST and

GENIA-MK
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GENIA-MK consists of 1000 biomedical abstracts annotated

with events. Each event has high-level information (or meta-

knowledge) annotations (Thompson et al., 2011), including separate

annotations for Certainty Level (CL) and Knowledge Type (KT).

These are both mapped to binary uncertainty values for our evalu-

ation. In terms of CL, there are 3 different classes: L1 (‘considerably

speculative’), L2 (‘somewhat speculative’) and L3 (‘non-specula-

tive’). KT classes include Investigation, Analysis, Observation and

General. We consider the cases annotated as L1, L2 or Investigation

to fall under our definition of uncertainty, so we use them to gener-

ate instances of uncertain events for training and testing. Based on

this definition, 8.1% of the 36 858 events are classified as uncertain.

In BioNLP-ST 2009, 2011 and 2013, a wide range of subtasks

included events that were annotated with binary speculation values.

The tasks with speculation attributes are: Cancer Genetics, PC, EPI,

Infectious Diseases (IDs) and GENIA (GE). All events annotated as

speculated are considered as uncertain based on our uncertainty defin-

ition. For our experiments, we took the union of the datasets provided

by the above BioNLP tasks, which we collectively refer to in this

work as the BioNLP-ST corpus. For both GENIA-MK and BioNLP-

ST, we evaluate the performance of our methods using 10-fold cross

validation, calculating precision, recall and F-score in each case.

In order to evaluate our approach to ranking pathway inter-

actions according to the (un)certainty of related events in text, we

evaluated our results based on two pathway use-cases

1. A manually curated pathway model, B-cell Acute Lymphoblastic

Leukemia Overview (henceforth referred to as the Leukemia

Model), from Pathway Studio disease collections (https://mam

mal.pathwaystudio.com/#nav-5). This model includes 103 bio-

medical entities and 179 interactions, with each interaction

accompanied by related evidence (small passages) from published

papers, manually selected by curators. We automatically extracted

events from those passages, calculated their (un)certainty values

and then ranked each interaction based on these values.

2. A two-hop neighbourhood network of the Ras gene generated

for the Big Mechanism project (Cohen, 2015) and a collection of

full-text papers extracted from PubMed, focusing on Melanoma

(henceforth referred to as the Ras-melanoma Model). The model

was generated by querying the Pathway Commons API (//www.

pathwaycommons.org/pc2/graph?source¼P01112&source¼P01

116&source¼P01111&kind¼neighborhood). The papers were

annotated with events using EventMine (Miwa et al., 2012), and

sentences that contained events mapping to the Ras-melanoma

model were grouped and mapped to their corresponding inter-

action in the network. Uncertainty identification methods were

then applied to the linked sentences, to classify mapped events as

certain/uncertain and to score the related interactions in terms of

textual (un)certainty.

The results were then presented to domain experts for evaluation, as

described in Section 4.2.

3.2 A hybrid approach for (un)certainty identification
Our approach to textual (un)certainty identification is based on a com-

bination of two components: (i) machine learning classification and

(ii) rule induction. Both components perform binary classification of an

event, where the set of possible classes is {certain, uncertain}.

Comparing different combinations of the two components, we found

that when the induced rules are used as features, the machine learning

component obtained the best performance. Details of the implementa-

tion are described in the following sections, and the results are provided

in Section 4.

3.2.1 Rule induction

The existence of an uncertainty cue such as possibly or suggest in

a sentence will not necessarily render any event in the same sen-

tence uncertain, as illustrated in Figure 3, where the only uncer-

tain event is the one that has the word modulate as a trigger. The

event with metabolism as a trigger, while syntactically within the

scope of may (indicated by red squared brackets), is not within the

scope of the uncertainty. Similarly, inhibition of COX-2 is not af-

fected by the presence of may. The results of dependency parsing

(marked with arrows above the sentence), can help to identify

which event triggers are directly dependent on the uncertainty cue.

Thus, dependency parsing can provide useful insights into the way

a cue affects the trigger of each event in a sentence. In many cases,

event (un)certainty can be determined from the dependency path

between a cue and a trigger. Indeed, compared with the other

event triggers in the sentence of Figure 3, the dependency path be-

tween may and modulate is the shortest one, as there is a direct de-

pendency identified between the two words. Our rule pattern

induction looks for generic rule patterns that can capture depend-

ency relationships between (un)certainty cues and trigger words,

which extend to multi-hop dependencies.

To extract dependency graphs over a tokenized sentence, we use

the Enju dependency parser (Matsuzaki and Tsujii, 2008). We then

extract dependencies between two tokens as directed edges from the

source token Ts (dependency head) to the target token Tt. Hence, we

can define a dependency function whose output is the type of de-

pendency that takes values from a closed set of labels provided by

Enju (ARG1: subject of a verb, a target of modification by modifiers

etc. ARG2: object of verbs, prepositions, etc. ARG3/ARG4: objects

and complements of verbs etc. MOD: participial constructions etc.

Denotes a clause modified by another clause, if the subordinate

clause has an ARG1).

dep TS;TTð Þ ¼ d; d 2 ARG1;ARG2;ARG3;MOD;1½ � (1)

The output may include the null value in the case where there is no

dependency between the two tokens. Based on the definition of

Equation (1) we can also define ‘dependency chains’ as sequences of

consecutive dependency edges that create a directed path between a

source TS and a target TT token (see Equation 2). If a sentence con-

tains a non-empty chain (TS, TT), where TS corresponds to an

(un)certainty cue and TT to an event trigger, it is considered a valid

pattern and rule candidate, formulated as Equation (3).

chain TS;TTð Þ ¼

dep TS;TTð Þ; if dep TS;TTð Þ 6¼1

chain TS;wð Þ �w � chain w;TTð Þ;

if9w : chain TS;wð Þ 6¼1; chain w;TEð Þ 6¼1

1; else

8>>>>><
>>>>>:

(2)

Rulei ¼ TS � chain TS;TTð Þ (3)

We present in the Supplementary Material, Section 3.2.1 an

example of step-by-step application of Equations (1)–(3) on a

Fig. 3. Relation between the influence of uncertainty cues and syntactic

dependencies. Dependencies are marked with arrows above text, while the

scope of the uncertainty cue may is marked with the red squared brackets

(Color version of this figure is available at Bioinformatics online.)
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dependency-parsed sentence in order to derive a rule, and the appli-

cation of the same rule to a new sentence.

When extracting rules from unannotated data, a list of poten-

tial uncertainty cues is necessary to guide the rule pattern extrac-

tion. The availability of a corpus with events annotated with

uncertainty cues allows us to extract all chains around an uncer-

tain event trigger as potential rules. One or more measures of in-

formativeness can be used to filter the potential rules and retain

only the most meaningful ones. We experimented with different

measures and decided to use Interest (Brin et al., 1997) as it was

better at distinguishing patterns containing uncertainty cues from

the ones containing irrelevant ones (see Supplementary Material,

Section 3.2.2.1). In both cases, the size of the extracted rule-set can

be further reduced by applying task-specific constraints to retain

only the most meaningful rules and downsize the search space.

Constraints were applied to the extraction of (un)certain events.

Specifically: (i) for each (un)certainty cue, we limit the rule gener-

ation to the event most directly affected by that cue. No token w in

a chain should belong to a trigger of another event. (ii) We con-

strain the maximum length (n) of a chain() function to n < 3. See

the Supplementary Material, Section 3.2.2.2 for details on pattern

coverage.

Although the automated rule extraction system can accurately

extract dependency patterns, it may fail to account for other features

within a sentence. Our hybrid approach complements the rule-based

component with additional machine learning features. We applied a

Random Forest classifier (Liaw and Wiener, 2002) using a set of lin-

guistic features covering semantic, lexical and syntactic aspects

(Supplementary Material, Section 3.1).

3.3 (Un)certainty-based confidence measure for model

interactions
Using the methods described in Section 3.2, any interaction can be

classified in terms of its (un)certainty. The literature often includes

multiple references to the same interaction, whose (un)certainty lev-

els can vary. To determine an overall confidence measure for a single

interaction, we need to consolidate the binary (un)certainty values

extracted from multiple evidence passages.

We chose to use subjective logic theory (Jøsang, 2001) to obtain

a consolidated score for each interaction, derived from the binary

values of the text mined events. Each evidence sentence that contains

an event ex mapping to a pathway interaction ix, can be considered

as the subjective opinion of the author for the interaction ix.

According to Jøsang, if x is a proposition, a binomial opinion about

the truth of x is the ordered quadruple xx ¼ b; d; u; að Þ, where:

• b: belief is the belief that the specified proposition is true.
• d: disbelief is the belief that the specified proposition is false.
• u: uncertainty is the amount of uncommitted belief.
• a: base rate is the a priori probability in the absence of evidence.

and the condition in Equation (4) must always be satisfied. Then,

the probability expectation value (E) of an opinion is defined in

Equation (5).

bþ d þ u ¼ 1;8b;d;u; a 2 0;1½ � (4)

E ¼ bþ a � u (5)

Assuming we have several different opinion sources (authors) refer-

ring to the same proposition (interaction) with different levels of

certainty, we can fuse their opinions based on subjective logic.

Different fusion formulas have been suggested (Jøsang et al., 2006),

but we choose to follow the cumulative fusion that is suited for inde-

pendent opinions and considers the amount of sources as well. Since

we want to consider fusion of multiple sources we use the formula

suggested by (Jøsang et al., 2017), in order to combine belief bC
X xð Þ

and uncertainty uC
X from each source (C 2 C) to the fused belief

b
� Cð Þ
�X

and uncertainty u
� Cð Þ
�X

that will allow us to calculate the overall

probability expectation value E ¼ b
� Cð Þ
�X
þ a � u� Cð Þ

�X
. According to

that formula in cases where there is at least one uncertain opinion

(9uC
X 6¼ 0) we have:

b
� Cð Þ
�X
¼

X
C2C
ðbC

X xð Þ �
Y

Cj 6¼C

u
Cj

X Þ

X
C2C

Y
Cj 6¼C

u
Cj

X � N � 1ð Þ �
Y

C2C
uC

X

u
� Cð Þ
�X
¼

Y
C2C

uC
X

X
C2C

Y
Cj 6¼C

u
Cj

X � N � 1ð Þ �
Y

C2C
uC

X

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(6)

In this way, subjective logic allows us to define b and u as the cer-

tainty and uncertainty of an interaction respectively. Moreover, we

can model in a straightforward way the cases of negated events

(where the event is contradicted but with no indication of uncer-

tainty) as disbelief d. To identify negated events, we can use methods

similar to uncertainty as described in Nawaz et al. (2013).

We also choose subjective logic because it accounts for uncertain

opinions while maintaining compatibility with standard logic and

probability calculus. We limit our work to explore the potential of

fusing statements that are considered independent to the rest.

However, in Jøsang et al. (2006), there is substantial theory on

combining dependent or partly dependent opinions as well as on

propagation of opinions within networks and attributing different cer-

tainty to different sources, that we intend to study in the future.

4 Results

4.1 Comparative evaluation
We evaluated our approach on the GENIA-MK corpus, and the

BioNLP-ST corpus as described in Section 3.1. Rule selection and fea-

ture extraction was guided by a pre-selected list of 60 uncertainty cues

that was compiled based on the GENIA-MK and BioNLP-ST corpora,

as well as related publications (Malhotra et al., 2013; Rubin, 2007).

In Table 1, we compare the performance of our combined hybrid sys-

tem against each of the components when used individually.

The best results are obtained by using the induced rule patterns

as features for the Random Forest classifier. It is important to note

that the performance on the GENIA-MK corpus is consistently

Table 1. Comparative evaluation on GENIA-MK and BioNLP-ST

corpora

Corpus System Precision Recall F-score

GENIA-MK ML only 0.79 0.67 0.72

Rules only 0.81 0.52 0.63

ML þ Rules 0.76 0.77 0.77

ML þ Rule features 0.94 0.83 0.88

BioNLP-ST ML only 0.82 0.64 0.73

Rules only 0.42 1.0 0.59

ML þ Rules 0.35 0.77 0.48

ML þ Rule features 0.87 0.68 0.76

Values in bold indicate best performance obtained for each corpus.
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higher for all different systems. We attribute this to the fact that the

BioNLP-ST corpus consists of different corpora with differences in

their annotation procedure. As a point of comparison, the best per-

formance on BioNLP-ST is reported by Stenetorp et al. (2012b)

who, for BioNLP 2011, obtained an F-score of 0.52 for the EPI

track, 0.40 for the GE track and 0.37 for the ID track. The rule-

based features, that can account for rule patterns that span to 2-hop

dependency relations (prior work, such as Kilicoglu et al., 2015; Xu

et al., 2015 focusses on one-hop dependencies), contributed consid-

erably to the improvement of the performance.

The specially selected cue-list also contributes to boosting the

performance, as it plays a crucial role in in the rule and feature selec-

tion. We carried out two additional experiments, to determine the

generalization and portability of our method to other domains.

These are presented in Table 2 and demonstrate the extent to which

the selection of the initial cue list affects performance. First, we

want to assess the portability of our method, and the domain specifi-

city of our definition of (un)certainty. So we replace our list with

cue lists from the general domain (Automatic Content Extraction

(ACE) corpus; Thompson et al., 2016). Although intuitively we

assumed that phrases expressing (un)certainty are domain-

independent, it turned out that the range of expressions in the gen-

eral/newswire domain is wider and the cues are more complicated

(often multiword, colloquial expressions) leading to considerably

decreased performance for both corpora.

Second, we chose not to constrain the rule pattern generation

with pre-selected cues. Instead, we extracted all potential two-hop

length rule patterns around uncertain events, obtaining a pattern-set

that included both patterns indicating uncertainty and meaningless

ones (for our task). Patterns were then sorted according to Interest

measure (Brin et al., 1997), in order to maintain only the ones with

the highest score and that contained a higher percentage of uncer-

tainty cues (see Supplementary Material, Section 3.2.2.1). Hence the

cue list was automatically compiled by those patterns (removing

stopwords). Although the performance dropped on both corpora, it

still produced reasonable results, and the precision remained high.

Indeed, the compromise in this case was mainly in terms of recall,

since as shown in the Supplementary Material, some of the correct

rule patterns are lost during filtering. However, in the case of the

BioNLP-ST corpus, which is substantially larger than GENIA-MK,

the drop in recall is considerably smaller. This result is promising,

and paves the way for further experiments towards semi-supervised

(un)certainty identification.

4.2 Application to pathway models
Having validated our methods for uncertain event identification

on gold standard corpora, we applied them, together with our adap-

tation of subjective logic theory described in Section 3.3, to

interactions described in pathway networks. We used the Leukemia

and Ras-melanoma models as described in Section 3.1. For both

use-cases we firstly applied EventMine to the evidence passages to

identify and map the events in each passage to the model inter-

actions. We then applied our (un)certainty identification system to

the results of EventMine using Equation (6) to calculate the fused

(un)certainty score for each interaction. The automatically anno-

tated events and interactions were then evaluated by domain experts

using the brat annotation tool (Stenetorp et al., 2012a) which pre-

sented each interaction with its related evidence. The evaluation

interface can be accessed on brat (http://nactem10.mib.man.ac.uk/

bratv1.3/#/Pathway_Annotations/) and the annotation guidelines

are available online (https://tinyurl.com/y7776ztl).

4.2.1 The leukemia use-case

For most interactions in the Leukemia pathway model, there is at

least one evidence passage provided as a reference, but the number

of evidence passages can surpass 100 for some interactions. As

stated in the Pathway Studio manual (http://tinyurl.com/gsywlar),

the only confidence measure provided for the interaction simply re-

flects the number of associated evidence passages and ranges from 0

(none) to 3 (�3 related publications). Such a measure is not always

indicative of the confidence attributed to an interaction, since an evi-

dence passage may contain uncertainty which should be taken into

account. We therefore propose the application of an (un)certainty-

based confidence measure based on Equations (4)–(6), that reflects

the (un)certainty found in the textual evidence.

Seven domain experts were asked to evaluate a total of 72 inter-

actions, each of which was accompanied with evidence passages.

Overall, 260 evidence passages (with from 1 to 20 passages for each

interaction) were evaluated, of which 12% were flagged as uncertain

by our system. Each evaluator was presented with the decision of our

system for each evidence sentence (event) separately, as well as the

overall decision for each interaction, and was asked to state their agree-

ment/disagreement for each sentence. In terms of the interactions, we

consider as correct, only the cases where the annotators agreed with all

the sentence annotations. The results are presented in Table 3.

We used a set of 10 validation sentences among the 260, in order

to verify the consistency of the evaluators (validation sentences were

pre-selected sentences considered to have a very clear certain/uncer-

tain value, but were purposely assigned erroneous labels in order to

verify that annotators were attentive and consistent during the task).

We then calculated the inter-annotator agreement (IAA) over the

whole set of 260 sentences in pairs (Supplementary Material,

Section 4.1.1) that gave a mean average Kappa value of 0.65. The

IAA agreement levels range from moderate (0.53) to very good

(0.82), showing that the perception of (un)certainty can vary among

Table 2. Comparative evaluation on GENIA-MK and BioNLP-ST cor-

pora using different approaches for rule extraction and cue

identification

Corpus System Precision Recall F-score

GENIA-MK Bio cues 0.94 0.83 0.88

ACE cues 0.82 0.86 0.84

No cues 0.93 0.67 0.78

BioNLP-ST Bio cues 0.87 0.68 0.76

ACE cues 0.61 0.53 0.58

No cues 0.86 0.66 0.74

Table 3. Recall, precision, F-score and accuracy (on sentence and

interaction level) of system annotations according to evaluation by

seven annotators (A1–A7)

A1 A2 A3 A4 A5 A6 A7 MAvg SD

Precision 0.93 0.83 0.86 1 1 0.74 0.88 0.89 0.09

Recall 0.86 0.57 0.63 0.78 0.79 0.69 0.59 0.70 0.11

F-score 0.89 0.68 0.73 0.86 0.89 0.71 0.71 0.78 0.09

Acc. per int. 0.93 0.93 0.85 0.91 0.9 0.79 0.81 0.87 0.06

Acc. per sent. 0.98 0.98 0.92 0.97 0.97 0.94 0.93 0.96 0.03

Note: Mean average (M Avg) and Standard deviation (SD) measures also

provided.
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different users. It is also noticeable that, in cases of annotators dis-

agreeing with the output of the system, the disagreement results

from humans perceiving even more sentences than the ones selected

by the model as uncertain, thus leading to low recall.

Nevertheless, the overall performance of our system confirms the

usefulness of our (un)certainty-based confidence measure, which can

complement and enhance the simpler measure currently provided by

Pathway Studio. The results provide a solid base for further experi-

ments presented in Section 4.2.2 and the Supplementary Material,

Section 4.1.2, where we present a more extensive quantitative evalu-

ation both on sentence and interaction level.

4.2.2 The Ras-melanoma use-case

Since the Ras gene plays a central role in many cancer cases, the

Ras-melanoma model could be an important resource for research if

supported by sufficient evidence from the literature. Indeed, as it

contains more than 100 interactions and genes, it is feasible to iden-

tify a large number of related sentences and events in the literature,

particularly since the Ras gene and related interaction play a key

role in cancer-related research. Due to the large amount of related

statements, a method for ranking interactions in terms of (un)cer-

tainty of the evidence can facilitate faster filtering of information. In

this experiment, we focus on the scoring and quantification of

(un)certainty and assess evidence on a 1–5 scale.

We asked two experts to annotate a total of 100 interactions,

each with 1–10 associated evidence passages, amounting to 392 pas-

sages in total. They were asked to assess the certainty of the event in

each evidence sentence on a scale of 1–5, where 1 corresponds to

‘most uncertain’ and 5 to ‘most certain’. Subsequently, the annota-

tors were asked to score each interaction in the pathway, based only

on the associated evidence.

The distribution of scores is presented in Figure 4. It is worth

noting that while there is no total agreement, both annotators anno-

tated the majority of sentences with high certainty (�4). However, it

is clear that the perception of (un)certainty varies, since, for ex-

ample, the scoring of annotator 1 is shifted towards higher certainty

values. The overall agreement at the sentence level was 43%, but

only in 8% of the sentence annotations was the difference in the as-

signed score greater than 1. For interactions, the overall agreement

was 45%, and only for 8% of cases where the disagreement was >1

point on the scoring scale.

In this non-binary evaluation, mapping the results of the sen-

tence annotation to our binary methods was more complicated. In

Figure 5, we present precision, recall and F-score plotted against dif-

ferent upper limits for uncertainty, showing the trade-off between

precision and recall in each case. In the extreme values, our system

performs well, i.e., there was no case where it annotated as uncer-

tain a sentence where the mean average score was 5. Similarly, in

the few cases where the mean average score was 1.5, our system

picked up the uncertainty of the event. As expected, for stricter un-

certainty upper limits, recall rises, but precision drops, while the

best performance (0.50 F-score) is obtained for the limit set in the

mean average of 3.5. Such results indicate that while the binary

method performs consistently, looking into a finer grained quantifi-

cation of (un)certainty would be a worthwhile goal for future work,

to more closely mirror the perception of users.

Focussing on the scoring of the interaction itself, we evaluate the

subjective logic fusion as follows. Firstly, we consider the results of

our system under the following assumptions: (i) a is set to 0.5 for all

cases, (ii) an event e1 that maps to interaction x and is identified as

uncertain, constitutes an opinion with be1
x ¼ 0:5;ue1

x ¼ 0:5 and (3) an

event e2 that maps to interaction x and is identified as certain has

be2
x ¼ 1; ue2

x ¼ 0. Also we project the 1–5 scoring to a (0,1) scale by

dividing by 5. Thus, we can use Equations (5) and (6) to calculate the

score of the interaction x and compare it to the scores given by the an-

notators. We calculate the absolute difference between the score of

our system and the mean average score given by the annotators. The

results are shown in Table 4 where we also present the mean average

absolute difference between the score given to the interaction by each

annotator and the score calculated with Equation (6) using the scores

given by the same annotator for each event mapped to the interaction.

We can observe that the score predictions when using the scores

given to the events by the annotators are very close to the actual

scores attributed by them. The score given by the system deviates

slightly more, but this was to be expected, since our system uses bin-

ary classification of (un)certainty. Hence, subjective logic provides a

good approximation of the score and way users assess (un)certainty

based on a series of statements by different authors. We consider

this to be an encouraging step towards combining certainty from dif-

ferent sources. This is especially so, because it will accommodate fu-

ture approaches that consider further (un)certainty parameters to

better approximate user scores and to take into account phenomena

such as the same event being mentioned multiple times in one docu-

ment, or uncertainty expressions being used consistently as part of a

writing style rather than a way to convey hesitation on a statement.

5 Conclusion

In this article, we have focussed on the analysis and interpretation of

textual (un)certainty in relation to events and demonstrated how

this can support scoring of pathway interactions. We have proposed

Fig. 4. Distribution of scores for (un)certainty between annot. 1 (solid colored

(blue) bars) and annot. 2 (vertically stripped white bars) (Color version of this

figure is available at Bioinformatics online.)

Fig. 5. Performance in terms of precision, recall and F-score, depending on

the selection of the mean average score as the upper limit of uncertainty (i.e.

the value below which all scored events must be considered uncertain)

Table 4. Performance results for the interaction scoring on the Ras-

melanoma model

Ann1 Ann2 Mean Avg (1 and 2) System prediction

Mean Avg Diff 0.06 0.09 0.07 0.13

SD 0.06 0.12 0.09 0.11
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(un)certainty scoring as a more expressive confidence measure, to be

used as an alternative or to complement simpler frequency-based

evidence measures.

We used a broad definition of textual uncertainty and developed

a hybrid framework for (un)certainty identification, which com-

bines rules with machine learning. Our proposed methods iden-

tify an (un)certainty value for each event mentioned in a sentence

separately, instead of the more commonly-used sentence-level

(un)certainty identification. We then introduced an approach to

consolidate uncertainty values from different papers into a single

score, in order to directly account for the impact of textual uncer-

tainty directly on the interaction of interest. This scoring can help to

isolate the more controversial interactions from the ones for which

there is wider agreement. This is an important step towards decreas-

ing manual curation effort, since users can view the (un)certainty

values of interactions, identify the interactions of interest and then

selectively read through the publications related to the provided

evidence.

It is important to note that the success of the proposed confi-

dence measure requires robust performance of the (un)certainty

identification method for individual events. For this reason, we have

demonstrated that our hybrid methods, and the incorporation of

rules that account for multi-hop dependencies, considerably outper-

form other published work based on similar gold-standard corpora.

We have presented different approaches for rule extraction, and dis-

cuss the trade-offs between them. Implementation of the related

components on a text-mining platform facilitates the incorporation

of our system in different workflows based on the task at hand.

Accordingly, the demonstration workflow presented in the

Supplementary Material, Section 1.1, can be applied to identify new

evidence from recent papers pertaining to the interactions of a

model, thus aiding curators to keep the model up-to-date.

Evaluation on the pathway models shows the applicability of

our methods on unseen data and verifies that use of subjective logic

provides a confidence score that is a good approximation of scores

attributed by experts. However, it is clear that broadening the defin-

ition of uncertainty and applying a finer-grained classification of un-

certain statements will be an important future step to better

approach the perception of users about uncertainty. To better ap-

proach the perception of (un)certainty by readers, we also intend to

focus our future work on expanding the use of subjective logic to ac-

count for phenomena such as propagation of (un)certainty via cit-

ations and multiple or dependent events mentioned by the same

author etc. We also want to study varying trust/certainty in opinions

of different authors that would allow us to account for cases where

authors consistently use uncertainty expressions due to writing style

versus authors who tend to write in a more assertive style.

All the above could further boost the performance of our pre-

sented method which, by detecting (un)certainty from text, can sup-

port PC based on big textual collections.
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