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Abstract: Lack of response to immunotherapies poses a significant challenge in treating immune-mediated disorders and cancers. 
While the mechanisms associated with poor responsiveness are not well defined and change between and among subjects, the current 
methods for overcoming the loss of response are insufficient. The Constrained Disorder Principle (CDP) explains biological systems 
based on their inherent variability, bounded by dynamic boundaries that change in response to internal and external perturbations. Inter 
and intra-subject variability characterize the immune system, making it difficult to provide a single therapeutic regimen to all patients 
and even the same patients over time. The dynamicity of the immune variability is also a significant challenge for personalizing 
immunotherapies. The CDP-based second-generation artificial intelligence system is an outcome-based dynamic platform that 
incorporates personalized variability signatures into the therapeutic regimen and may provide methods for improving the response 
and overcoming the loss of response to treatments. The signatures of immune variability may also offer a method for identifying new 
biomarkers for early diagnosis, monitoring immune-related disorders, and evaluating the response to treatments. 
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Introduction
There has been a growing interest in immunotherapy in the last decades. Immunotherapy, including immune cell 
therapy and targeted therapy, is gradually developed through the ongoing discovery of molecular compounds or 
immune cells.1 Selecting the best approach or combination of target compounds and immune-cell therapy is 
challenging for clinical scientists and clinicians. Colorectal cancer (CRC) ranks among the most prevalent 
malignancies affecting the gastrointestinal tract.2 The infiltration of CD8+ T cells significantly influences the 
prognosis and progression of tumor patients.2

Passive immunotherapy involves using anti-CD20 and anti-TNF agents, bispecific antibodies with well-defined 
specificity and subclasses, and antibody-drug conjugates (ADCs). Another approach involves T cells transduced with 
chimeric antigen receptors (CAR) to expand tumor-infiltrating lymphocytes. In active immunotherapy, patients are given 
B- or T-cell-based immunity against selected antigens or induced active tolerance against allergens, autoantigens, and 
alloantigens. Combining both approaches is utilized to release the brakes on T cells that have already responded to 
antigens through T cell checkpoint control blockers.3 However, the current response rate to immunotherapies could be 
more satisfactory. Many patients suffer from primary non-responsiveness, and among those who initially respond, there is 
a large segment of secondary non-responders.4–6 The lack of response is associated with the dynamicity of both the host 
and the disease.
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Introducing variability patterns was proposed to enhance the clinical response to immunomodulatory agents.7 The 
current paper aims to introduce the concept of constrained disorder principle (CDP) in light of recent data on the immune 
system’s natural variability. Developing second-generation treatments based on artificial intelligence (AI) is essential to 
enhance the response to immunotherapies.

The Principle of Constrained Disorder Explains How Complex Systems 
Operate Within Specific Boundaries
The CDP defines systems based on their inherent variability.” It differentiates living organisms by their variability, which 
is bounded by dynamic boundaries enabling systems to respond to perturbations.8 The CDP is based on the variability 
that characterizes biological systems at the gene, cell, and whole organ levels.9–33 In homeostasis, systems aim at 
returning to their setpoint post perturbations, and in allostasis, systems change their setpoint in response to triggers. The 
CDP views noise as inherent to the proper function of biological systems. Perturbations are answered by widening or 
tightening the noise boundaries in a system. Per the CDP, diseased states are described by a reduction in noise or an 
increase beyond the borders.8,33–35

Variability is Inherent in the Immune Response: Mechanisms of Intra- and 
Inter-Individual Variability in the Immune System
The immune system exhibits remarkable inter-individual variability as well as intra-individual variability.36 Evolution 
maintains diversity within the immune system, which provides a powerful defense against pathogens. Nevertheless, 
immune-associated diseases may develop based on immune variation.37,38 The dynamic nature of the immune system is 
influenced by various internal and external factors, including genetic variations, age, sex, environmental influences, 
microbiome, and disease states.36 Many of these variables are inextricably intertwined, making it challenging to assign 
definitive contributions to them.37,39,40

Genetic polymorphism in immune-related genes can lead to diverse immune phenotypes.37 The heritable contribution 
to the variability in immune cell frequencies is estimated to be between 20–50%.37,41–44 As a result of the polymorphic 
genes that control the immune system and the sensitive environmental sensors that shape it, immunity can be pushed into 
various functional configurations.44 One of these configurations is an intrinsic bias toward a particular type of immune 
response. Most healthy humans can produce type I interferons, type II and type III cells, Th17 cells, type I helper T cells, 
and inflammasome activation. However, the extent to which individuals are predisposed to a particular functional 
configuration varies significantly from person to person.45,46 The interindividual differences continuously expand with 
age and are somewhat stable and resilient to perturbation.36,37,47,48

Genetic variations in human leukocyte antigen (HLA) genes have been linked to varying susceptibility to autoimmune 
diseases, infectious diseases, and response to immunotherapies.37 Specific HLA alleles, such as HLA-DRB1 in rheuma
toid arthritis (RA) and HLA-DQB1 in type 1 diabetes, are lined with disease susceptibility.37,49 Interferon α (IFNα) levels 
are increased in systemic lupus erythematosus (SLE) and their healthy first-degree relatives, implying genetic influences 
on cytokine expression.36

Sexual dimorphism is observed in various aspects of the immune system, leading to inter-individual variability.42 

Overall, women appear to have higher immune cell counts and immunoglobulin levels, although some studies incon
sistently demonstrated higher counts of specific immune cells and immunoglobulin subgroups in males.42,50–52 Sex- 
specific differences in disease prevalence, clinical outcomes, and response to immunotherapies have been observed, 
highlighting the importance of considering sex-based differences in immune profiles.1,2 Clinically, many autoimmune 
and inflammatory diseases show female predominance, while ankylosing spondylitis is more prevalent in male patients.36 

The response to vaccines is often more intense in women, attributed to the immune-enhancing effects of estrogen and 
immune-depressing effects of testosterone.36,37,42,53 Several studies did not show a significant sex-related inter-individual 
immune variability.50,54

The immune system is relatively stable within a healthy individual, as implied by the steady immune cell and protein 
profiles of blood samples drawn weeks to years apart from healthy subjects.36,50,54–56 Variations in immune function over 
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time are an individual feature.41,57 Individual variations not caused by reported infections are a feature of the immune 
system, causing more significant shifts in phenotypes from one point to another.41,50,58 A few cellular subpopulations 
showed intra-individual variability in consecutive tests of healthy individuals.55 Healthy older individuals may show 
enhanced intra-individual immune variability over time.47,54 This highly variable phenotype may be linked to 
a diminished flu vaccine response.54 Also, high intra-individual variability in immune components was associated with 
a morbid metabolic profile and markers of cardiovascular morbidity and possibly mortality.41,47

A year-long study was conducted on healthy adults aged 50 to 65 years. The study monitored 750 plasma proteins and 
115 immune cell populations every three months. It helped in understanding the relationships and fluctuations in the 
blood-immune system. Immune systems are usually stable, but the level of longitudinal variability varies from individual 
to individual. In the absence of apparent infections, individuals with the most variation exhibited variances in metabolic 
health markers, suggesting a link between immunologic and metabolic regulation.41 Cell composition changes radically 
during early life due to environmental exposures, suggesting a distinctive cell composition developed during this critical 
period.59–61

Neutrophils are more abundant in the circulation of older individuals but exhibit impaired migration and 
phagocytosis.54,62 Cytotoxic NK cell count rises with age, with diminished cytotoxic capabilities.54,62 Self vs non-self 
antigen recognition disruptions due to altered function and amount of the antigen-presenting dendritic cells are also 
noted.62 Involving the thymus leads to a decrease in naïve T cells, a reduction in peripheral T cell diversity, and an 
increase in memory and regulatory T cells.42,43,54,55,62 Lymph nodes, splenic degeneration, and bone marrow dysfunction 
may also interrupt the homeostasis of lymphocyte populations and the humoral response of older individuals.42,50,54,62 

These changes, recognized as immunosenescence, increase susceptibility to infections, cancer, and inflammatory condi
tions and decrease vaccine responsiveness in older adults.36,37,43,53,62,63 Aging is linked to low-grade inflammatory 
phenotype (CLIP), inflammaging.62 It is characterized by elevated levels of inflammatory cytokines such as IL-6, IL-18, 
tumor necrosis factor (TNF), and CRP.36,50,52,62 This chronic inflammation disrupts immune homeostasis, impairs 
immune cell function, and underlies the development of age-related diseases.52 Age is also associated with inter- 
individual immune variability, as younger individuals show more inter-individual similarity of immunological traits 
than the diverse phenotypes of older adults.37,41,54,63 Monozygotic twin pairs show higher inter-individual variability 
with older age, attributed to non-heritable factors.43 This age-related variability is attributed to an increased cumulative 
environmental exposure and to direct age effects.37,41

Non-heritable factors are the dominant source of immune variability.37,41–44 These factors occur throughout an 
individual’s life course, thus contributing to intra-individual variability on various time scales. Additionally, they 
constitute a distinct input reflecting an individual’s lifestyle, consequently influencing inter-individual variability.

Several studies demonstrated the seasonal variability of immune cell frequencies and plasma protein 
concentrations,42,51,52 while others showed no seasonal effects.41 Clinically, the incidence of type-1 diabetes mellitus 
is higher during winter;34 allergies and viral infections show seasonal variations;37,48 RA symptoms exhibit seasonal 
variations, as well as a circadian pattern with morning symptoms, correlated to a spike in serum IL-6 levels.36

Variations in microbiota composition can contribute to immune system variability and influence susceptibility 
to immune-related disorders and vaccine response.36 The imbalance in the microbial community, bacterial 
dysbiosis, is typically linked to reduced microbial diversity and is related to various immune disorders such as 
inflammatory bowel disease(IBD) and asthma.36 Diet can alter immune system modulation. Deficiencies or 
nutrient imbalances can compromise immune responses and increase susceptibility to infections.37 Nonetheless, 
the impact of normal dietary variations on the immune response is uncertain.37 Dietary alterations may also exert 
their effects indirectly through modifications in the microbiome or body weight.37,52 Nutritional supplementations 
may influence immune response, as was demonstrated in measles-vaccinated iron-deficient children treated with 
iron.37 Salt-rich diets are associated with increased autoimmunity.37 Obesity has been linked to increased 
inflammatory markers such as IL-6 and altered NK cell count and function, attributed to the lipid-rich 
environment.37,50 Long-term exposure to pollutants may lead to chronic inflammation, immune dysregulation, 
and increased susceptibility to immune-related disorders.36,37
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Cigarette smoking increases leukocyte counts, reduces total immunoglobulin levels, and increases autoantibody 
titers.36,37 Exposure to various infectious agents can shape the immune system. CMV-seropositivity contributed to inter- 
individual variability significantly.64,65 Monozygotic twins with discordant CMV seropositivity showed higher inter- 
individual variability in many immune parameters than concordant seropositive or seronegative twin pairs.44 Certain 
medications, vaccines, and immune therapies can affect the immune system, leading to variability within and between 
individuals.36

The data suggest that internal and external factors affect the immune system’s inter and intra-individual variabilities. 
This variability emphasizes the need for personalized medicine to address immune-mediated pathologies effectively. 
Furthermore, fluctuating immune function may indicate the aging process and may be associated with mortality, 
suggesting the potential clinical relevance of its monitoring.66 The design of variability-based digital twins is being 
developed to improve the accuracy of diagnosis and monitoring.67

Variability is Essential to the Proper Function of the Immune System
The immune system’s primary purpose is to protect the host from the uncountable diversity of constantly changing and 
evolving pathogens. Therefore, dynamicity, plasticity, and variability are required characteristics of the immune system.64 

However, variability is not confined solely to the whole system or organism level. Instead, the immune cell itself can be 
perceived as a complex system that is subjected to constantly changing various inputs (eg, cytokines, chemokines, 
medications, toxins, and pollutants) aiming to generate a specific output or behavior (cytokine production, receptor 
expression, migration, and differentiation). Intercellular variability is a characteristic of all major immune cells.65,68,69 

Characterization of single-cell “omics”, quantifying intra-individual intercellular variability, even among a well-defined, 
allegedly homogenous cellular subset, unravel previously concealed variability.70 The high-resolution single-cell analysis 
identified intra-individual daily variability of immune cellular composition among healthy individuals, challenging the 
previous dogma of intra-individual stability over time.68,71

The immunological inputs fluctuate, manifesting noise and stochasticity.68 Noise is a variation in a specific input 
signal that does not induce a different output by itself.68 However, accumulating noisy signals may alter the cellular 
output, demonstrating noisy properties.68 Stochasticity is another expression of randomness in cellular behavior that 
regards the choice of a distinct cellular outcome from a restricted repertoire of possibilities in response to a fixed input.68 

Noise and stochasticity are evident at the level of intracellular molecules, various cellular processes, and intercellular 
interplay and account for intercellular variability.70

Intracellular molecular stochasticity mechanisms are fundamental in B and T cells.65,72 Through V(D)J 
recombination, these cells produce diverse B cell receptor (BCR) and T cell receptor (TCR) chains, allowing 
recognition of a wide range of antigen-major histocompatibility complex (MHC) combinations.65,72 Epigenetic 
modifications generate variability in the single-cell level phenotypes and show stochastic properties.65 Inter- 
cellular heterogeneity in interleukins and interferons mRNA expression in response to pathogens or vaccines 
was observed, stemming from stochasticity and probabilistic events in gene expression processes.64,65 Protein 
level variation was also noted for intracellular signaling molecules and surface receptors, contributing to inter
cellular diversity.65,70 Multiple intracellular stochastic events may determine the differentiation trajectory of 
a single immune cell.64,65 Cellular variability creates heterogeneity within a single immune cell type population 
that enables a gradual activation of the immune response.64,65

For an effective threat-appropriate and dose-dependent response, the immune response necessitates the main
tenance of a varied array of responsive cell states.68 Variations in protective antibody production following 
vaccination have been linked to high plasmablast activity within a week of vaccination.73 CD38+ B cell subsets 
are a strong predictor across many cohorts and studies, accompanied by specific gene-expression signatures.74 

Different activations of the interferon pathway have consistently been linked to increased antibody production in 
subsequent immune responses, as demonstrated across various vaccines.75 Positive innate responses at baseline, 
mediated primarily by plasmacytoid dendritic cells, are also possible.74 It is intriguing to note that a similar 
interferon signature predicts clinical flare-ups of SLE, indicating a common immunological variation depending 
on the context of activation.37,76
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Elevated intercellular phenotypic variability can serve as a biomarker of aging and a quantitative trait, facilitating 
individual comparisons and intra-individual surveillance.70 Uncontrolled cellular variability can detrimentally impact 
tissue function, notably in cancer development and autoreactivity.64,65 With age, there is an increase in transcriptional 
variability, which has been demonstrated to disrupt synchronized immune responses.77 Single-cell examination has been 
used in studying immune disorders, such as RA,78,79 SLE,79,80 multiple sclerosis,81 IBD,82 asthma,83 and cancers.84,85 

Single-cell proteomics showed that alterations in macrophage prevalence have predictive value for RA treatment 
effects.69 These methods revealed new immune cellular subtypes, advanced understanding of disease pathogenesis and 
clinical diversity, and potential individual therapeutic targets. Single-cell-based research established the boundaries 
between normal and pathological cellular heterogeneity of the ongoingly recognized immune cells, focusing on inter- 
individual variability.51 Intra-individual variability analysis utilizing these novel markers is a potential tool for monitor
ing disease progression and treatment response.86,87

Per the CDP, the variability kept within dynamic boundaries is essential for the proper function of systems.35 

Variability characterizes biological systems and can be seen at the level of the DNA,9 tissues,12,13 and whole organs, 
including heart rate,10,11 blood pressure,14 respiratory,15 gait,16 and brain functions.17–19 In several of these systems, it 
was proposed that they be associated with improved function by providing biological systems with an ability to adapt to 
perturbations in their continuously changing environments.9,36,88

Similarly, variation can confer unique advantages on the immune system.37,89 As a protective mechanism, 
evolution has been selected for immune diversity rather than a homogeneous state of infection resistance.90,91 

Possessing an immune system wired differently from the previous host can provide an evolutionary advantage 
when pathogens can quickly specialize in taking advantage of a fixed niche.34,37,92 Therefore, immune variation 
during immune responses is an essential mechanism mandated for effectiveness.34,93 Both antibodies’ structure, 
with a variable part of their structure, the multi types of cells cellular immunity, and cytokines panel, which are 
involved in all types of responses, are examples of the inherent variability that enables a relatively rapid response 
to perturbations.29,94,95

Thus, the variability is altered under changing host and environmental conditions, allowing the immune response to 
better deal with foreign antigens. Per the CDP, immune-associated diseases may evolve from a lack of variability or form 
a higher degree of variability.8 It is possible to develop treatments targeting these mechanisms to modulate the immune 
response by understanding how individuals’ immune systems differ, improving the immune response to vaccines, 
pathogens, and tumors, or alleviating immune-mediated disorders.96,97 By optimizing modifiable environmental condi
tions, it may be possible to enhance the long-term immunological health of all populations by gaining a better under
standing of how and when the immune system achieves a stable state.36,98,99

The Challenge to Achieve a Sustained Effect of Immune-Mediated 
Therapies: Primary and Secondary Non-Responsiveness: Time Dimension 
in Disease Pathogenesis and Host Response
Lack of response to immunotherapies poses a significant challenge in treating immune-mediated disorders and 
cancer.100,101 Patients may not respond to initial therapy, primary non-response (PNR), or may lose response over time 
after initial improvement, with secondary loss of response (SLR).102

Tolerance against immunotherapies can result from forming anti-drug antibodies (ADA). Using drugs with 
high immunogenicity can generate ADA in up to 70% of the patients, depending on the drug.103 ADAs can be 
generated by T-cell-dependent or independent B-cell activation pathways. ADAs are produced in the T-cell- 
dependent pathway when a T helper cell (Th) differentiates into a Th1 or Th2 phenotype, ultimately creating 
plasma cells that secrete ADAs. It is clinically essential as infliximab-specific T-lymphocytes have been detected 
in the serum of subjects who received the drug, and there has been a correlation to ADA formation in those 
patients.104 Recent research examined risk factors for ADA formation against Infliximab. Smoking and RA 
encouraged ADA creation, whereas higher infliximab doses and higher serum infliximab concentrations reduced 
the risk of immunogenicity.105
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PNR occurs in 10–40% of IBD patients, and it is usually declared after 12–14 weeks of therapy.102 Switching 
treatments between anti-TNF formulations can be effective in over 50% of PNR patients, suggesting that it is not 
entirely a class-effect phenomenon.106 SLR may result in treatment intensification or discontinuation in up to 50% 
of patients after 12 months. It may exacerbate symptoms of active IBD during maintenance therapy in a patient 
with controlled disease following induction treatment.107 A confirmation of SLR usually requires the recurrence of 
symptoms mediated by the inflammatory disease exacerbation of.7,108 The recent PANTS study tested 1610 active 
Crohn’s disease subjects receiving adalimumab or Infliximab to predict clinical factors leading to PNR and SLR. 
PNR at 14 weeks of treatment occurred in 23%. Non-remission after 54 weeks occurred in 63% of patients. In 
multivariable analysis, low drug levels at week 14 were an independent factor related to PNR and SLR. Low drug 
levels were also a predictive value for the immunogenicity of both drugs. Obesity, smoking, low albumin 
concentrations, higher baseline disease activity markers, and immunogenicity development were associated with 
low drug concentrations, which mediated non-remission.109

Among patients with rheumatoid arthritis, anti-TNF drugs are the first-choice treatment for patients who fail to 
respond to methotrexate therapy.110 Nonetheless, it is estimated that only 60% of subjects will attain a long-term response 
to these agents, while 30% of patients do not have an adequate primary response.7 In the DREAM registry, 6% of 
patients achieved remission according to the European League Against Rheumatism (EULAR) and the American College 
of Rheumatology (ACR) criteria. In comparison, 27% achieved a Disease Activity Score (DAS28) of less than 2.6, a less 
strict measure.111 The heterogeneity of patients with RA makes it challenging to predict who benefits from anti-TNF 
treatment. A recent study tried to predict response before treatment with anti-TNF, using machine learning models to 
assess DNA methylation and gene expression profiling in peripheral mononuclear cells. An accuracy of 79–88% in 
predicting response, based on the EULAR criteria for disease response, was reported.112 Unlike PLR, there is a lack of 
consensus on the definition of SLR in RA. SLR can be considered when there is an increase in EULAR response or 
DAS28>0.6 during the last six months.7,113 The average survival on anti-TNF in subjects with RA is estimated to be 47 
months.114

Using immune-mediated therapy for cancer treatment also encounters challenges in achieving long-term effects. The 
reasons for treatment suspension vary from side effects to NPR and SLR. Despite performing a preliminary selection of 
patients who are candidates for Immune checkpoint inhibitor (ICI) treatment according to histo-pathology characteristics 
of the tumor tissue, only 13% of subjects are responsive.115–117 Prediction of ICI response is a complicated and evolving 
endeavor. It includes biomarkers such as intensity of PD-1 expression, tumor mutational burden, and analyzing signaling 
pathways in tumors as Interferon-γ (IFN-γ). More recent attempts for prediction include microbiome analysis using 
machine learning.118 One of the latest attempts is to examine the effects of epigenetics on NPR. Several studies have 
demonstrated that mutations in genes associated with the SWI-SNF chromatin remodeling complex can increase the 
sensitivity of human tumors to ICIs.

Additionally, treatment with an epigenetic modulator enhances the ICI-mediated anti-tumor effect.115,118 Resistance 
to ICIs is not fully understood due to the complexity of the immune response and its reliance on the host. While the 
response to ICIs varies depending on the specific disease, approximately 70% of patients are considered non-responders 
or experience disease progression after initially responding to these treatments.119

One suspected significant factor in resistance to ICI among cancer patients is the evolution or selection of tumors 
acquiring mutations in crucial pathways involved in the checkpoint blockade response.115 A tumor microenvironment 
(TME), which comprises factors extrinsic to cancer cells, can also prevent the ICI effect. It was shown that the TME can 
obtain Immune-suppressive cells and inhibitory cytokines, thus undermining the ICI effect.120,121 What was mentioned is 
only a fraction of how an SLR can occur in cancer patients, adding more challenges to finding an effective bypass to 
regain response.

Current Methods for Overcoming Immunotherapy Non-Responsiveness
Overcoming immunotherapy’s non-responsiveness is a significant challenge, considering the heterogeneity of the 
disease and multiple mechanisms of PNR and SLR. In cancer, non-response can occur through TME, creating a non- 
favorable condition around the tumor and preventing the drug effect. There are various strategies to overcome the 
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TME effect. In triple-negative breast cancer, suppressing assays targeting annexin A1 (ANXA1) in mice in vivo 
experiment led to Treg function impairment and helped reduce the tumor size.122 Hypoxia also plays an essential 
role in TME deregulation and resistance to therapy. Recent research on HER2+ breast cancer in a pre-clinical model 
demonstrated that interfering with AXL tyrosine kinase receptor reduces It was also found that a pharmacological 
combination of inhibition of Axl, with anti–PD–1, assisted in reducing the size of the tumor and the spread of 
cancer.123 It is now essential to use additional drugs and biochemical agents to help CAR-T cells. It implies that 
compounds that affect different signaling pathways are given along with CAR-T cells. For example, Olaparib, 
a PARP inhibitor, significantly improved the activity of EGFR-specific CAR-T cells in a breast cancer model.124 

Combining drugs is also an essential way to improve response to ICIs. Cytotoxic drugs are a pillar in treating 
advanced cancer and metastases. Essential cytotoxic drugs such as carboplatin, cisplatin, fluorouracil, and oxaliplatin 
can upregulate PD-L1 in malignant cells by generating danger signals.125

They enhance anti-tumor immunity via cytotoxic T cell activation, antigen-presenting cells maturing, immu
nosuppressive regulatory T cell depletion, and myeloid-derived suppressor cell expansion.126 Recent attempts to 
overcome ICI resistance include a gut microbiome therapeutic strategy. Several studies have demonstrated that 
microbial metabolites regulate anti-tumor immunity.127,128 Short-chain fatty acids (SCFAs) are produced when gut 
microbes ferment dietary fiber. These acids interact directly with CD8+ T cells, boosting their ability to fight 
tumors. Clinical studies have revealed that solid cancer patients treated with nivolumab had higher levels of fecal 
SCFAs if they responded positively to the treatment, suggesting a longer time without the cancer progressing.129 

The benefits of SCFAs-producing microbiota can become another option for improving the response rate to ICI 
treatments.

Immune-mediated therapies, especially anti-TNF, are essential for many immunological diseases such as RA. 
However, as mentioned, 30–40% of patients cease the treatment due to PNR or SLR. Nonetheless, there are still 
no defined rules which indicate what to do in case of a treatment failure. European League 
Against Rheumatism (EULAR) recommends that a different biological disease-modifying anti-rheumatic drug 
(bDMARD) and anti-TNF be used instead in case of failure. Results of randomized controlled trials and 
observational data indicate that switching to a bDMARD with a different mechanism of action increases the 
likelihood of clinically significant improvements and improves drug retention rates.130 The GO-AFTER study 
discovered that golimumab reduced the symptoms of active RA and improved physical function in patients 
previously treated with TNFα inhibitors.131 An NJM study found that using abatacept in subjects with insufficient 
response to anti-TNF was clinically effective and had an acceptable safety profile.132 A recent study compared the 
effectiveness of second-line therapies for rheumatoid arthritis (RA), precisely anti-TNF drugs, and other biologics 
(abatacept, BDMA, rituximab, tocilizumab). The study found that BDMA showed greater sustainability as 
a second-line treatment than TNFi, especially in seropositive RA patients. However, seronegative patients did 
not experience the same drug survival advantage with BDMA. The study also highlighted that the failure and 
adverse effects of TNFi could be attributed to the development of anti-TNF antibodies, leading to a higher rate of 
treatment withdrawal.

Nonetheless, either BDMA or TNF can be chosen in seronegative and seropositive RA subjects exposed to anti-TNF 
or if the duration of TNFi was shorter than 2 years.133 This study is consistent with a previous study that determined the 
effectiveness of using a second-line anti-TNF drug compared with a non-TNF group. A non-TNF biologic agent achieved 
non-statistically better results than a second-line anti-TNF agent at 24 weeks.134

In IBD, dose intensification (DI) is often necessary due to loss of response. It is typically used in the context of SLR 
in case of low therapeutic drug levels and low ADA levels.7 In a meta-analysis, the drug intervention requirement rate 
was 28% in treatment-naïve patients and 39% in non-naïve patients. The short-term response to the empirically 
prescribed drug intervention was 63% and 58% in naïve and non-naïve subjects, respectively.

Additionally, no differences were found in comparing UC vs CD, the use of anti-TNF drugs, or even between 
intensification regimens.135 Another option is switching between anti-TNF drugs with success rates of about 50%. 
Shifting from adalimumab to Infliximab was beneficial in subjects with LOR and untraceable adalimumab levels, and 
half of them mandated DI after six months and 75% after 12 months of infliximab therapy. At 12 months, 81% still were 
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on infliximab.136 Besides a change of anti-TNF, there is a question of whether adding an immunosuppressive drug will 
increase response. A study compared switching to a new anti-TNF in IBD subjects after experiencing LOR versus 
switching to a new anti-TNF treatment with the addition of Azathioprine. The study found that combining Azathioprine 
with the new anti-TNF treatment was more effective.137

A Second-Generation AI Platform Based on the CDP Can Overcome Drug 
Tolerance
Immune variation during health and disease must be considered when developing methods to overcome the loss of 
responsiveness to immunotherapies.36,37,138 In precision medicine or personalized therapy, patients are treated differently 
based on their disease mechanisms and specific treatment needs. It is possible to achieve better outcomes by determining 
the requirements for each patient.139 Based on the CDP, the second-generation AI systems are designed to incorporate 
personalized variability signatures into treatment regimens.140–142 These systems quantify inherent variabilities using 
biological sensors (eg, heart rate, blood pressure, and respiratory variabilities) or test variabilities (eg, cytokines secretion 
and subsets of inflammatory cells variabilities) and implement them into therapeutic regimens. This method may 
overcome the loss of response to chronic treatments.7,66,143–160

Implementing variability signatures in treating patients with congestive heart failure who have developed resistance to 
diuretics has successfully overcome the resistance. Treated patients showed improved clinical and laboratory parameters, 
significantly reducing hospitalizations and emergency room admissions.161 Similar beneficial effects were described for 
patients suffering from chronic pain who developed tolerance to painkillers and those with multiple sclerosis receiving 
immunotherapy.35 This platform improves the response to Lenvatinib in head and neck cancer patients.162 Long-term 
studies are required to ensure the sustainability of these effects.

The data shows potential for addressing medication response challenges through personalized variability signatures in 
treatment plans. Personalization of the treatment plans needs to be dynamic as both the host response and the disease 
pathogenesis keep changing. It mandates using algorithms, which can alter the variability in a way that deals with 
changing internal and external environments.34,140–142,163

Changes in Immune Variations as Early Signs for Disease and Monitoring: 
The Development of Variability-Based Biomarkers for Immune-Associated 
Diseases
Currently used laboratory tests and clinical scores are insufficient for early diagnosis and monitoring of the response to 
therapies in subjects with immune-associated diseases. The intra- and intersubject variability of the immune systems 
creates a significant challenge in identifying early diagnostic and valid monitoring biomarkers.

The lack of proper early diagnostic tools impacts the prognosis of many immunological diseases as it is associated 
with the late start of therapies.164–167 Similarly, the lack of valid biomarkers provides a challenge for personalizing 
immunotherapies when faced with a dynamic immune system that alters the pathogenesis of the disease over time within 
and among patients treated with immunotherapies.168 The current biomarkers are insufficient to select the ideal 
immunotherapy from the available immunotherapies. Moreover, as the host and the disease change, a dynamic system 
must provide time-dependent personalizing immunotherapies.169,170

The CDP-based early signs system may provide a variability-based method for the early diagnosis of immune- 
mediated disorders. Variances in the immune system, if too low or high, can predict disease. Alerts in variability levels 
can also monitor disease progression and therapy response. Both autoimmune diseases and cancers have a time factor in 
their pathogenesis and response to immunotherapies, which evolve from host and disease alterations. Therefore, immune- 
variability signatures are anticipated to offer a more accurate way to follow up on these patients and determine their 
treatment response.67

Long-term studies using CDP-based AI systems are required to show their use in monitoring the improvement of 
outcomes.
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Using CDP-Based Platforms for Improving the Response to Immune-Based 
Treatments
The second-generation AI system based on CDP is designed to address the lack of response to immunotherapies and the 
loss of response. Figure 1 shows a schematic presentation of the changes in variability signatures that can serve as 
a method for early signs of disease (A) and an schematic presentation of a CDP-based treatment plan based on changing 
the degree of variability (B). The changes in the variability signatures may enable the selection of immunotherapies and 
change them over time while serving as biomarkers for disease progression, response to therapies, and prognosis. Box 1 
shows several potential biomarkers that can serve as biomarkers.

The platform is being developed in three stages. Initially, a pseudorandom number generator picks the administration 
time and dose from a pre-defined dosing scheme. This open-loop system operates independently of the outcome and is 
not personalized. For using anti-TNF Adalimumab in colitis or arthritis, the algorithm can select between 40 and 80mg, 
and a range between ten and sixteen days between administrations, rather than a fixed 80mg every fourteen days, is 
proposed to improve the response. In the second stage, a closed-loop system is implemented. Clinical and laboratory 
endpoints provide feedback to select dosing and administration times dynamically. In the third step, the quantification of 
biological signatures of variability is implemented into the algorithm to improve the response further.140–142

Future studies are designed to evaluate the overarching framework and assess the necessity of potential mergers to 
improve the clinical outcomes of using this method.

Figure 1 (A) Schematic presentation of the hypothesis of how changes in variability signatures can serve as a method for early signs of disease. (B) Schematic presentation 
of the hypothesized CDP-based treatment plan based on changing the degree of variability. The changes in the variability signatures may enable the selection of 
immunotherapies and change them over time while serving as biomarkers for disease progression, response to therapies, and prognosis.

Box 1 Potential variability signatures as novel biomarkers

These can be measured periodically (e.g., daily or monthly).

a. Alterations in cytokine secretion: pro and anti-inflammatory patterns.

b. Alterations in B cells and immunoglobulin secretion.
c. Alterations in subsets of innate and adaptive T cells.

d. Functional immune assay for B cells and T cells.

e. Immune-related protein expression and secretion.
f. Apoptosis and necrosis biomarkers.

g. Inflammatory serum biomarkers include acute phase reactants (C reactive protein, ferritin, sedimentation rate).
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Summary
The immune system’s intra and inter-subject variability is a significant challenge for immunotherapies and current 
diagnostic and monitoring modalities. The CDP-based second-generation AI system may offer a new platform to address 
these challenges. Ongoing studies determine the ability to implement these modalities into clinical practice to improve 
the diagnosis, monitoring, and responsiveness to therapies.
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