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Abstract

Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are inflamma-

tory diseases of the central nervous system. Although several studies have characterized

the metabolome in the cerebrospinal fluid (CSF) from MS and NMOSD patients, compara-

tive analyses between them and between the relapse and the remission of each disease

have not been performed. Both univariate and multivariate analyses were used to compare
1H-NMR spectra of CSF from MS, NMOSD, and healthy controls (HCs). The statistical anal-

ysis showed alterations of eight metabolites that were dependent on the disease. Levels of

2-hydroxybutyrate, acetone, formate, and pyroglutamate were higher and levels of acetate

and glucose were lower in both MS and NMOSD. Citrate was lower in MS patients, whereas

lactate was higher in only NMOSD specifically. The shared feature of metabolic changes

between MS and NMOSD may be related to altered energy metabolism and fatty acid bio-

synthesis in the brain. Another analysis to characterize relapse and remission status

showed that isoleucine and valine were down-regulated in MS relapse compared to MS

remission. The other metabolites identified in the disease comparison showed the same

alterations regardless of disease activity. These findings would be helpful in understanding

the biological background of these diseases, and distinguishing between MS and NMOSD,

as well as determining the disease activity.

Introduction

Multiple sclerosis (MS) is the most common autoimmune demyelinating disease of the central

nervous system (CNS) affecting more than two million people around the world [1]. MS is a

complicated disease with many different immune cells involved in its pathogenesis; T cells in

particularly are the most recognized cell type in CNS lesions [2]. Histopathologically, MS is

characterized by inflammation of the CNS, demyelination, and glial scarring. Although the

exact cause remains elusive, MS is considered to arise in genetically susceptible individuals

with environmental factors influencing disease penetrance [3]. Neuromyelitis optica (NMO),
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another inflammatory autoimmune disease of the CNS, is characterized by severe and recur-

rent optic neuritis and longitudinal extensive transverse myelitis [4]. Even though NMO was

traditionally considered a variant of MS, it is now considered a distinct disease based on its

unique biological features. The discovery of a disease-specific immunoglobulin G antibody

(NMO-IgG) that selectively binds aquaporin-4, the most abundant water channel in the CNS

[5, 6], has led to an increased understanding of NMO and broadened the clinical and neuroim-

aging spectrum of NMO [7, 8]. Accordingly, the International Panel for NMO Diagnosis

(IPND) proposed new diagnostic criteria to cover the full spectrum of disease and suggested

use of the unifying term, NMO spectrum disorder (NMOSD) [9].

Diagnosis of MS and NMOSD is based on observed clinical signs and symptoms, in combi-

nation with supporting magnetic resonance imaging (MRI) and laboratory tests [9, 10]. Because

both MS and NMOSD have characteristic clinical courses with episodes of relapse and remis-

sion and share some features, the discrimination of these two diseases is often challenging, espe-

cially in the early stages. Nonetheless, it is essential to make an early, accurate diagnosis as some

MS disease modifying therapies appear to worsen NMOSD [11, 12]. Thus, biological characteri-

zation of the diseases may be a major concern for in-depth understanding of disease status and

predictive test at early stage of MS and NMOSD.

Metabolomics is the systematic study of chemical processes involving metabolites in a bio-

logical system. Metabolites represent the end products in a cell, tissue, organ, or organism.

Metabolic profiling can provide an immediate indication of the physiology of the biological

system being examined [13]. Nuclear magnetic resonance (NMR) spectroscopy-based metabo-

lomics is an important metabolomic tool, having the advantages of being quantitative and

highly reproducible. Applications of NMR based metabolomics have increased in recent years

and it is now widely used in areas such as toxicology, ecology, and epidemiology. It is a valu-

able and powerful platform that simultaneously provides insight into find out insights into the

pathogenesis and mechanisms of a disease [14–18].

Although several studies have characterized the metabolites in the serum [19–23], CSF [20,

24–28] and urine [29] from MS patients, to date a comparative analysis between relapse and

remission episodes have not been performed. Because of the heterogeneity of MS disease as

well as chemometric and technical limitations, the previously reported metabolic profiles were

inconsistent. In the present study, we aimed to identify similar and different metabolic features

between MS and NMOSD and to identify those metabolites that might characterize disease

activity (relapse and remission) using an NMR based metabolomics approach. We compared

the metabolite profile of CSF specimens obtained from healthy controls (HCs), MS, and

NMOSD patients. The statistical analysis of variables from NMR spectra provided several key

disease-specific and disease activity-specific metabolites.

Materials and methods

Patients and CSF samples

CSF samples from 50 patients with MS and 57 patients with NMOSD from the National

Cancer Center were analyzed. Control CSF samples were obtained from 17 HCs who under-

went lumbar puncture to rule out meningitis. Because the CSF sampling of healthy controls

by lumbar puncture is not easy process, the structure of the cohorts have unbalanced classes.

The demographic and clinical data of these patients, including gender, age, dates of sam-

pling, and Expanded Disability Status Scale (EDSS) score, were collected retrospectively

with information regarding disease status (relapse/remission). Diagnoses of MS or NMOSD

were based on the 2010 McDonald criteria and the 2015 International Panel for NMO diag-

nosis (IPND) criteria, respectively [9, 10]. Demographic and clinical characteristics are
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summarized in Table 1. This study was approved by the research ethics committee of the

National Cancer Center. All the procedures were carried out in accordance with the Institu-

tional Review Board of National Cancer Center (NCC2014-0416), and written informed

consent was obtained from all subjects.

NMR spectra acquisition and processing

CSF specimens were stored at -80 oC until the NMR experiment. Then, 400 μl of CSF sample

from HCs and patients was mixed with 95 μl stock solution of NMR buffer containing 580 mM

sodium phosphate buffer. The final NMR samples contained 100 mM sodium phosphate buffer

(pH 7.0), 2 mM of trimethylsilyl-propanoic acid (TSP) and 10% D2O. To identify metabolites,

one-dimensional 1H-NOESY NMR pulse sequence (noesygppr1d) was acquired at 298 K on a

Bruker ASCEND III 600 spectrometer equipped with a cryoprobe. The NOESY pulse sequence

was generated with presaturation to suppress the residual water signal. 1H-NMR spectrum for

each sample consisted of 256 scans with following parameters: spectral width = 12019.2 Hz,

spectral size = 65536 points, pulse width (90) = 13.0 μs, relaxation delay (RD) = 5.0 s and a mix-

ing time of 10 ms.

For quantitative metabolomics profiling of CSF samples, spectra were processed with Bru-

ker topspin 3.1 (Bruker GmbH, Karlsruhe, Germany) and Chenomx NMR suite 7.7 (Chenomx

Inc., Edmonton, Canada). The identified metabolites were evaluated in 1H-13C HSQC and 2D
1H-TOCSY spectra. Each free induction decay (FID) was zero-filled to 64,000 points and

transformed with line broadening (LB) = 0.3 Hz. NMR spectra were manually phased by Bru-

ker topspin 3.1 and baseline corrected using Chenomx NMR suite 7.7 and referenced to TSP

at 0.0 ppm. Briefly, the baseline model was built in each spectrum using the algorithm of multi-

point baseline correction.

Statistical analysis and metabolite identification

Thirty-two metabolites were identified using the database stored in Chenomx NMR suite 7.7

and were quantified from the comparison of the internal standard (TSP).

Statistical analysis was performed using the web server-based program, the MetaboAnalyst

(v3.0) for metabolic analysis and interpretation [30, 31]. Additionally, we used the SPSS ver-

sion 23 (IBM). The multivariate analysis was performed as follows. The spectra were classified

into three groups: HCs, MS, and NMOSD patients who were clinically diagnosed. The quanti-

fied metabolites table was pareto-scaled to reduce the influence of quantity variability among

the samples [32].

Table 1. Demographic and clinical characteristics of the patients.

control MS NMOSD

Number of patients 17 50 57

Female to male (n) 13: 4 33: 17 51: 6

Age of onset mean / SD* (range) NA** 30.20 / 8.06 (14–48) 31.49 / 13. 51 (6–64)

Age at sampling mean / SD (range) 33.35 / 8.36 (22–49) 36.10 / 11.56 (14–50) 35.64 / 11.50 (10–65)

EDSS*** Median (range) NA 2.0 (0–8.0) 3.5 (0–9.0)

Activity of disease (n) NA Relapse (20) Remission (30) Relapse (36) Remission (21)

*SD, standard deviation
**NA, not applicable
***EDSS, Expanded disability status scale

https://doi.org/10.1371/journal.pone.0181758.t001
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The data were first analyzed by principal component analysis (PCA) to lower the dimension-

ality of the data and to acquire an overview by presenting trends, groupings, and potential outli-

ers within the data sets. Samples were considered as outliers when they were situated outside

the 95% confidence ellipse region of the model [33]. In addition, orthogonal partial least squares

discriminant analysis (OPLS-DA) was applied to characterize the group difference. OPLS-DA

maximizes class separation by removing variability irrelevant to class separation and builds a

model detecting potential variables involved in discriminating between classes [34, 35]. Signifi-

cant features were identified based on S-plot. The S-plot from the OPLS-DA model combines

the covariance p[1] against the correlation p(corr)[1] loading profiles. This corresponds to com-

bining the contribution or magnitude (modeled covariation) with the effect and reliability

(modeled correlation) for the model variables with respect to model component scores, respec-

tively [36]. Corresponding Mahalanobis p-values for OPLS-DA score plots were calculated with

PCA/PLS-DA utilities [37] to determine the statistical significance of group separation in the

OPLS-DA score plots. An observed p-value of 0.05 was used to identify statistically significant

group separation. The OPLS-DA models were further characterized by their p-values obtained

from CV-ANOVA (Analysis Of Variance testing of Cross-Validated predictive residuals) [38].

The CV-ANOVA implemented in SIMCA 14.1 (Umetrics AB, Umea, Sweden) was used to

assess the reliability of the obtained models. The quality of the OPLS-DA models was estimated

by R2 (goodness-of-fit) and Q2 (ability-of prediction) parameters. The 1,000-random permuta-

tion test was also performed to validate the quality of the model [39].

The univariate analysis was performed to identify metabolites contributing to the discrimi-

nation among groups. The normality and equality of variance of the quantified concentrations

of metabolites were evaluated using SPSS. All variables did not satisfy the normality (based on

the Kolmogorov-Smirnov test) and equality of variance (based on the Levene’s test). Thus, the

non-parametric Kruskal-Wallis test was adopted for this purpose. The multiple comparison

between groups was adjusted with Bonferroni’s correction [40]. For the multiple testing cor-

rection, acquired p-values were adjusted using Benjamini and Hochberg False Discovery Rate

(FDR) [41].

To characterize the disease activity in relapse and remission, each disease group (MS and

NMOSD) were divided into two groups based on disease activity as follows: relapse group and

remission group. For this analysis, we excluded four and five samples with steroid-treated

relapse in MS and NMOSD patients, respectively. Because steroid treatment can extensively

affect the metabolic status of patients, the metabolic characterization of relapse status can be

interfered without omission of these samples. The statistical analysis was performed by follow-

ing the process described above.

Biomarker analyses for multiple biomarkers based on the Receiver Operating Character-

istic (ROC) curve were performed. ROC analysis was utilized to evaluate the values of dif-

ferent metabolites for disease discrimination by assessing the area under the ROC curve

(AUC), sensitivity, and specificity [42]. The algorithms for ROC curve calculation of multi-

variate biomarker were based on OPLS-DA models. ROC curves were generated using

7-fold internal cross validated predicted y-values from OPLS-DA model in the SIMCA pro-

gram (Ver. 14.1). It is important to find the most appropriate combination of metabolites

which can produce an effective prediction power. In OPLS-DA model, potential biomarker

candidates were selected based on values of variable importance in project (VIP) of all vari-

ables. The VIP value of each variable in the model was calculated to indicate its contribu-

tion the separation. A higher VIP value represents a stronger contribution to classification

between groups [43]. The optimal number of metabolites was obtained based on the AUC

values.
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Results

Metabolic characteristics of MS and NMOSD: Multivariate modeling and

univariate analysis

A 1H NMR spectrum was acquired for each of the 124 CSF samples collected from 17 HCs, 50

(Relapse 20 and Remission 30) MS patients and 57 NMOSD patients (Relapse 36 and Remis-

sion 21) (Table 1).

A total of 32 metabolites identified from the CSF analyses were shown in S1 Table, with a

mean concentration and standard deviation. PCA was first applied to each group of samples to

explore the basic group differentiation. The PCA scatter plot among the two principal compo-

nents covers 81.8% of the quantified metabolites data. PCA analysis showed eight samples

(three from MS patients and five from NMOSD patients) lay outside the borderline of the 95%

confidence ellipse (S1 Fig). Thus, these samples were excluded for further statistical analysis.

OPLS-DA was employed as a supervised statistical method to clarify the discrimination

among the three groups. Fig 1A shows the 2D score plot of OPLS-DA of the three groups. The

result showed a moderate separation of three groups along the components with predictive

abilities (R2 = 0.443, and Q2 = 0.234, S2 Fig). The significance of the model was validated by

the CV-ANOVA (p-value = 2.408e-4). The 1,000 permutation tests showed that both the

empirical p-values of R2Y and Q2 were below 0.001 (0/1000). The Mahalanobis p-value

between two groups (HCs–MS patients, HCs–NMOSD patients and MS–NMOSD) in

OPLS-DA score plot for three groups were 1.016e-5, 7.388e-8 and 2.652e-7, respectively. The

margin of the MS group was more overlapped with both the control and NMOSD groups.

This may imply that the overall metabolic characteristic of MS patient CSF is more diverse

than that of NMOSD patients. The OPLS-DA model between two groups (HCs–MS patients)

showed improved separation: the p-value calculated from the Mahalanobis distances was less

than 0.05 (1.600e-10) and the R2 value was 0.738 and the Q2 value was 0.408 (Fig 1B). The p-

value of CV-ANOVA was below 0.01 (p = 1.544e-7). The permutation test for the OPLS-DA

Fig 1. OPLS-DA models for group separation. OPLS-DA scores plots are shown. The triangles in the score plot represents the control sample, the cross

signs represent MS patient and the multiplication signs represent NMOSD patients (A). The OPLS-DA models of two groups comparison are shown in B and

C. The triangles in the score plot represent the control sample, the cross signs represent MS and NMOSD patient, respectively. The 95% confidence ellipse of

the group is depicted in light gray. The created OPLS-DA models (A, B, and C) showed the p-values of CV-ANOVA were lower than 0.01 (2.408e-4, 1.544e-7,

and 3.759e-7, respectively). The permutation tests for all models showed the empirical p-values of R2Y and Q2 were below 0.001. The Mahalanobis p-value

between two groups (HCs–MS patients, HCs–NMOSD patients and MS–NMOSD) in OPLS-DA score plot for three groups were 1.016e-5, 7.388e-8 and

2.652e-7, respectively (A). The Mahalanobis p-values for two group comparison were 1.600e-10 and 4.957e-12, respectively (B and C).

https://doi.org/10.1371/journal.pone.0181758.g001
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model of the two groups showed the observed R2 and Q2 values were higher than those of the

permuted model (p<0.001, S3 Fig), indicating the model was regarded predictable one. As for

NMOSD, the group separation between the control and the NMOSD group was also improved

with the p-values obtained from the Mahalanobis distances (4.957e-12) and satisfactory predic-

tive abilities (R2 = 0.589, Q2 = 0.406, p-value of CV-ANOVA = 3.759e-7) (Fig 1C). All observed

R2 and Q2 values of the OPLS-DA model for HCs and NMOSD patients were higher than

those of the permuted test, revealing predictability and goodness of fit (S3 Fig).

The univariate analysis was performed to identify metabolites contributing to the discrimi-

nation of the groups. We used the non-parametric Kruskal-Wallis test, followed by Bonferro-

ni’s correction for multiple comparison among the three groups. The adjusted p-values were

corrected by the multiple testing correction, Benjamini and Hochberg FDR. The final p-value

that is smaller than 0.05 was considered significant (Table 2). As a result, 2-hydroxybutyrate,

acetone, formate and pyroglutamate were up-regulated in MS and NMOSD groups while glu-

cose and acetate were down-regulated in MS and NMOSD compared with HCs. Interestingly,

two metabolites were changed either in MS patients or in NMOSD patients. Citrate was lower

only in MS patients and lactate and were higher only in NMOSD patients. The S-plot from

OPLS-DA models (Fig 1B and 1C) also revealed that the eight metabolites that are responsible

for the observed separation (Fig 2A and 2B). The box and whisker plots of metabolites using

the quantified concentration are shown in Fig 2C. The representative 1H NMR spectra

obtained from the CSF samples of HCs, MS patients and NMOSD patients are shown in S4A–

S4C Fig.

Next, we explored the discriminant candidates of metabolites that separate each disease

group (HCs, MS, NMOSD) against each other using ROC curve analysis. For this, several

grouping such as MS-others, NMOSD-others, and NMOSD-MS were examined and the

grouping of NMOSD-others was found to provide the most discrimination power. The opti-

mal number and composite of biomarkers was determined by monitoring AUC values

obtained from the OPLS-DA. The maximum AUC values were saturated around 5 metabolites

combination (Fig 3A). The potential biomarker candidates were citrate, lactate, glucose, ace-

tone, and acetate that showed the highest VIP value in the model. The achieved AUCs of

NMOSD-others (HCs + MS), MS-NMOSD, and MS-others (HCs + NMOSD) were 0.872,

Table 2. Metabolites with significant difference between the control and patients groups.

Metabolite Multiple comparison (adjusted p-value*) FDR*** Metabolic

change****
Mean(SD) of group (mM)

M N C M N

2-hydroxybutyrate **C-M(0.003) C-N(<0.001) <0.05 <0.05 Δ Δ 0.0420 (0.0086) 0.0544 (0.0204) 0.0718 (0.0373)

Acetone C-M(0.001) C-N(<0.001) <0.05 <0.05 Δ Δ 0.1112 (0.0364) 0.1868 (0.0864) 0.2135 (0.0627)

Formate C-M(0.003) C-N(0.001) <0.05 <0.05 Δ Δ 0.0449 (0.0061) 0.0530 (0.0101) 0.0576 (0.0197)

Pyroglutamate C-M(0.001) C-N(<0.001) <0.05 <0.05 Δ Δ 0.0332 (0.0030) 0.0454 (0.0265) 0.0443 (0.0135)

Acetate C-M(0.001) C-N(<0.001) <0.05 <0.05 r r 0.2993 (0.0033) 0.2626 (0.0565) 0.2563 (0.0396)

Glucose C-M(0.001) C-N(<0.001) <0.05 <0.05 r r 4.5681 (0.2540) 4.0432 (0.6704) 4.1501 (0.9873)

Citrate C-M(0.003) M-N(<0.001) <0.05 <0.05 r ᅳ 0.4352 (0.0532) 0.3451 (0.0969) 0.4698 (0.1218)

Lactate C-N(0.002) M-N(<0.001) 0.005 <0.05 ᅳ Δ 1.8832 (0.1715) 1.8521 (0.3670) 2.4513 (0.9397)

* Adjusted p-value was calculated by Bonferroni’s correction.
** C, healthy control; M, MS; N, NMOSD
*** FDR was calculated by Benjamini-Hochberg method.
**** Compared to the values of healthy controls, Δ indicates increase,r indicates decrease, and ᅳ indicates no significant change.

https://doi.org/10.1371/journal.pone.0181758.t002
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Fig 2. The S-plot of OPLS-DA models between two groups of HCs-MS patients (A) and HCs-NMOSD patients (B). Eight metabolites with

significant difference between the control and patients groups (C). The S-plot between two groups of HCs-MS patients (A) and HCs-NMOSD patients

(B) from OPLS-DA are shown and metabolites that were highly contributed to the group separation are depicted on the plots. The triangles represent the

control sample and the cross signs represent patient group. The important metabolites (p < 0.05, FDR <0.05) with the strongest association to disease are

depicted on the S-plot. Box and whisker plots of eight metabolites using quantified concentrations are illustrated (C). The scale of concentration is millimolar

(mM). Eight metabolites including 2-hydroxybutyrate, acetone, formate, pyroglutamate, acetate, glucose, citrate, and lactate showed significant changes.
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0.856, and 0.835, respectively (Fig 3B). The result of ROC curve analysis using PLS-DA algo-

rithm showed a slightly lower AUC values than that of OPLS-DA model (S5 Fig). Thus, the

model comparing NMOSD and others showed better discrimination power than the model of

MS-NMO or MS-others. This result may suggest that the combination use of metabolites can

provide a useful tool for the discrimination between MS and NMOSD.

Metabolic characteristic depending on disease activity in MS and

NMOSD patients

The disease activity (relapse and remission) of MS and NMOSD patients was analyzed by com-

paring metabolic changes between two states. The samples of each disease group were sepa-

rated into two groups, relapse and remission, based on disease activity. Multivariate analysis

such as PCA and OPLS-DA were performed separately for MS and NMOSD (control—MS

relapse—MS remission and control—NMOSD relapse—NMOSD remission). PCA analysis

did not show clear separation between groups in both case of MS and NMOSD (S5 Fig). In

PCA score plot, two (1 remission sample, 1 relapse sample in MS) and five (2 remission sam-

ples, 3 relapse samples in NMOSD) outliers were detected, respectively. OPLS-DA was used

to clarify the discrimination among the three groups containing 61 samples (control—MS

relapse—MS remission) and 64 samples (control—NMOSD relapse—NMOSD remission),

respectively. We excluded four and five samples with steroid-treated relapse in MS and

NMOSD patients respectively, to escape potential effect of steroid treatment on the metabolic

changes.

The groups of which the comparison was identified as significant are linked with lines. The horizontal line in the middle portion of the box is median value. The

bottom and top boundaries of boxes represent lower and upper quartile. The open circles represent outliers.

https://doi.org/10.1371/journal.pone.0181758.g002

Fig 3. The ROC curve analysis for the composite metabolites. ROC curves of each group comparison were created by 7-fold cross validated predicted

y-values from OPLS-DA model. The top 2, 3, 5, 10, 20, 32 (max) important variables based on the VIP values from OPLS-DA model were used to build

classification models. The AUC values were obtained from OPLS-DA models of NMOSD-others, NMOSD-MS, and MS-others with combination of

metabolites (A). The combination of five metabolites that showed high importance in the group comparison of NMOSD-others, NMOSD-MS, and MS-others

provided the AUC value, 0.872, 0.856, and 0.835, respectively (B).

https://doi.org/10.1371/journal.pone.0181758.g003
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The univariate analysis showed notable changes of several metabolites depending on the

disease states. The statistical analysis was performed using the quantified concentration of the

changed metabolites (Tables 3 and 4). As a result, 2-hydroxybutyrate, acetone, and formate

were higher and acetate and glucose were lower in both relapse and remission of MS and

NMOSD. The level of pyroglutamate may tend to be higher in both relapse and remission of

MS and NMOSD, even though statistical value was not satisfactory in the case of MS relapse

and remission (p-values<0.05, FDR values> 0.05). In addition, citrate was lower in both

relapse and remission episodes of MS and lactate was higher in both relapse and remission epi-

sodes of NMOSD. These results were consistent with the former comparative analysis between

control and diseases. Notably, there were disease activity-specific changes in two metabolites.

Isoleucine and valine were down-regulated and in MS relapse compared to MS remission. In

the case of NMOSD, isobutyrate might be down-regulated in NMOSD relapse compared to

remission, since statistical requirement was partially satisfied (p-value = 0.002, FDR = 0.064).

The group separation based on OPLS-DA model was also explored for the disease activity

of MS and NMOSD. However, all the two group comparison (relapse-remission) and three

group comparison (control-relapse-remission) could not yield a plausible model. This may

imply that the metabolic feature between the relapse and remission state is not largely different

for the current metabolites set, like as the result of univariate statistics described above. Only

the OPLS-DA model of control—MS relapse—MS remission showed improved prediction

ability (R2 = 0.834, and Q2 = 0.506, S6B Fig) with empirical p-values of R2Y: p< 0.001 (0/

1000) and Q2: p< 0.001 (0/1000) in the permutation test. The p-value of CV-ANOVA was

3.812e-5 for the model, which supports the reliability of the model. The Mahalanobis p-value

between two groups (control–MS relapse, control–MS remission and MS relapse–MS remis-

sion) in OPLS-DA model for three groups were 1.072e-5, 5.926e-9 and 3.517e-2, respectively,

that indicated the statistical significant of group separation. It is noticeable that citrate makes

some contribution to the group separation in the model: compared to the level of citrate in the

remission state, the level of citrate seems to be a little lower in the relapse state while the statis-

tical difference between them was not significant (S6C Fig, Table 3).

Table 3. Metabolites with significant difference between the control and the disease activity of MS.

Metabolite Multiple comparison (adjusted p-value*) FDR*** Metabolic

change****
Mean (SD) of group (mM)

RL RM C RL RM

2-hydroxybutyrate **RL-C(0.003) RM-C(0.002) 0.019 <0.05 Δ Δ 0.0420 (0.0086) 0.0482 (0.0260) 0.0561 (0.0165)

Acetone RL-C(<0.001) RM-C(0.001) <0.05 <0.05 Δ Δ 0.1112 (0.0364) 0.1917 (0.1289) 0.1844 (0.0599)

Formate RL-C(<0.001) RM-C(0.002) <0.05 <0.05 Δ Δ 0.0449 (0.0061) 0.0554 (0.0088) 0.0561 (0.0087)

Acetate C-RL(<0.001) C-RM(0.001) <0.05 <0.05 r r 0.2994 (0.0331) 0.2376 (0.0282) 0.2748 (0.0659)

Glucose C-RL(<0.001) C-RM(0.007) <0.05 0.045 r r 4.5681 (0.2540) 3.7715 (0.8975) 4.1910 (0.4755)

Citrate C-RL(<0.001) C-RM(0.004) <0.05 0.03 r r 0.4352 (0.0532) 0.2973 (0.1136) 0.3592 (0.0654)

Isoleucine RM-RL (0.003) <0.05 #***** 0.0079 (0.0013) 0.0067 (0.0028) 0.0092 (0.0027)

Valine RM-RL (0.003) <0.05 # 0.0183 (0.0033) 0.0149 (0.0055) 0.0197 (0.0054)

* Adjusted p-value was calculated by Bonferroni’s correction.
** C, healthy control; RL, relapse; RM, Remission
*** FDR was calculated by Benjamini-Hochberg method.
**** Compared to the values of healthy controls, Δ indicates increase, andr indicates decrease.
***** The level of the metabolite was lowered than that of remission stage.

https://doi.org/10.1371/journal.pone.0181758.t003
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Discussion

Our multivariate analysis on MS, and NMOSD indicated the overall metabolic characteristics

of the diseases. Eight metabolites in MS and NMOSD patients were significantly different

from those of healthy people. In both diseases, 2-hydroxybutyrate, acetone, formate and pyro-

glutamate were up-regulated and acetate and glucose were down-regulated. Two metabolites

showed disease-specific changes. Citrate was down-regulated only in MS and lactate was up-

regulated only in NMOSD.

The shared feature of metabolic changes between MS and NMOSD may be related to

altered energy metabolism and fatty acid biosynthesis in the brain (Fig 4). Down regulation of

glucose and citrate (in MS) as well as upregulation of lactate (in NMOSD) may support disrup-

tion of TCA cycle through pyruvate pathway. Acetone is an end product of ketosis, a metabolic

state that produces ketone bodies for use as another fuel for the brain. Both the level of

3-hydroxybutyrate (nonsignificant, p-value> 0.05, not shown) and acetone were higher in

patients than healthy people in our analysis. The significant increase of acetone may imply that

the elevated flux from acetyl-CoA into acetoacetyl-CoA, resulted in production of acetone.

Reduced ATP synthesis may ultimately lead to cell death or degeneration, especially as the

mitochondria generates most of the energy for neuronal cell [44]. Regarding the myelination

of axons, ATP liberated from axons can facilitate myelination by mature oligodendrocytes

through a cytokine, leukemia inhibitory factor (LIF) released from astrocytes [45].

It is not clear whether low levels of glucose are caused by their impaired delivery through

the blood-brain barrier (BBB) and/or by rapid consumption due to increased energy demand

in active MS and NMOSD lesions. Interestingly, the expression level of GLUT1 (SLC2A1), a

major glucose transporter in the BBB, is down-regulated in brain lesions of MS patients [46].

Moreover, a recent 1H-NMR study reported reduced levels of serum glucose in MS [28]. Con-

sistently, the observations for disturbed energy generation in CNS diseases including MS were

reported: mitochondrial dysfunctions detected in MS lesions as well as other neurodegenera-

tive diseases were observed by monitoring mitochondrial gene expression levels [47, 48].

The lactate level in the CSF of NMOSD was relatively elevated [49, 50], which is consistent

with the current study results. Lactate is generated by LDH, a large complex consisting of

Table 4. Metabolites with significant difference between the control and the disease activity of NMOSD (C, healthy control; RL, relapse; RM,

Remission).

Metabolite Multiple comparison

(adjusted p-value*)

FDR*** Metabolic

change****
Mean (SD) of group(mM)

RL RM C RL RM

2-hydroxybutyrate **RL-C(<0.001) RM-C(<0.001) <0.05 <0.05 Δ Δ 0.0420 (0.0086) 0.0757 (0.0437) 0.0697 (0.0303)

Acetone RL-C(<0.001) RM-C(0.001) <0.05 <0.05 Δ Δ 0.1112 (0.0364) 0.2125 (0.0760) 0.2188 (0.0387)

Formate RL-C(0.003) RM-C(0.004) 0.019 0.018 Δ Δ 0.0449 (0.0061) 0.0579 (0.0168) 0.0582 (0.0252)

Pyroglutamate RL-C(0.006) RM-C(<0.001) <0.05 <0.05 Δ Δ 0.0332 (0.0030) 0.0426 (0.0142) 0.0437 (0.0080)

Acetate C-RL(<0.001) C-RM(0.001) <0.05 <0.05 r r 0.2993 (0.0331) 0.2460 (0.0393) 0.2732 (0.0306)

Glucose C-RL(0.001) C-RM(0.002) <0.05 <0.05 r r 4.5681 (0.2540) 3.9866 (0.8970) 4.3001 (1.1814)

Lactate RL-C(<0.001) RM-C(0.002) <0.05 <0.05 Δ Δ 1.8832 (0.1715) 2.5498 (0.8466) 2.3316 (1.1543)

Isoleucine RL-C(0.006) RM-C(0.002) <0.05 <0.05 Δ Δ 0.0079 (0.0013) 0.0112 (0.0056) 0.01188 (0.0062)

* Adjusted p-value was calculated by Bonferroni’s correction.
** C, healthy control; RL, relapse; RM, Remission
*** FDR was calculated by Benjamini-Hochberg method.
**** Compared to the values of healthy controls, Δ indicates increase andr indicates decrease.

https://doi.org/10.1371/journal.pone.0181758.t004
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LDHA and LDHB. LDHA produces lactate from pyruvate and LDHB converts lactate into

pyruvate to produce energy. In MS patients, the balanced expression of LDHA and LDHB

depends on whether the MS lesions is active or inactive [51]. The increase of lactate in the CSF

of NMOSD may support the dysfunction of mitochondria because glucose is shunted primarily

to lactate through anaerobic glycolysis in the abnormal state of oxidative glucose metabolism

[52]. In addition, disruption of the astrocyte-neuron lactate shuttle [53, 54] can also be consid-

ered as a cause of unusual level of lactate in NMOSD patients. Glial abnormalities are found in

both MS and NMOSD while astrocytes are especially damaged in NMOSD [55], which may be

linked to our finding of altered lactate only in NMOSD patients. Previous studies showed the

elevation of lactate levels in the CSF were related to disease activity of NMOSD [49, 50], where

patients with relapse showed higher lactate levels compared with patients with remission. Our

data also showed that lactate levels during of relapse (2.549 ± 0.846 mM) were higher compared

with remission (2.332 ± 1.154 mM), although this was not statistically significant.

A high level of 2-hydroxybutyrate was previously suggested to be an early marker for impaired

glucose regulation [56]. This may arise due to increased lipid oxidation and oxidative stress

because 2-hydroxybutyrate is produced from threonine and methionine catabolism as well as glu-

tathione metabolism. Several studies also suggested the relationship between 2-hydroxybutyrate

and neurodegenerative disorders such as dihydrolipoyl dehydrogenase (E3) deficiency [57] and

cerebral lactic acidosis [58]. 2-hydroxybutyrate is oxidized to 2-oxobutyrate (alpha-ketobutyrate),

which may be transported to the mitochondria and which is prone to oxidative decarboxylation

to produce propionyl-CoA, a TCA cycle intermediate [59]. Interestingly, the interconversion

Fig 4. Schematic representation of relevant metabolism involved in MS and NMOSD. The perturbed metabolites in patients are depicted in red and

blue. The colored dotted arrows represent up (red)- or down (blue)-regulation of metabolites. The black dotted arrows means not direct but abbreviated

pathways. Lower glucose and higher acetone together with lower citrate in MS patients and higher lactate in NMOSD patients may suggest an impaired TCA

cycle in mitochondria. Up-regulation of 2-hydroxybutyrate and pyroglutamate in patients indicates that an elevated oxidative stress may be caused by

impaired GSH metabolism in neurological diseases such as MS and NMOSD. The elevated level of formate might reflect a malfunction of brain mitochondria

as well as oxidative stress. Down-regulation of acetate in the disease groups and down-regulation of citrate in MS patients may indicate a decrease of fatty

acid metabolism, particularly in myelin synthesis. γ-GCT: γ-glutamyl cyclotransferase; LDH: lactate dehydrogenase; CoA: coenzyme A.

https://doi.org/10.1371/journal.pone.0181758.g004

Metabolomics in multiple sclerosis and neuromyelitis optica spectrum

PLOS ONE | https://doi.org/10.1371/journal.pone.0181758 July 26, 2017 11 / 21

https://doi.org/10.1371/journal.pone.0181758.g004
https://doi.org/10.1371/journal.pone.0181758


between 2-oxobutyrate and 2-hydroxybutyrate is regulated by LDH [60]. Of note, 2-hydroxybu-

tyrate was elevated in the urine of young patients with lactic acidosis [61]. 2-oxobutyrate can be

produced by the direct catabolism of threonine or methionine metabolism through homocysteine

and cystathionine. Cysteine is incorporated into glutathione (GSH), which is the major compo-

nent of the non-enzymatic unit of the cellular antioxidant. Oxidative stress is a common patho-

logical characteristics in neurological diseases, including MS [62]. In elevated oxidative stress

conditions, the flow of cysteine for the formation of GSH is increased [63]. However, a previous

study showed that GSH levels in the CSF of MS patients were significantly lower compared to

controls [64]. The activity of antioxidant enzymes such as GSH reductase and glutathione peroxi-

dase in MS patients was shown to be modified [65].

The level of pyroglutamate commonly increased in both disease of MS and NMOSD. Pyro-

glutamate is another metabolite associated with GSH metabolism. The enzyme glutathione syn-

thetase is important for GSH synthesis from γ-glutamylcysteine. Error in the glutathione

synthetase leads to reduced level of GSH and accumulation of γ-glutamylcysteine. The γ-gluta-

mylcysteine synthetase, the first enzyme of the GSH biosynthesis, is under the feedback control

of GSH. Decreased GSH levels due to a defect in the glutathione synthetase impair feedback

inhibition of γ-glutamylcysteine synthetase enzyme, producing more γ-glutamylcysteine. The γ-

glutamyl cyclotransferase (γ-GCT) generates pyroglutamate from γ-glutamylcysteine. This fur-

ther leads to overproduction of pyroglutamate and to increased pyroglutamate in body fluid

including CSF and urinary excretion of pyroglutamate. This condition also leads to severe meta-

bolic acidosis, hemolytic anemia and central nervous system dysfunction [66]. Taken together,

the flow of metabolites for GSH pathway may be altered, positively affecting the accumulation

of 2-hydroxybutyrate and pyroglutamate. Formate can be linked to the production of GSH

through tetrahydrofolate (THF) metabolism and the malfunction of GSH production possibly

affects or causes the increase of formate. Thus, the elevated level of formate might also reflect

the dysfunction of brain mitochondria as described above. Anyway, high levels of formate is not

favorable situation for neuronal cells because it can disrupt the electron transport system of

mitochondria and energy generation by inhibiting cytochrome oxidase function, which is the

final electron acceptor of the electron transport pathway, thereby leading to a cellular hypoxia.

In terms of fatty acid metabolism, a low level of glucose may provide a metabolic environ-

ment in which fatty acid degradation into acetyl-CoA (beta-oxidation) is facilitated. This situa-

tion is probably not favorable for the myelination of axons. A low level of citrate in the CSF of

MS patients may also provide unfavorable surroundings for the biosynthesis of fatty acids that

result in the formation of myelin because acetyl-CoA used for fatty acid synthesis must be

shuttled out of the mitochondria into the cytosol in its citrate form (so called citrate shuttle)

[67]. In addition, it was reported that the activity of mitochondrial aconitase that catalyzes the

interconversion of citrate to isocitrate was higher in MS patients, which may be related to our

result showing low citrate levels were only observed in MS patients [68].

Acetate used for myelin lipid biosynthesis in oligodendrocytes is mainly produced from N-

acetylaspartate (NAA) degradation by aspartoacylase (ASPA) [69–71]. NAA is a nervous sys-

tem-specific metabolite and is regarded as an important metabolite in CNS metabolism. The

reduced level of NAA in MS patients was reported previously [72–74], which may relate to the

reduced level of acetate in our study. Interestingly, in a mouse model of Canavan’s disease, a

hereditary disorder of CNS development, dysfunction of ASPA reduced brain acetate levels

and reduced the biosynthesis of six classes of myelin-associated lipids [75]. This suggests ace-

tate has a critical role in myelin lipid biosynthesis in MS and NMOSD. In addition, low acetate

levels may not be advantageous for the normal astrocyte activity of releasing LIF, which is

required for myelination of oligodendrocytes described above because astrocytes have a prefer-

ence for acetate as an energy substrate [76].
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We also analyzed the difference between the disease activity (relapse vs. remission) in MS

and NMOSD. Metabolites such as 2-hydroxybutyrate, acetone, formate, glucose, acetate, cit-

rate, pyroglutamate, and lactate showed consistent changes between controls and MS and

NMOSD patients. However, in MS patients, isoleucine, and valine were down-regulated in

Table 5. Metabolic profiling in MS.

Metabolite Metabolic Change Biofluids for analysis References

MS

2-hydroxybutyrate Up* CSF [Our result]

Formate Up CSF [Our result]

pyroglutamate Up CSF [Our result]

Citrate Down CSF [Our result]

Down CSF [24, 27, 28]

Down Serum [20]

Down Urine [29]

Lactate No change CSF [Our result]

Up CSF [25]

Down CSF [28]

Down Urine [29]

Acetate Down CSF [Our result]

Down CSF [24]

Up Serum [20]

No change Urine [29]

Glucose Down CSF [Our result]

Up CSF [24]

Down CSF [28]

Up Serum [20, 21]

Acetone Up CSF [Our result]

UP CSF [28]

Up Urine [29]

3-hydroxybutyrate Down CSF [27]

Up CSF [28]

Down Serum [20]

Up Urine [29]

Phenylalanine Down CSF [27]

Up Urine [29]

Glutamine Up CSF [25]

Up Serum [19]

Myo-inositol Up CSF [27]

Oxaloacetate Down Serum [20]

Up Urine [29]

Creatinine Up CSF [25]

Down Serum [20]

Up Serum [23]

Down Urine [29]

The table lists the metabolites considering their levels and disease in which they are involved, and the references cited in the paper.
* Compared to the values of controls, Up means increase, Down means decrease. Control group of reference [19, 21, 23, 28, 29] are healthy volunteers and

control groups in reference [20, 24, 25, 27] have other disease except MS.

https://doi.org/10.1371/journal.pone.0181758.t005
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relapse stages compared to remission stages. No statistical differences between controls and

relapse, and controls and remission, were found for these two metabolites.

The down-regulation of branched chain amino acid (BCAA), isoleucine, and valine, which

can be sources for energy production, was also monitored in MS relapse, revealing a change in

energy production. Isoleucine and valine can be converted to acetyl-CoA or propionyl-CoA,

which are intermediates of the TCA cycle. In addition, reduced BCAAs in MS relapse might

influence protein synthesis in the brain and the synthesis of various neurotransmitters. In

terms of immunity, low BCAAs may affect the activity of immune cells. It is well known that

blood monocytes and T-cells infiltrate into the CNS and are hyperactivated in MS and

NMOSD. BCAAs are required for lymphocyte growth and proliferation as well as dendritic

cell maturation [77, 78]. In relapse stages where active inflammation occurs, the consumption

of BCAAs by lymphocytes in the brain might be increased.

Several studies reported the metabolic changes in the serum [19–22], CSF [20, 24–28] and

urine [29] from MS and NMOSD patients. Table 5 and 6 are the summary of the metabolites

changes mainly focusing on the eight metabolites that we identified. Metabolic change for

three metabolites of 2-hydroxybutyrate, formate and pyroglutamate were uniquely identified

in our study. The changes of lactate, acetate, glucose, 3-hydroxybutyrate, phenylalanine, oxalo-

acetate, and creatinine were very heterogeneous. This inconsistency might come from the het-

erogeneity of biofluid source as well as chemometric and technical limitations.

In conclusion, our findings give us an insight to the pathologic mechanism of MS and

NMOSD: several metabolite changes related to impaired energy metabolism linked to the TCA

cycle in mitochondria (lower glucose and citrate; higher acetone and lactate), imbalanced control

for lipid synthesis (lower acetate and citrate) and increased oxidative stress (higher

Table 6. Metabolic profiling in NMOSD.

Metabolite Metabolic Change Biofluids for analysis References

NMOSD

2-hydroxybutyrate Up* CSF [Our result]

Formate Up CSF [Our result]

pyroglutamate Up CSF [Our result]

Citrate No change CSF [Our result]

Down Urine [29]

Lactate Up CSF [Our result]

Up Serum [19]

Down Urine [29]

Acetate Down CSF [Our result]

Up Serum [19]

Up Urine [29]

Glucose Down CSF [Our result]

Acetone Up CSF [Our result]

Down Urine [29]

3-hydroxybutyrate Down Urine [29]

Phenylalanine Up Urine [29]

Oxaloacetate Up Urine [29]

Creatinine Down Urine [29]

The table lists the metabolites considering their levels and disease in which they are involved, and the references cited in the paper.
* Compared to the values of controls, Up means increase, Down means decrease. Control group of reference [19, 29] are healthy volunteers.

https://doi.org/10.1371/journal.pone.0181758.t006
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2-hydroxybutyrate, pyroglutamate, and formate) may be related to the pathogenesis of MS and

NMOSD. Even though our study may enhance scientific knowledge of MS and NMOSD, obtain-

ing of plausible multivariate models for discrimination of the disease activity was not successful.

This might be related with the limited number of samples and limited number of metabolites

that were quantified. In this regard, investigation with large sample size would be helpful for vali-

dation of our findings and for discover of the unrevealed features. In addition, the diagnostic

model could be improved with incorporation of several biochemical and clinical parameters.

Supporting information

S1 Fig. PCA analysis of control and disease groups. The red circles in the score plot represent

the healthy control sample, the green circle represents the MS patients, and the blue circles

represent the remission patients. The 95% confidence ellipse of the group is depicted in each

color. The first principal component (PC1) accounts for 57.9% of the total variation present in

the dataset and the second principal component (PC2) accounts for 23.9% of the total varia-

tion. Thus, the PCA scatter plot among the two principal components covers 81.8% of the

quantified metabolites data.

(TIF)

S2 Fig. The overview of OPLS-DA model for three groups and the permutation test. The

OPLS-DA model was constructed by MetaboAnalyst 3.0 and validated with random permuta-

tion test. The permutation number was set to be 1,000. Two components model of the OPLS-DA

as shown in the above figure. R2 is the correlation index, which refers to the goodness of fit or

the explained variation. Q2 refers to the predicted variation or quality of prediction (A). The per-

mutation result of the OPLS-DA model for the three groups showed the empirical p-values of R2

(p< 0.001) and Q2 (p< 0.001), which means the null hypothesis is rejected (B).

(TIF)

S3 Fig. The overview of OPLS-DA model for two groups and the permutation test. The

OPLS-DA model was constructed by MetaboAnalyst 3.0 and validated with random permuta-

tion test. The permutation number was set to be 1,000. The permutation result of the

OPLS-DA model for the two groups (control-MS (A) and control-NMOSD (B)) showed the

empirical p-values of R2 (p< 0.001) and Q2 (p< 0.001), which means the models are valid.

(TIF)

S4 Fig. Three representative 1H NMR spectra from the CSF samples of HCs (A), MS

patients (B) and NMOSD patients (C). Overlay of 1H-NMR spectra of HCs (black), MS

patients (green) and NMOSD patients (red) (D). 1H NOSEY spectra were processed and

manually phased using Bruker Topspin 3.1. Metabolites with significant differences between

the control and patients groups such as 2-hydroxybutyrate, acetone, formate, pyroglutamate,

acetate, glucose, citrate, and lactate are depicted in the figure (D).

(TIF)

S5 Fig. The ROC curve analysis for the composite metabolites. ROC curves of each group

comparison were created by MCCV using balanced subsampling. Two thirds (2/3) of the samples

in each MCCV are used to evaluate the variable importance. The top 2, 3, 5, 10, 20, 32 (max)

important variables were used to build classification models. The PLS-DA algorithm was hired as

the classification method with two latent components since the algorithm provided the best per-

formance. The AUC values were obtained from PLS-DA models of NMOSD-others, NMOSD-

MS, and MS-others with combination of metabolites (A). The combination of five metabolites

that showed high importance in the group comparison of NMOSD-others, NMOSD-MS, and
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MS-others provided the AUC value, 0.861, 0.829, and 0.771, respectively (B).

(TIF)

S6 Fig. PCA score plots based on disease activity of MS and NMOSD. PCA scores plot of

MS activity (A) and NMOSD activity (B) are depicted. The red circles in the score plot repre-

sent the control sample, the green circles represent the relapse patients, and the blue circles

represent the remission patients. The 95% confidence ellipse of the group is depicted in each

color. The first principal component (PC1) accounts for 64.4% (A) and 56.7% (B) of the total

variation present in the dataset and the second principal component (PC2) accounts for 10.5%

(A) and 29% (B) of the total variation. Thus, the PCA scatter plot among the two principal

components covers 74.9% (A) and 95.5% (B) of the original data. Two (2 remission sample, 1

relapse sample) and five (2 remission samples, 3 relapse samples) outliers are detected in MS

(A) and NMOSD (B) disease activity groups.

(TIF)

S7 Fig. An example of OPLS-DA model for disease activity. The OPLS-DA model was con-

structed and validated with CV-ANOVA and random permutation test. OPLS-DA scores

plots of MS activity (A) are depicted. The red circles in (A) represent the control sample, the

green circles represent the relapse patients, and the blue circles represent the remission

patients. The 95% confidence ellipse of the group is depicted in each color. The Mahalanobis

p-value between two groups (control–MS relapse, control–MS remission and MS relapse–MS

remission) in OPLS-DA model for three groups were 1.072e-5, 5.926e-9 and 3.517e-2, respec-

tively. The p-value of CV-ANOVA was 3.811e-5. (B) The permutation number was set to be

1,000. The observed R2 and Q2 values of the OPLS-DA model were higher than those obtained

from the permuted tests, revealing predictability and goodness of fit. The permutation result of

the OPLS-DA model for the three groups (control-MS relapse-MS remission) showed the

empirical p-values of R2 (p< 0.001) and Q2 (p< 0.001). (C) S-plot of the OPLS-DA model.

Influence of the model variable is shown. Glucose and citrate were relatively lowered in the

relapse state compared to those in the remission state. Two metabolites as well as acetone seem

to mainly contribute for group separation.

(TIF)

S1 Table. The quantification of each metabolite (unit, mM). Thirty-two metabolites were iden-

tified using the database stored in Chenomx NMR suite 7.7 and were quantified from the com-

parison of the internal standard (TSP). Data are presented as mean and standard deviation (SD).
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