
Bicaudal D2, Dynein, and Kinesin-1 Associate with
Nuclear Pore Complexes and Regulate Centrosome and
Nuclear Positioning during Mitotic Entry
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Abstract

BICD2 is one of the two mammalian homologues of the Drosophila Bicaudal D, an evolutionarily conserved adaptor
between microtubule motors and their cargo that was previously shown to link vesicles and mRNP complexes to the dynein
motor. Here, we identified a G2-specific role for BICD2 in the relative positioning of the nucleus and centrosomes in dividing
cells. By combining mass spectrometry, biochemical and cell biological approaches, we show that the nuclear pore complex
(NPC) component RanBP2 directly binds to BICD2 and recruits it to NPCs specifically in G2 phase of the cell cycle. BICD2, in
turn, recruits dynein-dynactin to NPCs and as such is needed to keep centrosomes closely tethered to the nucleus prior to
mitotic entry. When dynein function is suppressed by RNA interference-mediated depletion or antibody microinjection,
centrosomes and nuclei are actively pushed apart in late G2 and we show that this is due to the action of kinesin-1.
Surprisingly, depletion of BICD2 inhibits both dynein and kinesin-1-dependent movements of the nucleus and cytoplasmic
NPCs, demonstrating that BICD2 is needed not only for the dynein function at the nuclear pores but also for the
antagonistic activity of kinesin-1. Our study demonstrates that the nucleus is subject to opposing activities of dynein and
kinesin-1 motors and that BICD2 contributes to nuclear and centrosomal positioning prior to mitotic entry through
regulation of both dynein and kinesin-1.
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Introduction

Spatial organization of eukaryotic cells requires active transport

of proteins, macromolecular assemblies, and membrane organelles

along cytoskeletal fibers. Transport is driven by motor proteins,

which use actin and microtubules (MTs) as tracks for their

movement. Cytoskeletal elements are polarized structures, and

each particular motor can move along them only in one direction.

For example, MT-based motors include kinesins, which with a few

exceptions walk to MT plus ends, and dyneins, which drive minus

end-directed transport [1].

Motor-dependent transport machineries display a high degree

of complexity. First, the same motor can move multiple cargos.

For example, cytoplasmic dynein is responsible for the movement

of the majority of membrane organelles, mRNAs, and proteins to

MT minus ends [1,2]. Second, the same cargo can simultaneously

associate with multiple motors of opposite polarity and frequently

switch the direction of movement [3,4]. Molecular mechanisms

responsible for motor recruitment, activation, and switching of

directions are still poorly understood. Motors are likely to be

controlled by cargo-specific adaptor complexes, which often

include structural components and small GTPases [5,6].

An example of a well-studied motor adaptor is Bicaudal D

(BICD), which is conserved throughout the animal kingdom [7].

BICD consists of several coiled coil segments separated by regions

expected to be highly flexible. The N-terminal part of BICD binds
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to cytoplasmic dynein and its accessory factor dynactin; moreover,

the BICD N-terminus is sufficient to recruit these complexes to

organelles [8,9]. The C-terminal domain of BICD is the cargo-

binding part of the molecule. In mammals and flies, it directly

associates with the small GTPase Rab6 [10–12]. In mammalian

cells, BICD participates in recruitment of dynein/dynactin to

Rab6-positive exocytotic vesicles and promotes their MT minus

end-directed transport [11,13]. The middle portion of BICD

weakly binds to kinesin-1 [13]. The functional role of this link is

not yet clear, but it is noteworthy that BICD-bound Rab6 vesicles

move mostly towards the MT plus ends, suggesting that kinesin

motor activity on Rab6 vesicles predominates over dynein-

dependent transport [11,13]. In Drosophila, BicD participates in

dynein-dependent mRNP transport [14,15]. This function de-

pends on the association of BicD C terminus with the RNA-

binding protein Egalitarian [15–17]. BicD is also involved in both

dynein and kinesin-1-dependent movement of lipid droplets in fly

embryos [18].

To investigate whether mammalian BICD is involved in other

transport routes in addition to Rab6 vesicle trafficking, we

searched for partners of the cargo-binding domain of BICD2,

one of the two mammalian homologues of the fly BicD [8]. We

identified a component of the nuclear pore complex (NPC),

RanBP2 [19,20], as the major interacting partner of BICD2 C

terminus. RanBP2 (also known as NUP358) is a large protein,

which acts as docking factor in nucleocytoplasmic transport [21]

and is an E3 ligase for posttranslational modification with the

ubiquitin-like protein SUMO1 [22]. RanBP2 exists in a tight

complex with the sumoylated form of RanGAP1, the Ran

GTPase-activation protein, and targets it to the NPCs [23,24].

RanBP2 forms extended fibers at the cytoplasmic side of the NPC

and represents a good candidate for a link between the

cytoskeleton and the nuclear envelope (NE).

Previous studies showed that cytoplasmic dynein is specifically

recruited to the NE in late G2/mitotic prophase, where it

participates in NE breakdown (NEB) during mitotic entry ([25,26];

for review see [27,28]). Furthermore, NE-bound dynein is thought

to pull centrosomes towards the NE, through its minus-end-

directed motility, thereby contributing to proper attachment of

centrosomes to the NE [29,30]. In yeast, a dynein light chain is a

nucleoporin, but it likely acts at the NPC independently of the

dynein motor [31]. In C. elegans, dynein is anchored to the NE by

the nuclear membrane component SUN-1 and a hook protein

ZYG-12 [32]. Also in mammals, SUN1/2 and Syne/Nesprin-1/2

complexes, together with associated MT motors, are important to

maintain the connection between the centrosome and nucleus

during neuronal migration [33]. However, the molecular mech-

anism of G2-specific dynein interaction with the NE in dividing

mammalian cells has not yet been clarified.

Here, we show that BICD2 specifically associates with the NPCs

through RanBP2 in the G2 phase of the cell cycle and participates

in the recruitment of the dynein/dynactin complexes to these

structures. In addition, BICD2 associates with kinesin-1 [13] and

we show that while dynein pulls centrosomes and the nucleus

together during mitotic entry, kinesin-1 pushes them apart. During

late G2, cytoplasmic dynein activity predominates over kinesin-1

activity, and the centrosomes remain tightly associated with the

NE. Furthermore, we show that BICD2 not only acts to recruit

dynein to the NE but is also required for the oppositely directed

kinesin-1 activity, explaining why loss of BICD2 results only in a

mild defect in centrosome-nuclear attachment. These results

suggest that similar to most other MT motor cargos in animal

cells, the prophase cell nucleus is transported bi-directionally by a

molecular complex combining MT motors of opposite polarity.

Results

RanBP2 Directly Binds to BICD2 C Terminus
Our previous studies showed that the individual coiled coil

segments of BICD2 display strong association with their binding

partners, while the full-length molecule binds to the same proteins

less efficiently, suggesting that it may be autoinhibited [8,9,11].

Therefore, we used the C-terminal coiled coil segment of BICD2

(Figure 1A) as a bait to search for new BICD2 cargos. We linked

this BICD2 fragment to GFP and a biotinylation tag (Bio), a short

peptide sequence that can be modified by the addition of biotin

when expressed together with the biotin ligase BirA [34]. The

resulting Bio-GFP-BICD2-CT fusion was transiently expressed

together with BirA in HeLa cells, which were used for pull-down

assays with streptavidin beads (Figure S1). The resulting protein

complexes were analyzed by mass spectrometry (Table S1). The

most abundant newly identified potential BICD2 partner was the

NPC component RanBP2. RanGAP1, the sumoylated form of

which is known to form a tight complex with RanBP2 [23,24], was

also present among the isolated proteins in highly significant

amounts (Table S1).

The results of the pull-down assay were confirmed by co-

immunoprecipitation (co-IP) of endogenous RanBP2 with endog-

enous BICD2; an abundant Golgi-associated protein GM130

served as a negative control (Figure 1B). Further, we observed co-

IP of endogenous BICD2 with RanBP2 from nocodazole-arrested

HeLa cells, but neither BICD1 nor CLIP-170, another cytosolic

protein known to interact with dynactin [35], were coprecipitated

with RanBP2 in these conditions (Figure 1C). Next, we

investigated which domain of RanBP2 associated with BICD2.

RanBP2 is a protein of ,350 kDa, which contains a leucine-rich

region, four Ran-binding domains, eight zinc finger motifs, and a

C-terminal cyclophilin A-homologous region (Figure 1A). We

generated expression constructs of five RanBP2 fragments, which

Author Summary

Bidirectional microtubule-based transport is responsible
for the positioning of a large variety of cellular organelles,
but the molecular mechanisms underlying the recruitment
of microtubule-based motors to their cargoes and their
activation remain poorly understood. In particular, the
molecular players involved in the important processes of
nuclear and centrosomal positioning prior to the onset of
cell division are not known. In this study we focus on the
function of one of the mammalian homologues of
Drosophila Bicaudal D, an adaptor for the microtubule
minus-end-directed dynein-dynactin motor complex. Pre-
viously, Drosophila Bicaudal D and its mammalian homo-
logues were shown to act as linkers between the dynein
motor and mRNP complexes or secretory vesicles. Here, we
identify a new cargo for mammalian Bicaudal D2 (BICD2)–
the nucleus. We show that BICD2 specifically binds to
nuclear pore complexes in cells in G2 phase of the cell
division cycle. We also show that this interaction is
required for G2-specific recruitment of dynein to the
nuclear envelope and thus for proper positioning of the
nucleus relative to centrosomes prior to the onset of
mitosis. Further, our findings demonstrate that the motor
protein kinesin-1 opposes dynein’s activity during this
process and requires BICD2 for its activity. Our study
therefore reveals BICD2 as the critical molecular adaptor
that allows molecular motors to regulate nuclear and
centrosomal positioning before cell division.

BICD2 Targets Dynein to Nuclear Pores
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covered most of the RanBP2 sequence, as fusions to CFP and the

plasma membrane-targeting palmitoylation motif of GAP-43

(Figure 1A). With the exception of the N-terminal fragment 1,

these fusions were expressed well in mammalian cells. Using co-IP

from HEK293 cells, we found that the C-terminal domain of

BICD2 specifically interacted with RanBP2 fragment 3

(Figure 1D). This experiment also showed that BICD2-CT does

not interact with the overexpressed GFP-tagged RanGAP1

(Figure 1D), indicating that coprecipitation of RanBP2-RanGAP1

complex with BICD2-CT, observed by mass spectrometry, is due

to BICD2 interaction with RanBP2. The interaction between

BICD2 and RanBP2 is direct, since BICD2-CT and RanBP2

segment 3, purified from bacteria, specifically bind to each other in

a glutathione S-transferase (GST) pull-down assay (Figure 1E,F).

Remarkably, the same RanBP2 fragment was previously shown

to interact directly with kinesin-1 isoforms KIF5B and KIF5C

[36–38], supporting the notion that it is involved in MT motor

recruitment.

Next, we employed a yeast two-hybrid assay, which showed that

RanBP2 fragment 3 binds exclusively to the C-terminal part of

BICD2 and not to its N-terminal and middle segments (Figure 1G).

This is similar to the previously described interaction between

BICD2 and Rab6 [8,11] and is in contrast to kinesin-1 KIF5A,

which associates with the middle portion of BICD2 (Figure 1G)

[13].

Finally, we tested if fragment 3 of RanBP2 was sufficient to

recruit BICD2 C terminus to ectopic sites within the cell. For this,

RanBP2 fragments were artificially targeted to the plasma

membrane through addition of a palmitoylation motif, as

described above. The palmitoylation motif fusions of RanBP2

fragments displayed a strong association with the plasma

membrane, including filopodia, and also with the Golgi complex

(Figure 1H), but as expected, did not target to the NE. BICD2-CT

expressed in mammalian cells associates with the Golgi and

cytoplasmic vesicles, but not with the plasma membrane [8,11].

Interestingly, BICD2-CT was specifically recruited to the plasma

membrane by RanBP2 fragment 3 but not by other RanBP2

fragments (Figure 1H), suggesting that this domain of RanBP2 can

serve as a recruitment factor for BICD2.

RanBP2 Recruits BICD2 to NPCs during G2
We next investigated whether endogenous BICD2 and RanBP2

co-localize in HeLa cells and found that BICD2 specifically

associates with the NE in a subset of cells, where it largely overlaps

with the RanBP2 staining (Figure 2A). This localization pattern

was visible not only in cells subjected to fixations with

paraformaldehyde or a combination of cold methanol with

paraformaldehyde (which are optimal for preservation of the

Golgi- and vesicle-bound fraction of BICD2) but also after fixation

with cold methanol alone, which did not preserve the Golgi-bound

or the cytoplasmic pool of the protein (see below); it was further

enhanced by treating cells with the MT-destabilizing drug

nocodazole (Figure 2B–D). We hypothesized that the absence of

BICD2 staining at the NE in a subset of cells was caused by cell

cycle regulation. Indeed, all cells that showed BICD2 accumula-

tion at the NE were positive for cyclin B1, which is expressed

exclusively in G2 and mitosis, and ,75% cyclin B1-positive cells

showed BICD2 localization at the NE, indicating that BICD2

associates with the NE in the G2 phase (Figure 2A–D). G2-specific

recruitment to the NE was also observed in another human cell

line, U2OS cells (Figure S2A,B).

In addition to the NE, endogenous BICD2 also co-localized

with RanBP2 in puncta in the cytoplasm (Figure 2A,B). Compar-

ison with previous studies suggested that these puncta are

cytoplasmic stacks of NPCs known as annulate lamellae (AL)

[39]. Indeed, these puncta were stained by 4 additional markers

for NPCs: RanGAP1; the monoclonal antibody 414 (MAB414)

that reacts with several nucleoporins [40]; an antibody against

NUP214, an NPC component that binds to the cytoplasmic side of

the nuclear pores independently of RanBP2 [41], and YFP-tagged

POM121, a transmembrane NPC component that is also present

in AL (Figure S3) [42]. In line with the recruitment of BICD2 to

NPCs in the NE in G2 cells, we observed the association of BICD2

with the AL in cyclin B1-positive but not in cyclin B1-negative cells

(Figure 2A,B). These results are important as they support the view

that G2-specific recruitment of BICD2 to the NE is due to its

interaction with the cytoplasmic part of the NPCs and not some

other NE component.

Since we found that BICD2 directly interacts with RanBP2, we

examined whether the NE localization of BICD2 was RanBP2-

dependent. RanBP2 could be specifically depleted from HeLa and

U2OS cells without affecting the expression of BICD2 (Figure

S4A,B). Indeed, depletion of RanBP2 blocked recruitment of

BICD2 to the NE of G2 cells (Figure 2C,E; Figure S2A,B).

Based on the results described above, BICD2 is expected to

specifically associate with individual NPCs on the NE. Indeed, both

Figure 1. BICD2 interacts directly with RanBP2. (A) Schematic representation of the domains of RanBP2 and BICD2 and their fragments used for
binding studies. (B) Co-IP of endogenous BICD2 and RanBP2 from HeLa cells. IPs were performed with antibodies against BICD2 or the control IgG
and analyzed by Western blotting with the indicated antibodies. 2.5% of the input was loaded on gel. RanBP2, but not the negative control, GM130, is
co-precipitated with BICD2. (C) Co-IP of endogenous RanBP2 and BICD2 from nocodazole-arrested HeLa cells. IPs were performed with antibodies
against RanBP2 or the control IgG and analyzed by Western blotting with the indicated antibodies. 3% of the input was loaded on gel. BICD2 is co-
precipitated with RanBP2, while its close homologue BICD1 and another dynactin-binding protein, CLIP-170, are not. (D) Co-IPs from HEK293 cells co-
transfected with CFP-tagged RanBP2 fragments or GFP-RanGAP1 and mCherry-fused BICD2-CT. IPs were performed using mouse anti-GFP antibodies
and analyzed by Western blotting using rabbit anti-GFP or anti-BICD2 antibodies. BICD2-CT and the IgG bands are indicated by an arrowhead and an
arrow. BICD2-CT is coprecipitated with RanBP2 fragment 3, but not with other RanBP2 fragments or RanGAP1. (E) HIS-tagged BICD2-CT, GST, and GST
fusions of RanBP2 fragments 3 and 4 were purified from E. coli and analyzed by SDS-polyacrilamide gel electrophoresis and Coomassie staining. (F)
GST pull-down assays with the indicated RanBP2 fusions and purified HIS-tagged BICD2-CT, which was detected by Western blotting with anti-HIS tag
antibodies. 10% of the input and the bound fractions were loaded on gel. Using 0.8 mM BICD2-CT and 1.4 mM GST-RanBP2 fragment 3, an almost
quantitative binding was observed. This experiment confirms a direct interaction between RanBP2 fragment 3 and BICD2-CT. (G) Yeast two-hybrid
analysis. BICD2 fragments were linked to GAL4 activation domain and tested in a pairwise fashion for interaction with RanBP2, GTP-bound Rab6A
(Q72R), kinesin-1 (KIF5A), and kinesin-4 (KIF21B) tail regions cloned into LexA fusion vector. Interaction strength was scored according to the time
needed for b-galactosidase reporter to generate visible blue-colored yeast colonies on X-Gal containing filters: +++0–30 min, ++30–60 min, +60–
180 min and - no b-galactosidase activity. Similar to the previously characterized BICD2 partner Rab6, RanBP2 fragment 3 (2147–2287) specifically
interacts with BICD2-CT, but not with other parts of BICD2. (H) HeLa cells were co-transfected with the indicated plasma membrane targeted CFP-
RanBP2 fusions and HA-tagged BICD2-CT, fixed with paraformaldehyde, and stained with anti-HA antibodies. CFP fluorescence was visualized directly.
CFP-tagged palmitoylated RanBP2 fragments are present on the plasma membrane (upper panels), while BICD2-CT (upper panels) localizes to the
Golgi and cytoplasmic vesicles (middle panels). RanBP2 fragment 3, but not the other RanBP2 fragments, recruits BICD2-CT to the plasma membrane
(see overlay in the bottom panels).
doi:10.1371/journal.pbio.1000350.g001
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Figure 2. BICD2 associates with the NE and AL in G2 phase in a RanBP2-dependent manner. (A) HeLa cells were transfected with a
control siRNA, fixed with cold methanol followed by paraformaldehyde 3 d later, and stained for endogenous BICD2, RanBP2, and cyclin B1.
Note that in the cyclin B1-positive cell, BICD2 and RanBP2 co-localize at the NE and at a perinuclear spot that is an accumulation of AL. (B) HeLa
cells were treated with 10 mM nocodazole for 1 h and stained as described for (A). Note that BICD2 strongly stains the NE and cytoplasmic NPC-
positive dots (AL) in the cyclin B1-positive but not the cyclin B1 negative cells. (C) HeLa cells that were either treated with 10 mM nocodazole or
transfected with control siRNAs or a mixture of RanBP2 siRNAs #1 and #2 were stained as described for (A), and the percentage of cyclin B1-
positive cells showing BICD2 accumulation at the NE was counted. In case of RanBP2 knockdown, only the cells in which RanBP2-specific nuclear
staining was reduced to background levels were included in the quantification. Error bars represent SD; the number of experiments for each
condition is shown in parentheses below the graph; ,40–100 cells were counted per experiment. (D) Fluorescence intensity ratio between NE
and the adjacent cytoplasm in cyclin B1 positive and negative cells (,50 cells per measurement); cells were either untreated or treated with
10 mM nocodazole for 1 h. Measurements were performed in a region of 0.3 by 30 mm at the border between cytoplasm and the nucleus
(NE) and in a directly adjacent region (cytoplasm). Error bars represent SEM. (E) HeLa cells were transfected with a mixture of RanBP2 siRNAs #1
and #2, fixed, and stained as described for (A). Note that the two cyclin B1-positive cells that have strongly reduced RanBP2 levels show no
accumulation of BICD2 at the NE.
doi:10.1371/journal.pbio.1000350.g002
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full-length BICD2 and GFP-tagged BICD2-CT co-localized with

individual NPCs on the NE in cells that were pre-extracted with a

Triton X-100-containing buffer to reduce the cytoplasmic pool of

the GFP-BICD2 fusions (Figure S5). Similarly, colocalization of

endogenous BICD2 with individual NPCs was also observed in

methanol-fixed cells, in which cytosolic BICD2 signal has been

removed (Figure 3A,B). Fluorescent intensity profiles showed that

most of the individual NPCs in the NE (stained with MAB414) also

showed a peak of BICD2 fluorescence (Figure 3B,C). The

significance of the overlap was confirmed by quantitative analysis:

the coefficient of linear correlation between properly aligned

MAB414 and BICD2 images was, on average, ,0.5, while it was

close to zero when one of the two images was rotated, indicating

that observed colocalization between the two markers was not due

to fortuitous overlap between abundant dot-like patterns

(Figure 3D–G). Taken together, our results show that BICD2

Figure 3. BICD2 to localizes to the nuclear pores at the NE. (A) HeLa cells were fixed with cold methanol and stained with antibodies against
BICD2 and nucleoporins (MAB414). These panels show focal planes in the middle part of the nuclei. (B) Enlargements of the flattened NE surface from
the same cells as in (A) (the area from which the enlarged image is taken is indicated in (A) by a white rectangle). The insets show further
enlargements, in which individual NPC can be distinguished. Colors used for the overlays are indicated above the corresponding images. Note that
most NPC dots display signal in both channels, indicating that BICD2 and MAB414 antigens (NPCs) co-localize. (C) Representative fluorescence
intensity profile of BICD2 (green) and MAB414 staining (red) at the NE surface. The profile was obtained using Linescan function of MetaMorph at the
position indicated by a blue line in (B). Vertical axes are in arbitrary units. Note that most peaks are present in both BICD2 and MAB414 channels,
although their intensities often differ, in agreement with the fact that BICD2 is not a nucleoporin. (D) Correlation between BICD2 and MAB414 signals
in Figure 3B. The intensity of each pixel in the green and red channel is represented by a dot. (E,F) The same images and analysis as in (B) and (D), but
with the MAB414 panel rotated by 180u. Note that there is no co-localization between the green and red signals and no correlation is visible in the
plot. (G) Average coefficient of linear correlation between BICD2 and MAB414 signals, determined from plots such as in (B) and (D) obtained for 19
cells. Note that the coefficient is much higher for properly aligned images compared to rotated ones, indicating that co-localization is not spurious.
Error bars represent SD.
doi:10.1371/journal.pbio.1000350.g003
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binds RanBP2 both in vitro and in vivo, localizes to NPCs (both in

the NE and in AL) in G2 cells, and that this recruitment to NPCs

depends on RanBP2. It is therefore likely that a direct interaction

between RanBP2 and BICD2 links BICD2 to the NE in G2 cells.

BICD2 Recruits the Dynein-Dynactin Complex to the NE
and AL during G2

Although previous studies showed that BICD2 strongly co-

localizes with Rab6 on the Golgi apparatus and cytoplasmic

vesicles [10,11], this was not the case in G2 cells where BICD2

accumulated at the NE (Figure 4A). This conclusion was

confirmed by staining nocodazole-treated cells, where the

dispersion of the Golgi and nocodazole-induced enlargement of

the AL permitted better distinction of protein localization in

different cytoplasmic structures (Figure 4B). In the cells where

BICD2 associated with Rab6-bound membranes, it did not stain

the NE or the AL. However, in the cells where BICD2 localized to

the NE and AL, it displayed virtually no colocalization with Rab6

(Figure 4B). Combined with the results described above, these

observations indicate that BICD2 switches from Rab6-bound

membranes to the NPCs in G2 phase cells.

We next investigated whether the dynein-dynactin complex is

recruited to the NE along with BICD2. In untreated HeLa cells,

both dynein and dynactin show diffuse cytosolic localization as

well as an accumulation at the MT plus ends and the centrosomes

(unpublished data). However, in nocodazole-treated cells, coloca-

lization of dynein and dynactin with BICD2 could be detected in

specific cytoplasmic structures [8]. While in the majority of cells

these structures coincided with Rab6-positive Golgi fragments, in

all cells in which BICD2 co-localized with RanBP2, both dynein

and dynactin co-localized with BICD2 on RanBP2-positive

membranes, suggesting that the association of BICD2 with dynein

and dynactin is maintained when BICD2 switches from Rab6 to

RanBP2 (Figure 4C,D; Figure S6A). Because both BICD2 and

RanBP2 were shown to bind to kinesin-1, we also attempted to

investigate the localization of its isoforms. Although we were able

to specifically detect the predominant kinesin-1 isoform, KIF5B, in

HeLa cells (as confirmed by siRNA-mediated depletion), it

displayed a largely diffuse distribution, and no clear accumulation

of this protein could be detected at the NE or AL with or without

nocodazole treatment (unpublished data).

Since BICD2 can directly bind both the NPCs and the dynein-

dynactin complex, we next investigated whether BICD2 is required

to recruit dynein and dynactin to the NPCs. Because we could not

stain cells simultaneously for cyclin B1 and dynactin or dynein, we

used an antibody against histone H3 phosphorylated at serine 10

(phospho-H3), which becomes highly phosphorylated in late G2/

prophase cells [43]. All phospho-H3-positive cells displayed very

strong recruitment of endogenous dynactin and dynein to both the

NE and AL (Figure 4E,F; Figure S6B,C). Strikingly, this

recruitment was inhibited by depletion of BICD2, but not BICD1

(Figure 4E,F; Figure S6B,C; and unpublished data), demonstrating

that BICD2 is required for the association of dynein and dynactin

with the NPCs in prophase cells. In contrast, BICD2 was recruited

normally to the NPCs after depletion of either the dynein heavy

chain (HC) or dynactin large subunit p150Glued (see below). These

results suggest that BICD2 directly links the dynein/dynactin

complex to the NE through its interaction with RanBP2.

Dynein and Kinesin-1 Control Relative Positioning of the
Nucleus and the Centrosomes before Mitotic Entry

Since dynein associates with the NE in G2 phase, we next

examined how its depletion affected the relative position of the

nucleus and centrosomes during mitotic entry. Because the

perinuclear MT cytoskeleton is very dense and therefore difficult

to analyze in HeLa cells, we used U2OS cells, in which MT arrays

are more sparse and centrosome-centered. In control cells, the

centrosomes were always located very closely to the NE in

prophase (Figure 5A,B). In contrast, in dynein-depleted cells the

nucleus and the centrosomes were almost always found in opposite

cell corners during prophase (Figure 5A,B). Similarly, live cell

imaging of U2OS cells stably expressing mCherry-a-tubulin

showed that in control cells centrosomes migrate along the NE,

to the opposite sides of the nucleus just before mitotic entry (Figure

S7A), allowing spindle assembly to initiate around the DNA. In

contrast, in ,90% of dynein-depleted cells, centrosomes and the

nucleus had moved apart substantially at the time NEB occurred,

and therefore the DNA was not positioned in between the

centrosomes when spindle assembly initiated (Figure S7A;

Figure 5B); similar results were obtained in HeLa cells after

dynein or dynactin depletion (Figure S7B, Videos S1–S3).

Importantly, not only the centrosomes lost their central position

(which could be explained by the loss of interactions between MT

ends and the cell cortex upon dynein depletion [44]), but also the

nucleus was rapidly pushed into one of the cell corners, towards

MT plus ends (Figure 5C–E, see Videos S4–S7). Nuclear

movement was initiated 5464 min before NEB, and the average

velocity of movement was ,160 nm/min (Figure 5E). The final

distance between the two centrosomes at the time of NEB was the

same in control and dynein-depleted cells (9.861.0 mm in control

and 9.860.6 mm in dynein-depleted cells (mean6SD)), consistent

with our previous findings [45], indicating that centrosome

separation does not require linkage to the NE or dynein function.

To rule out that the detachment of centrosomes from the

nucleus was due to defects arising after long-term dynein

inhibition, we microinjected U2OS cells that were in late G2

with function blocking antibodies against dynein intermediate

chain (IC). As expected, dynein-inhibiting antibodies, but not the

control antibodies, induced rapid separation of the nuclei and the

centrosomes (Figure 5F–H), demonstrating that dynein activity is

required during late G2 to maintain the connection between

centrosomes and the NE. Very similar results were obtained after

microinjection of the first coiled coil fragment of the dynactin large

subunit p150Glued (CC1), which is known to disrupt dynactin-

dependent dynein mediated processes (Figure S8) [46].

Pushing a relatively large nucleus into a flattened corner of a

cultured cell would require substantial force, which is most likely

generated by kinesin motors attached to the nucleus and moving

to MT plus ends. We hypothesized that KIF5B might be involved

in this process because it interacts with both BICD2 and RanBP2.

Indeed, co-depletion of KIF5B together with dynein fully restored

centrosome and nuclear position at NEB (Figure 5B, Figure S7A;

for control of double knockdown efficiency, see Figure S4C),

indicating that it is indeed driving the separation of nuclei and

centrosomes in dynein-depleted cells. Taken together, these results

suggest that the prophase cell nucleus is transported bi-

directionally by the opposing activities of dynein and kinesin-1,

similar to many other cargoes.

BICD2 and RanBP2 Are Required for Maintenance of the
Association between the NE and the Centrosomes in
Prophase Cells

Since we showed that BICD2 is required for dynein and

dynactin recruitment to the NPCs in G2 phase, we next

investigated whether its depletion has an influence on the relative

positioning of the centrosomes and the nuclei. Similar to HeLa,

U2OS cells express both BICD2 and BICD1, which can be
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depleted by a number of different siRNAs without affecting the

expression of RanBP2 or MT motors (Figure 6A; Figure S4C).

Depletion of BICD2 induced the detachment of the centro-

somes from the nucleus in prophase (Figure 6B,C(a–c)). This effect

was specific, since it was not observed after depletion of BICD1 or

KIF5B, but it was much less severe than after dynein knockdown

(Figure 6B,C(a–c)). Cells with simultaneous knockdown of BICD1

and BICD2 displayed a phenotype similar to that of BICD2

depletion alone, confirming the view that BICD1 does not

contribute much to centrosome positioning (Figure 6C(c)). Cen-

trosome detachment from the NE was also observed in cells

overexpressing BICD2-CT, which is expected to uncouple

dynein/dynactin from BICD2-containing cargos (Figure 6B,C(d))

[11]. Interestingly, RanBP2 depletion, which prevents BICD2

recruitment to the NE (Figure 2C,E; Figure S2A,B) also caused an

increase in the distance between the nuclei and the centrosomes,

while the depletion of another cytoplasmic nucleoporin, NUP214,

had no effect (Figure 6C(e); Figure S4B).

To further prove that BICD2 can exert a direct effect on

centrosome positioning through its localization at the NE, we

constructed a fusion protein in which we attached the N-terminal

portion of BICD2, including the dynein and kinesin-1 binding

sites, to the C-terminal KASH (Klarsicht, ANC-1, Syne

Homology) domain-containing region of nesprin-3, which is

targeted to the NE by SUN proteins [47]. This fusion localized

specifically to the NE and enhanced the accumulation of dynactin

at the NE (Figure 6D). Importantly, the expression of the BICD2-

NT-nesprin-3 fusion completely suppressed centrosome detach-

ment in RanBP2-depleted prophase cells (in which endogenous

BICD2 is no longer targeted to the NE, see Figure 2C,E), even at

very low expression levels (Figure 6C(f)). Taken together, these

results support the view that BICD2 can recruit MT motors to the

NE and regulate the relative localization of the nucleus and the

centrosomes.

Since the distance between the centrosomes and the nucleus in

BICD2 or RanBP2 knockdown cells was much smaller than in the

case of dynein knockdown, it appears that there is no severe

imbalance between the activities of dynein and kinesin-1 at the NE

under these conditions. These results suggest that BICD2 is not

only involved in dynein function at the NE but might also be

required for proper kinesin-1 function.

If this idea is correct, BICD2 depletion should block the kinesin-

1 driven separation of centrosomes from the nuclei observed after

dynein depletion. Indeed, co-depletion of BICD2 with dynein

strongly reduced the distance between the centrosomes and the

nuclei observed after dynein depletion alone (see Figure 5B). This

rescue of centrosome-nuclear attachment was not due to a

decreased efficiency of dynein depletion (see Figure S4C);

moreover, the mitotic arrest in cells depleted of both BICD2

and dynein HC was similar to that observed for single dynein HC

knockdown (unpublished data), further confirming that dynein

function was similarly perturbed in both cases and indicating that

BICD2 depletion does not help to overcome later mitotic

phenotypes associated with dynein loss.

Eg5 Pushes the Centrosomes Away from the Nucleus in
BICD2-Depleted Cells

Why do centrosomes detach from the NE in prophase after

BICD2 knockdown if both kinesin-1 and dynein activities are

reduced? We recently found that the plus-end directed kinesin-5

Eg5, known to slide antiparallel MTs [48], pushes centrosomes

apart during prophase [45]. Thus, Eg5-dependent sliding forces

might drive the centrosomes away from the nucleus when it

becomes uncoupled from dynein and kinesin-1 due to BICD2

depletion. In line with this idea, inhibition of Eg5 with S-trityl-L-

cysteine (STLC) significantly suppressed centrosome detachment

caused by BICD2 depletion, indicating that Eg5 is at least in part

responsible for pushing the centrosomes away from NE in BICD2-

depleted prophase cells (Figure 6C(g)). Taken together, our data

show that centrosome separation and positioning at the opposite

sides of the NE at the mitotic onset is driven by forces generated by

dynein, kinesin-1, and Eg5.

G2-Specific Movement of AL Confirms the BICD2-
Dependent Link between NPCs and MT Motors

Do dynein and kinesin-1 indeed attach to the NE through

NPCs? If this were true, the positioning of AL, which contain

cytoplasmic NPC components but are devoid of many other NE-

specific proteins, such as the nuclear lamina and the proteins that

are linked to it, should be affected by the depletion of MT motors.

AL are relatively small structures that are normally located in the

central cytoplasm; they can potentially serve as a sensitive readout

for the forces exerted on them by cytoplasmic motors. In control

cells, AL are predominantly located around the Golgi apparatus in

G1 and S-phase; in G2 they shift towards the centrosome and

gradually disappear ([49], Figure 7A, and see also Figures 2A, 4A,

and Video S8). The depletion of the dynein HC or dynactin

subunit p150Glued induced relocalization of AL to the cell

periphery of cyclin B1-positive cells (towards MT plus ends;

Figure 7A). Using a cell line stably expressing GFP-tagged

RanGAP1 (Figure S9), we observed that the timing of movement

of the AL to the cell periphery coincided almost exactly with the

timing of peripheral displacement of the nucleus in cells lacking

dynein activity (,1 h before NEB) (Figure 7B, Video S9).

Furthermore, peripheral displacement of AL in dynein-depleted

cells was completely dependent on kinesin-1 activity (Figure 7C),

similar to displacement of the nucleus in these cells (see Figure 5B).

Together, these results indicate that the forces that act to position

the AL are mechanistically similar to those that position the

nucleus. Consistent with this, knockdown of KIF5B caused a very

strong accumulation of AL near centrosomes, where MT minus

ends are located in G2 (Figure 7A and Figure S10A,B,C), and

centrosomal accumulation of AL was, in turn, dependent on

dynein activity (Figure 7C). The analysis of the timing of AL

Figure 4. BICD2 is required for targeting dynein/dynactin to the NE and AL. (A–D) Control HeLa cells or HeLa cells treated with 10 mM
nocodazole for 1 h were fixed with paraformaldehyde (A–C) or cold methanol (D) and stained for the indicated endogenous proteins. Dynactin is
visualized with an antibody to p150Glued and dynein with an antibody to dynein IC. Colors used for the overlays are indicated above the
corresponding images. Note that BICD2 shows two types of localization: it colocalizes either with Rab6 or with RanBP2. In cells where BICD2
associates with RanBP2-positive NE and AL, dynein and dynactin are also targeted to these structures. (E) HeLa cells were transfected with a control
siRNA (upper panels) or BICD2#1 siRNA (bottom panels). Three days later, cells were treated with 10 mM nocodazole for 5 h, fixed with cold
methanol, and stained for endogenous RanBP2, phosphorylated histone H3, and dynein IC. NE staining by dynein antibodies is indicated by an arrow.
Colors used for the overlays are indicated above the corresponding images. Note that dynein is enriched at the NE and annulate lamellae in control
phospho-histone H3 positive cell, but not in BICD2-knockdown cell. (F) Percentage of HeLa cells positive for phosphorylated histone H3 that show
strong accumulation of dynein IC at the RanBP2-positive NE and AL in control or BICD2-depleted cells 3 d after siRNA transfection. Only the cells with
clearly visible AL were included in the quantification. Error bars represent SD; ,25–30 cells were counted in two experiments.
doi:10.1371/journal.pbio.1000350.g004
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movement in kinesin-1-depleted cells showed that centrosomal

accumulation started ,3 h before NEB (Figure 7B, Video S10),

which corresponds very well to the time at which BICD2 and

dynein are recruited to NPCs, further suggesting that BICD2 and

dynein recruitment to NPCs in G2 phase induces movement of

these structures towards MT minus ends. Taken together, these

results show that, similar to the nucleus, the position of AL in G2

phase is controlled by the antagonistic activities of dynein and

kinesin-1 and further suggest that both dynein and kinesin-1 act to

position the nucleus through their effect on NPCs, rather than

through other NE-associated proteins.

We also used AL displacement to strengthen our conclusions

that BICD2 controls both dynein- and kinesin-1-dependent

movement of NPCs. Importantly, BICD2 remained strongly

enriched at the AL and the NE when dynein, dynactin, or KIF5B

were depleted, indicating that BICD2 association with the NPCs

is independent of MT motors (Figure 7A). In control G2 phase

cells, AL often displayed some perinuclear accumulation in the

centrosome region (see Figures 2A, 7C, Figure S11A,B). However,

BICD2 depletion reduced perinuclear accumulation of AL in G2

phase (Figure 7C, Figure S11A,B). These findings were confirmed

by observing the behavior of AL by time-lapse microscopy after

BICD2 knockdown, where AL remained randomly dispersed until

the beginning of mitosis (Figure S11C, Video S11). These results

further implicate BICD2 in the G2 specific activation of MT

minus-end-directed force generation on NPCs. Furthermore, the

shift of AL to the cell center or the cell periphery caused by

kinesin-1 and dynein depletion, respectively, was strongly inhibited

by co-depletion of BICD2 but not by control siRNAs or siRNAs

against BICD1 or Rab6 (Figure 7C, Figures S11C, S12; Videos

S12, S13). These results demonstrate that BICD2 is required for

the G2-specific movement of the AL by both kinesin-1 and dynein

and strongly support the notion that both dynein and kinesin-1

control nuclear movement by acting through BICD2 on the NPCs.

We have also investigated if other cytoskeletal systems, in

addition to MTs, are directly involved in the G2-specific processes

described above but found no evidence for direct involvement of

the actin cytoskeleton or the intermediate filaments, keratin or

vimentin, in the G2-specific nuclear-centrosome positioning

pathway that relies on dynein and kinesin-1 (Figures S13, S14).

Discussion

During cell division the MT cytoskeleton and membrane

organelles undergo a severe reorganization, which proceeds in a

highly regulated manner. In many cell types, the two centrosomes

move apart while maintaining their attachment to the NE. This

helps to form the bipolar mitotic spindle around the chromosomes

after NEB. In this study, we have obtained insight into molecular

mechanisms that control the relative positioning of the nucleus and

the centrosomes at mitotic onset. We show that the dynein/

dynactin adaptor BICD2 is specifically recruited to the NPC in G2

phase through a direct interaction with the NPC component

RanBP2. In its turn, BICD2 is important for accumulation of

dynein and dynactin at the nuclear pores in prophase cells. In line

with previously published data (reviewed by [27,28]), we find that

cytoplasmic dynein is the major player responsible for the nucleus-

centrosome attachment, but unexpectedly, we find that kinesin-1

also participates in this process by antagonizing dynein function.

Since BICD2 and RanBP2 are likely involved in linking both MT

motors to the NPCs, depletion of either protein causes only mild

centrosome detachment from the nucleus.

Our previous studies showed that BICD2 associates with MT

motors through its N-terminus and the middle portion, while the

C terminus is the cargo-binding site [9,11,13]. Here we identified

a new cargo for BICD2, the nucleoporin RanBP2, which binds to

the same domain of BICD2 as the small GTPase Rab6. Our data

suggest that the interaction of BICD2 with the two cargos is

temporally regulated during the cell cycle: during G1 and S phase,

BICD2 appears to associate predominantly with Rab6, while in

G2 it binds mostly to the NPCs (Figure 8). It is currently unclear

how this switch is controlled, but it is likely that mitotic kinases are

involved.

Both during Rab6 vesicle trafficking and in nuclear positioning,

BICD2 participates in transport processes that involve the

opposing functions of cytoplasmic dynein and kinesin-1. The

predominating motor in the two processes is different: Rab6

vesicles are exocytotic carriers that preferentially move to MT plus

ends, suggesting that kinesin-1 activity is dominant, while the

nucleus and AL are mainly pulled by dynein (Figure 8). This

indicates that BICD2 participation by itself is insufficient to

determine direction of movement; therefore, additional factors or

posttranslational modifications are likely to be involved. While it

may appear strange that the two opposite polarity motors act

together in processes that mostly depend on only one of them, this

arrangement seems to represent a fundamental property of MT

motor systems most likely required to allow flexibility and permit

regulation of cargo distribution [3,4]. Our study shows that even

the positioning of a very large cargo, such as the cell nucleus, is no

exception to this rule.

The mechanism underlying kinesin-1 recruitment to BICD2-

bound NPCs is unlikely to be explained solely by the binding

between BICD2 and kinesin-1 [13], since RanBP2 can directly

bind to kinesin-1 as well [36,37]. Intriguingly, both BICD2 and

kinesin-1 interact with the same region of RanBP2; whether these

interactions are competitive or cooperative and what consequenc-

es this has on the architecture of the motor complexes remains to

be determined.

It is clear that RanBP2 and BICD2 are not the only proteins

participating in the motor recruitment and/or activation impor-

Figure 5. Dynein inactivation causes rapid separation of nuclei and centrosomes in G2. (A) U2OS cells were transfected with the control
or DHC#3 siRNAs, fixed with cold methanol, and stained for a-tubulin (green in overlay) and c-tubulin (red in overlay), as well as DNA (DAPI, blue in
overlay). Note that centrosomes are located close to the nucleus in control cells but are removed far away from the nucleus in dynein-depleted cells.
(B) mCherry-a-tubulin stable U2OS cell line was imaged with a 3 min time interval 2.5 d after transfection with the indicated siRNA mixtures, and the
distance between centrosomes and the nucleus at the time of NEB was measured. Error bars represent SD. The number of experiments is indicated in
parentheses below the graph. ,20 cells per experiment were analyzed. (C) mCherry-a-tubulin stable U2OS cells were imaged with a 3 min interval
2.5 d after transfection with DHC#1 siRNA. Nuclei and centrosomes undergo G2-specific displacements (indicated by asterisks and arrows,
respectively), resulting in their separation. (D,E) Quantification of displacement of nuclei and centrosomes starting from the moment when G2-
specific enhanced nucleation of MTs at the centrosome became visible (D), and velocity of nuclear movement during 1 h before NEB (E). Nuclear
movement in dynein-depleted cells was initiated 5464 min (mean6SD) before NEB. Measurements were performed in 10 cells in 3 independent
experiments. (F–H) U2OS cells stably expressing mCherry-a-tubulin were microinjected with antibodies against dynein IC (70.1) or the Myc tag. Late
G2 cells were chosen based on the presence of separated centrosomes. (F) An example of nucleus-centrosome separation after microinjection with
dynein-inhibiting antibodies. (G,H) Distance between the nucleus and the centrosomes (G) and percentage of cells showing strong centrosome
detachment (H) at 30 min after microinjection.
doi:10.1371/journal.pbio.1000350.g005
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Figure 6. Depletion of BICD2 and RanBP2 causes centrosome detachment in prophase U2OS cells. (A) Western blots with the indicated
antibodies were performed with equal amounts of extracts of U2OS cells 3 d after transfection with the indicated siRNAs. Note that BICD1 antibody
cross-reacts with BICD2 (arrows). Both BICD proteins can be independently depleted, although BICD1#1 siRNA causes some co-depletion of BICD2.
Levels of dynactin, dynein, KIF5B, and RanBP2 are not significantly affected BICD knockdown. (B) U2OS cells were transfected with BICD2#1 and
BICD1#1 siRNAs (upper panel) or with GFP-BICD2-CT, fixed with cold methanol, and stained for a-tubulin and c-tubulin, as well as DNA (DAPI). Colors
used for the overlays are indicated above the corresponding images. Note centrosome detachment caused by the loss of BICD function through
siRNA-mediated depletion or overexpression of the dominant negative mutant BICD2-CT. (C) The distance between the nucleus and the centrosomes
in fixed prophase U2OS cells under different conditions. (a,b) Cells were transfected with the indicated siRNAs against dynein HC or KIF5B. (c) Cells
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tant for centrosome-nuclear attachment. First, other parts of the

NPCs, additional dynein accessory factors, such as LIS1 and

NUDE [50], and cell cycle-dependent regulators of motor

activation, like CDKs or Plk1, are likely to be involved. This view

is supported by the observed timing of binding and transport steps.

BICD2 associates with the NPCs early in G2; this results in dynein

activation that is sufficient to cause strong AL accumulation

around the centrosome in the absence of kinesin-1 at ,3 h before

NEB. At a later stage (,1 h before NEB), additional motor

activation likely takes place; this is reflected by the peripheral

displacement of the AL, the nucleus, and the centrosomes in

dynein-depleted cells. Furthermore, Eg5 becomes active during

prophase and pushes centrosomes apart. The forces induced by

Eg5-dependent centrosome separation are kept in check by the

complex of RanBP2-BICD2-dynein that prevents centrosome

detachment from the nucleus while allowing centrosomes to

separate.

Second, KASH domain proteins such as nesprins are essential

for attachment of nuclei to the cytoskeleton in different systems

[33,51,52]. We observed that the displacement of endogenous

nesprins from the NE indeed affected relative positioning of the

nucleus and centrosomes in G2 phase, but the effect was much less

severe than that of dynein depletion (Tanenbaum, unpublished

data). Moreover, nesprin displacement from the NE could not

block kinesin-1-mediated nuclear displacement in dynein-depleted

cells (Splinter, unpublished data), indicating that in contrast to

certain epithelial cells [53], in cultured U2OS and HeLa cells

nesprins are not essential for attachment of kinesin-1 to the NE.

Nesprins bind to the NE through SUN proteins, which were

shown to interact with nuclear pores [54], and may therefore

participate in the formation of the MT motor assemblies at the NE

together with nucleoporins. It is likely that the relative importance

of different molecular links between the NE and MT motors

depends on the cell type and differentiation state.

What is the function of the complex molecular events described

in this study? Clearly, positioning of the centrosomes at the

opposite sides of the nucleus at NEB would decrease the chance

that a kinetochore is captured by MTs emanating from both poles

(merotelic attachments), which can result in chromosome

missegregation and aneuploidy, hallmarks of cancer [55].

Furthermore, spindle assembly in mammalian cells is controlled

by both centrosome- and chromatin-dependent pathways, in

which centrosomes are potent MT nucleation sites and chromatin

can both nucleate and stabilize MTs. When centrosomes are

positioned too far away from chromatin, newly nucleated MTs are

unstable and as a consequence spindle assembly might be delayed.

Indeed, loss of dynein results in a ,15 min delay in bipolar spindle

assembly, which can be rescued by restoring the relative

positioning of centrosomes and the nucleus at mitotic entry

through co-depletion of kinesin-1 (Tanenbaum, unpublished data).

A mechanism coupling centrosomes to the nucleus at mitotic onset

could become even more important in very large cells like

fertilized oocytes, in which the distance between centrosomes and

chromosomes could become so extensive that centrosomes could

no longer contribute to spindle assembly.

In addition, the interaction of dynein with the NPCs through

BICD2 could help to tear apart the NE [26,56], a possibility that

was not addressed here. Furthermore, dynein-mediated coupling

between the nucleus, MTs, and the centrosome plays an important

role during migration of differentiated cells [57]. In flies, BicD is

involved in MT and dynein/dynactin-dependent positioning of

the oocyte and photoreceptor nuclei [7], and since BICD2 is

ubiquitously expressed during mammalian development (Akhma-

nova, unpublished data), it would be interesting to know if it plays

a similar role in mammals.

Materials and Methods

Expression Constructs and siRNAs
We used the following previously described expression vectors:

GFP-BICD2 [8], HA-BICD2-CT [11], myc-KIF5B [13], BirA [58]

(a gift of D. Meijer, Erasmus MC, Rotterdam, The Netherlands),

mCherry-a-tubulin [59] (a gift of R. Tsien, UCSD, San Diego, CA,

USA). Biotinylation and GFP-tagged BICD2 C terminus (Bio-GFP-

BICD2-CT, BICD2 amino acids 487–820, accession number

CAC51393) was generated in pEGFP-C2 (Clontech) by cloning at

the NheI and AgeI sites in front of the GFP a linker encoding the

amino acid sequence MASGLNDIFEAQKIEWHEGGG. CFP-

tagged RanBP2 fragments with the N-terminal palmitoylation signal

derived from GAP-43 were generated in a modified version of the

pECFP-N1 vector (Clontech) by a PCR based strategy. GFP-

BICD2-NT-nesprin-3 fusion was generated by attaching the amino

acids 582–975 of nesprin-3 (accession number NP_001036164, [60];

a gift of A. Sonnenberg, Netherlands Cancer Institute, Amsterdam)

to the C terminus of GFP-BICD2-NT (amino acids 1–594 of

BICD2 [9]). GFP-RanGAP1 was generated in pEGFP-C1 by

inserting into it the BglII-SmaI fragment of KIAA1835 (accession

number AB058738, a gift of Kazusa DNA Research Institute,

Japan). POM121 fused to a triple YFP tag [42] was a gift of Dr. E.

Hallberg (Södertörns University College, Huddinge, Sweden).

We used the following siRNAs: KIF5B#1, 59-GCCUUAUG-

CAUUUGAUCGG (siRNA 118426, Ambion), KIF5B#2, 59-

GCACAUCUCAAGAGCAAGU (siRNA 118427, Ambion), dy-

nein HC DHC#1 59-CGUACUCCCGUGAUUGAUG (siRNA

118309, Ambion), DHC#2 59-GCCAAAAGUUACAGACUUU

(siRNA 118311, Ambion), DHC#3 59-GGAUCAAACAUGAC-

GGAAU, RanBP2#1 59-GGACAGUGGGAUUGUAGUG [61],

RanBP2#2 59-CACAGACAAAGCCGUUGAA, RanBP2#3

Dharmacon SMARTpool, p150Glued 59 GUAUUUGAAGAUG-

GAGCAG, BICD2#1 59-GGAGCUGUCACACUACAUG,

BICD2#2 59-GGUGGACUAUGAGGCUAUC, BICD1#1 59-

CCUUAAUGCCAUAAUCCGG, BICD1#2 59-GCAAAGAG-

CCAAUGAAUAU, BICD1#3 59-GCAACUGUCUCGUCA-

AAGA, NUP214 59 GUCACGGAAACAGUGAAAG [41]. As a

control we used a previously described scrambled CLASP1

siRNA, the siRNA against luciferase [62], or the siRNA to GAPD

(control Dharmacon SMARTpool).

were transfected with the indicated siRNAs against BICD1 and/or BICD2. (d) Cells were transfected with GFP-BICD2-CT. (e) Cells were transfected with
the indicated siRNAs against RanBP2 or NUP214. (f) The effect of RanBP2 knockdown (induced with the RanBP2#3 siRNA) was rescued by expression
of the GFP-BICD2-NT-nesprin-3 fusion but not by GFP alone. (g) Cells were transfected with the indicated siRNAs against BICD2, and either untreated
or incubated with 4 mM STLC, an Eg5 inhibitor. Error bars represent SD; the number of experiments for each condition is shown in parentheses below
the graph; 20–30 cells were counted per experiment. Strong separation of the nucleus and the centrosomes is induced by dynein depletion. Mild
nuclear-centrosome separation is caused by overexpression of BICD2-CT or depletion of BICD2 or RanBP2, but not BICD1 or NUP214, which serve as
negative controls. A fusion of BICD2 N-terminus to the NE-targeting domain can compensate for the loss of RanBP2. The effect of BICD2 knockdown
on nuclear-centrosome positioning can be suppressed by inhibiting Eg5, suggesting that the MT sliding activity of this motor is responsible for
centrosome detachment in BICD2-depleted cells. (D) HeLa cells were transfected with GFP-BICD2-NT-nesprin-3 fusion, fixed with paraformaldehyde,
and stained for p150Glued. Note the recruitment of dynactin to the NE in the transfected cell.
doi:10.1371/journal.pbio.1000350.g006
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Pull-Downs, IP, Identification of BICD2-CT Binding
Partners by Mass Spectrometry, and Yeast Two-Hybrid
Analysis

Bio-GFP-BICD2-CT and BirA were transiently co-expressed in

HeLa cells; cells were lysed in a buffer containing 100 mM NaCl,

20 mM Tris-HCl, pH 7.5, 1% Triton X-100, and protease

inhibitors (Complete, Roche). Streptavidin pull-down assays, mass

spectrometry analysis, and IP from HEK293 cells overexpressing

different protein fusions were performed as described by [13]. For

the IP of endogenous proteins, HeLa cells were pelleted and lyzed in

a buffer containing 20 mM Tris pH 8.0, 150 mM KCl, 5% Triton

X-100, Protease inhibitors (Complete Roche) and phosphatase

inhibitors (Cocktail 1 and 2, Sigma). For the IP of endogenous

proteins from nocodazole-arrested cells, HeLa cells were treated

with 75 ng/mL nocodazole for 18 h, washed with PBS, lyzed with

digitonin in the buffer containing 20 mM HEPES pH 7.3, 110 mM

potassium acetate, 2 mM magnesium acetate, 1 mM EGTA, 1 mM

DTT and protease and phosphatase inhibitors; lysates were

centrifuged at 1000006g for 1 h. IP was carried out using standard

procedures. 6XHIS-tagged BICD2-CT (amino acids 630–820) was

generated in pET28a. GST fusions of RanBP2 fragments 3 and 4

(amino acids 2147–2287 and 2447–2887, accession number

NP_006258) were generated in pGEX-3X. Protein purification

and GST pull-down assays were carried out as described by [63].

Binding reactions were performed in 50 mM Tris-HCl, pH 7.5,

125 mM NaCl, 0.1% NP40, and 5 mM EDTA, using ,20 mg/ml

of HIS-BICD2-CT and ,70 mg/ml of GST fusions.

For yeast two-hybrid assays, different bait constructs were

prepared in pBHA (lexA fusion vector) and tested against various

BICD2 fragments cloned into pGAD10 (GAL4 activation domain

vector, Clontech) as described by [13].

Cell Culture and Transfection of Plasmids and siRNAs
HeLa, HEK293, and U2OS cells were cultured as described

previously [64,65]. PolyFect (Qiagen), Lipofectamine 2000

(Invitrogen), or FuGENE 6 (Roche) reagents were used for

plasmid transfection. Stable HeLa clones expressing fluorescent

proteins were selected using Fluorescence Activated Cell Sorting

and cultured in the presence of 0.4 mg/ml G418 (Roche).

Synthetic siRNAs were transfected into HeLa cells plated at

20% confluence using HiPerFect (Qiagen) at the final concentra-

tion 5 nM; cells were analyzed by 3 d after transfection. U2OS

cells were transfected with HiPerFect during plating at ,20%

confluence using 20 nM siRNAs; a second transfection with the

same siRNA concentration was performed 1 or 2 d later, and the

cells were analyzed 3 or 4 d after plating.

Antibodies, Immunofluorescent Staining, and Western
Blotting

We used affinity purified goat polyclonal antibodies against

RanBP2 and RanGAP1 [22,66]; rabbit polyclonal antibodies

against GFP (Abcam), BICD1 and BICD2 [8,11], HA tag, dynein

HC, KIF5B and RanGAP1 (Santa Cruz), NUP214 [41] (a gift of

Dr. R. Kehlenbach, University of Göttingen, Germany), and

phosphorylated histone H3 (Ser 10) (Millipore); mouse monoclonal

antibodies against Rab6 (which recognizes Rab6A and Rab6A’, a

gift of A. Barnekow, University of Muenster, Germany), Arp1 (a

gift of Dr. T Schroer, Johns Hopkins University, USA),

nucleoporins (antibody 414, Covance), a-, b-, and c-tubulin

(Sigma), dynein IC (Chemicon and Santa Cruz), cyclin B1 (Santa

Cruz), p150Glued and p50 (BD Biosciences), pan-keratin (clone

C11, Sigma), and vimentin (Cymbus Biotechnology). For second-

ary antibodies we used Alexa 350, Alexa 488, and Alexa 594-

conjugated goat antibodies against rabbit, rat, and mouse IgG,

donkey antibodies against sheep IgG (Molecular Probes), AMCA-

labeled rat anti-mouse, FITC-labeled donkey anti-rabbit, and anti-

mouse antibodies (Jackson ImmunoResearch Laboratories). Actin

was stained with Alexa-594-conjugated phalloidin (Invitrogen).

Cell fixation and staining procedures were described previously

Figure 7. Dynein, kinesin-1, and BICD2 control the localization of AL in G2 phase. (A) HeLa cells were transfected with control, DHC#1,
p150Glued, or KIF5B#1 siRNAs, fixed with paraformaldehyde 3 d later, and stained for endogenous BICD2, RanBP2, and cyclin B1. In the overlays, BICD2
is shown in green and RanBP2 in red. The outline of the cyclin B1-positive cell is indicated. Note AL displacement to the cell periphery in cyclin B1-
positive cells depleted of dynein or dynactin, and the centripetal relocalization of AL in kinesin-1 (KIF5B) depleted cyclin B1-stained cell. (B) GFP-
RanGAP1 stable HeLa cell line was imaged with a 2 or 3 min time interval 2 d after transfection with the control, p150Glued, or KIF5B#1 siRNAs. 0 min
indicates the first frame after NEB (defined as the time when GFP-RanGAP1 enters the nucleus). Contrast is inverted. Arrows show the accumulation of
AL at the cell periphery or the cell center. Peripheral displacement of AL after dynein or dynactin knockdown occurred at 1 h630 min before mitotic
onset (mean 6 SD, measured in 6 and 10 cells, respectively); strong accumulation of AL near the nucleus in KIF5B depleted cells started at 3 h630 min
before NEB (mean 6 SD, measured in 18 cells). (C) AL localization after different siRNA co-transfections. Black bars represent the percentage of HeLa
cells showing a strong AL accumulation near the nucleus (like in the bottom panel in Figure 7A) and gray bars illustrate the percentage of HeLa cells
showing displacement of AL to the outmost cell periphery (like in the middle panels of Figure 7A). In each case, cells were transfected with a
combination of two siRNAs: control, KIF5B or dynein HC siRNAs (as indicated on top of the panel) in combination with the control siRNA or the siRNAs
against BICD1 and BICD2 (the cotransfected siRNA is indicated at the bottom), or the combination of KIF5B siRNAs and dynein HC siRNAs. Cells with AL
accumulation in the cell center or the cell periphery were scored in KIF5B or dynein knockdown cells, respectively; in a double KIF5B/dynein HC
knockdown, both types of cells were counted. Error bars represent SD. ,30–100 cells were counted in three experiments. Cells with fully aggregated AL
represent a minority of the population (,20%) in control G2 cells but become predominant (,75%) after depletion of kinesin-1. This effect can be
suppressed by co-depletion of BICD2 or dynein HC, but not BICD1. Similarly, control cells never display peripheral AL localization, while ,40% of
dynein-depleted cyclin B1-positive cells show this phenotype, which can be suppressed by co-depletion of BICD2 or KIF5B, but not BICD1.
doi:10.1371/journal.pbio.1000350.g007

Figure 8. A model of the concerted action of BICD2, dynein,
and kinesin-1 in different phases of the cell cycle. In G1 and S
phase, BICD2, dynein, and kinesin-1 associate with Rab6 vesicles;
kinesin-1 activity predominates in this complex. In G2, BICD2 with the
associated motors accumulates at the NPCs, where the dynein-
mediated movement predominates, resulting in tight association of
the centrosome and nucleus.
doi:10.1371/journal.pbio.1000350.g008
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[8]. Briefly, we used the following fixations: 4% paraformaldehyde

in PBS (15 min at room temperature), 220uC methanol (10 min),

or 220uC methanol (10 min) immediately followed by 4%

paraformaldehyde in PBS (15 min at room temperature). For

pre-extraction of live cells we used the following buffer: 60 mM

PIPES, 25 mM HEPES, 10 mM EGTA, 0.5% Triton X-100,

4 mM MgSO4, and pH 7.5. Western blotting was performed as

described previously [64].

Electron Microscopy
For preembedding immunoperoxidase electron microscopy,

cells were fixed with 4% paraformaldehyde and stained with anti-

RanGAP1 using the same conditions as for immunofluorescence

with the exception that saponin (0.1%) was used as a detergent in

the preincubation step and no detergent was used in subsequent

steps. Biotinylated horse anti-goat (Vector) was used as the

secondary antibody, which was followed by incubation in avidin-

biotin-peroxidase complex (ABC, Vector Laboratories, USA) and

staining with diaminobenzidine (DAB, 0.05%) yielding a brown

reaction product. Subsequently cells were fixed in 1% osmium,

dehydrated, and embedded in Durcupan. Ultrathin (50–70 nm)

were contrasted with uranyl acetate and lead citrate and analyzed

in a Phillips CM100 electron microscope with a bottom mounted

TVIPS FastScan-F114 camera.

Fluorescence Microscopy and Image Analysis
Images of fixed cells with the exception of Figures 5A and 6B

were collected with a Leica DMRBE microscope equipped with

a PL Fluotar 1006 1.3 N.A. or 406 1.00–0.50 N.A. oil

objectives, FITC/EGFP filter 41012 (Chroma) and Texas Red

filter 41004 (Chroma), and an ORCA-ER-1394 CCD camera

(Hamamatsu). Images in Figures 5A and 6B were acquired on a

confocal Zeiss LSM510 META (CarlZeiss) with a Plan

Apochromat 636 1.4 N.A. objective. Z-planes were acquired

with 1 mm intervals. Images are maximum intensity projections

of all Z-planes.

Live cell imaging experiments with U2OS cells were performed

on a Zeiss Axiovert 200 M microscope equipped with a Plan-

Neofluar 406 1.3 N.A. oil objective in a permanently heated

chamber with 5% CO2. Images were acquired every 3–5 min

using a Photometrics Coolsnap HQ charged-coupled device

camera (Scientific, Tucson, AZ). Z-stacks were acquired with

2 mm intervals between Z-slices. Live cell imaging experiments

with HeLa cells were performed on the inverted microscope Nikon

Eclipse TE2000E (Nikon) with a CFI Plan Fluor 4061.30 N.A. oil

objective, equipped with CoolSNAP-HQ2 CCD camera (Roper

Scientific) controlled by MetaMorph 7.1 software (Molecular

Devices). For excitation we used HBO 103 W/2 Mercury Short

Arc Lamp (Osram) and Chroma ET-GFP (49002) or Chroma ET-

DsRed (49005) filter sets. Image analysis was performed by using

MetaMorph software (Universal Imaging, Downington, PA). Cells

were kept at 37uC during observation.

U2OS cells were microinjected in L-15 medium with dynein IC

70.1 (Sigma) or Myc (Covance) antibodies, diluted 1/10 from

suppliers stock, or with purified CC1 fragment of p150Glued (a gift

of Dr. S. King, University of Missouri–Kansas City, USA) using an

Eppendorf Micromanipulator 5171 coupled to a Transjector

5246, and cells were imaged as described above.

Images were prepared for publication using Adobe Photoshop.

The images of fixed cells were modified by adjustments of levels

and contrast. Live images were modified by adjustments of levels

and contrast and applying Unsharp Mask and Gaussian Blur

filters.

Supporting Information

Figure S1 Protein gel used for identification of bio-GFP-
BICD2-CT binding partners by mass spectrometry. To

identify binding partners of BICD2, streptavidin pull-down assays

were performed with extracts of HeLa cells expressing BirA alone

or together with bio-GFP-BICD2 full-length, N-terminus, or C

terminus. Proteins were separated on a 3%–8% Tris-acetate gel

and stained with Colloidal Blue Staining Kit (Invitrogen). Mass

spectrometry analysis of the proteins in the last lane is shown in

Table S1 (the first lane served as a control).

Found at: doi:10.1371/journal.pbio.1000350.s001 (0.28 MB TIF)

Figure S2 BICD2 associates with the NE in G2 phase in
a RanBP2-dependent manner in U2OS cells. (A) U2OS

cells were transfected with a control siRNA or a mixture of

RanBP2 siRNAs #1 and #2, fixed with cold methanol followed

by paraformaldehyde 3 d later, and stained for endogenous

BICD2, RanBP2, and cyclin B1. Note that BICD2 is strongly

recruited to the NE in cyclin B1 positive cells and that this

recruitment is blocked by RanBP2 depletion. (B) U2OS cells that

were either treated with 10 mM nocodazole or transfected with

control siRNAs or a mixture of RanBP2 siRNAs #1 and #2 were

stained as described for (A), and the percentage of cyclin B1-

positive cells showing BICD2 accumulation at the NE was

counted. In case of RanBP2 knockdown, only the cells in which

RanBP2-specific nuclear staining was reduced to background

levels were included in the quantification. Error bars represent SD;

,40–100 cells were counted in three experiments.

Found at: doi:10.1371/journal.pbio.1000350.s002 (0.66 MB TIF)

Figure S3 RanBP2 and RanGAP1-positive cytoplasmic
puncta are AL. (A,B) Control HeLa cells or cells either treated

for 1 h with 10 mM nocodazole were fixed with cold methanol and

stained with the antibodies to NPC components NUP214,

RanBP2, MAB414, and RanGAP1. (C) HeLa cells stably

expressing POM121-YFP(3) were fixed with paraformaldehyde

and stained with antibodies against RanBP2. Where indicated,

cells were treated for 1 h with 10 mM nocodazole. Note complete

co-localization of all NPC markers in the cytoplasmic puncta and

the enlargement of these puncta after nocodazole treatment. (D)

Transmission electron photomicrographs of HeLa cells treated

with 10 mM nocodazole for 1 h immunostained for RanGAP1

before plastic embedding using immunoperoxidase. Cells were

fixed with paraformaldehyde and stained with anti-RanGAP1

using an avidin-biotin-peroxidase complex procedure with diami-

nobenzidine as the chromogen yielding an electron dense

precipitate. Staining is selectively associated with either the

cytoplasmic face of NPCs in the NE, or with cytoplasmic

ensembles of nuclear pore-like structures also referred to as AL

(arrows). Nu, nucleus; m, mitochondrion; bars, 250 nm. This

result is fully consistent with previous descriptions of AL [49] and

shows that RanGAP1 is a good marker for these structures.

Found at: doi:10.1371/journal.pbio.1000350.s003 (3.88 MB TIF)

Figure S4 Protein depletion in HeLa and U2OS cells.
Western blots with the indicated antibodies were performed with

equal amounts of extracts of HeLa or U2OS cells 3 d after

transfection with the indicated siRNAs. Note that dynein, KIF5B,

BICD2, and NPC components can be depleted independently of

each other. The knockdown of dynein HC also causes depletion of

dynein IC, in agreement with published data [13].

Found at: doi:10.1371/journal.pbio.1000350.s004 (0.38 MB

DOC)

Figure S5 GFP fusions of BICD2 and BICD2 C terminus
co-localize with nuclear pores on the NE. HeLa cells were
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transfected with the indicated GFP fusions, treated with 10 mM

nocodazole, pre-extracted in a buffer with 0.5% Triton X-100,

fixed with paraformaldehyde, and stained for RanBP2. In the

overlays, BICD2 is shown in green and RanBP2 in red. Note

specific co-localization of the GFP fusions with the NPCs.

Found at: doi:10.1371/journal.pbio.1000350.s005 (0.98 MB TIF)

Figure S6 BICD2 is required for targeting dynein/
dynactin to the NE and AL. (A) HeLa cells were treated with

10 mM nocodazole for 1 h, fixed with cold methanol, and stained

for the indicated endogenous proteins. Dynactin is visualized with

antibody to Arp1 and p50/dynamitin. Colors used for the overlays

are indicated above the corresponding images. Note that in cells

where BICD2 associates with RanBP2-positive NE and AL,

dynactin subunits are also targeted to these structures. (B) HeLa

cells were transfected with a control siRNA (upper panel) or

BICD2#1 siRNA (bottom panel). Three days later, cells were

treated with 10 mM nocodazole for 5 h, fixed with cold methanol,

and stained for endogenous RanBP2, phospho-histone H3, and

dynactin (p150Glued). NE staining by dynactin antibodies is

indicated by an arrow. Colors used for the overlays are indicated

above the corresponding images. Note that dynactin is enriched at

the NE and annulate lamellae in control phospho-histone H3

positive cell, but not in BICD2-knockdown cell. (C) Percentage of

HeLa cells positive for phospho-histone H3 that show strong

accumulation of dynactin at the RanBP2-positive NE and AL in

control or BICD2-depleted cells 3 d after siRNA transfection.

Only the cells with clearly visible AL were included in the

quantification. Error bars represent SD; ,25–30 cells were

counted in two experiments.

Found at: doi:10.1371/journal.pbio.1000350.s006 (2.51 MB TIF)

Figure S7 Depletion of dynein and dynactin causes
separation of centrosomes and nuclei in prophase
U2OS and HeLa cells. (A) mCherry-a-tubulin stable U2OS

cell line was imaged with a 3 min time interval 2.5 d after

transfection with the indicated siRNA mixtures. Note that the

centrosomes separate completely from the NE envelope in a

dynein-depleted cell and that this effect is rescued by co-depletion

of KIF5B. 0 min indicates the first frame after NEB (defined as the

time when mCherry-a-tubulin entered the nucleus). (B) mCherry-

a-tubulin stable HeLa cell line was imaged with a 2 or 3 min time

interval 2.5 d after transfection with the control, p150Glued, or

DHC#2 siRNAs. 0 min indicates the first frame after NEB

(defined as the time when mCherry-a-tubulin entered the nucleus).

Note that the centrosomes separate completely from the NE

envelope in a dynein- or dynactin-depleted cell.

Found at: doi:10.1371/journal.pbio.1000350.s007 (1.50 MB TIF)

Figure S8 Microinjection of the recombinant coiled coil
fragment 1 (CC1) of p150Glued causes rapid separation of
centrosomes and the nucleus in prophase cells. U2OS

cells stably expressing mCherry-a-tubulin were microinjected with

recombinant CC1 at the needle concentration 0.85 mg/ml. Late

G2 cells were chosen based on the presence of separated

centrosomes. Time t = 0:00 indicates the time-point just prior to

injection.

Found at: doi:10.1371/journal.pbio.1000350.s008 (0.29 MB TIF)

Figure S9 Characterization of a HeLa cell line stably
expressing GFP-RanGAP1. Western blots prepared with equal

amounts of extracts of control HeLa cells or the stable GFP-

RanGAP1 HeLa cell line and incubated with antibodies against

GFP or RanGAP1. Note that the expression levels of the fusion

protein exceeded the endogenous RanGAP1 levels by approxi-

mately a factor of 4; however, the amount of SUMOylated

RanGAP1, which is likely to be RanBP2- and NPC-bound

[23,24], was not significantly altered compared to control cells; in

the stable cell line, this pool was predominantly represented by the

GFP-tagged RanGAP1.

Found at: doi:10.1371/journal.pbio.1000350.s009 (0.14 MB TIF)

Figure S10 The effect of MT motor depletion on AL
distribution. (A) HeLa cells were transfected with siRNAs

against KIF5B, fixed with cold methanol 3 d later, and stained for

RanBP2 and c-tubulin. Note that AL accumulate as a single

pericentrosomal dot in a cell with a single centrosome and around

both centrosomes after their separation. (B) HeLa cells were

transfected with KIF5B or DHC siRNAs, fixed with methanol,

and stained for endogenous NUP214, RanBP2, and with the

MAB414 antibody. (C) HeLa cells stably expressing POM121-

YFP(3) were transfected with KIF5B or DHC siRNAs, fixed with

paraformaldehyde, and stained with antibodies against RanBP2.

Note that all NPC markers show characteristic re-localization to

the centrosome or to the cell periphery, supporting the view that

these structures are indeed AL.

Found at: doi:10.1371/journal.pbio.1000350.s010 (1.65 MB TIF)

Figure S11 Behavior of AL in BICD2-depleted cells. (A)

HeLa cells were transfected with the indicated siRNAs, fixed 3 d

later with cold methanol followed by paraformaldehyde, and

stained for RanBP2 and cyclin B1. Note that AL are dispersed in

BICD2-depleted cyclin B1-positive cells. (B) Total area occupied

by AL was measured in ,25 cyclin B1-positive cells stained as

described for (A). Error bars represent SEM. The area is decreased

in KIF5B-depleted G2 cells because AL are strongly concentrated

in the pericentrosomal region and enlarged in BICD2-depleted

cells because AL are dispersed. (C) GFP-RanGAP1 stable HeLa

cell line was imaged with a 3 min time interval 2 d after

transfection with the BICD2#1 siRNA alone or in combination

with siRNAs against DHC#1 or KIF5B#1. 0 min indicates the

first frame after NEB. Contrast is inverted. Note that AL remain

dispersed and accumulated neither at the cell periphery nor the

cell center, even when dynein or KIF5B were co-depleted.

Found at: doi:10.1371/journal.pbio.1000350.s011 (0.93 MB TIF)

Figure S12 BICD2 depletion blocks re-localization of AL
caused by the knockdown of dynein or kinesin-1. HeLa

cells were transfected with the KIF5B#1 or DHC#1 siRNAs in

combination with the control or BICD2#1 siRNAs, fixed with

paraformaldehyde 3 d later, and stained for BICD2, RanBP2

(green in overlay), and cyclin B1 (red in overlay). Insets show

enlargement of cyclin B1-positive dynein-depleted cells. Accumu-

lations of AL at the two separated centrosomes in kinesin-1-

depleted cells and at the cell periphery in dynein-depleted cells are

indicated by arrows. Note that cells showing strong AL

displacement to the centrosome or the cell periphery cannot be

found in BICD2-codepleted cells.

Found at: doi:10.1371/journal.pbio.1000350.s012 (2.64 MB TIF)

Figure S13 Keratin and actin are not directly involved in
G2-specific displacement of nuclei and AL after dynein
and kinesin-1 depletion. (A) HeLa cells were transfected with

the indicated siRNAs, fixed with cold methanol 3 d later, and

stained for keratin, a-tubulin, and RanGAP1. Note that keratin

network looks similar in dynein HC and KIF5B-delpeted G2 cells

(which are identified by the characteristic position of the AL). This

is in agreement with published data indicating that keratin

distribution is not significantly affected by microtubule motors

[67]. (B) HeLa cells were transfected with the indicated siRNAs;

2 d later, cells were incubated overnight with 1 mm cytochalasin D

or left untreated. At 3 d post-transfection, cells were fixed with
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paraformaldehyde and stained with antibodies to a-tubulin and

RanGAP1, and with fluorescent phalloidin, to visualize the actin

network. Note that cytochalasin-induced disassembly of actin

fibers does not prevent separation of centrosomes (arrows) and

nuclei in a dynein-depleted cell or AL aggregation in KIF5B-

depleted cell.

Found at: doi:10.1371/journal.pbio.1000350.s013 (1.92 MB TIF)

Figure S14 Vimentin distribution is affected by knock-
down of dynein and kinesin-1 but does not correlate with
G2-specific displacement of nuclei and AL. (A,B) HeLa

cells were transfected with the indicated siRNAs, fixed with cold

methanol 3 d later, and stained for vimentin and RanGAP1. A cell

with the characteristic G2-specific aggregation of AL caused by

KIF5B depletion is indicated by an arrow. (B) shows a cell with the

characteristic G2-specific peripheral displacement of AL and the

nucleus caused by dynein HC depletion; note that vimentin

network is not re-localized to the cell corner together with the

nucleus. (C) Average fluorescence intensity of vimentin staining in

the perinuclear region normalized to the average fluorescence

intensity of the whole cell (expressed in %). Intensity of a circular

area (3 mm in diameter) was measured in ,20 cells; background

was subtracted. In case of dynein HC and KIF5B knockdowns,

two cell populations were analyzed: cells with randomly dispersed

AL (corresponding to G1 and S phase) and cells with strongly

aggregated (KIF5B depletion) or peripherally located (dynein HC

depletion) AL, which are in G2 phase. For the other conditions,

cell cycle stages were not discriminated. In agreement with

published data, the distribution of vimentin became more

concentrated in the center of the cell after KIF5B knockdown

and shifted to the cell periphery after dynein knockdown (A,C)

[67]. However, in contrast to the positioning of the nuclei and AL,

the distribution of vimentin was cell-cycle independent (C).

Moreover, in dynein-depleted cells that showed a strong displace-

ment of the nuclei into one cell corner, vimentin network remained

in the central part of the cell, indicating that vimentin redistribution

is not the underlying cause of the nuclear movement (B).

Found at: doi:10.1371/journal.pbio.1000350.s014 (1.73 MB

TIF)

Table S1 Identification of BICD2-CT binding partners
by mass spectrometry in HeLa cell extract. The table

shows the proteins identified with a significant Mascot score in the

pull-down with streptavidin beads from an extract of HeLa cells

co-expressing Bio-GFP-BICD2-CT (BICD2 amino acids 487–820)

and biotin ligase BirA. A pull-down from HeLa cells expressing

BirA alone was used as a control (only proteins that displayed

significantly higher Mascot score in the Bio-GFP-BICD2-CT lane

compared to the control lane are listed). The proteins were

separated on 3%–8% polyacrylamide gel (Figure S1); proteins

smaller than 50 kDa were not analyzed in this experiment. For

each identified protein, the list is filtered for duplicates and shows

only the hits with the highest score and most identified peptides.

Found at: doi:10.1371/journal.pbio.1000350.s015 (0.03 MB

DOC)

Video S1 Centrosome separation in control prophase
cells. Control HeLa cells expressing mCherry-a-tubulin were

imaged with a 3 min interval for 5 h and 30 min.

Found at: doi:10.1371/journal.pbio.1000350.s016 (2.74 MB

MOV)

Video S2 Centrosome separation in dynactin (p150Glued)-
depleted prophase cells. HeLa cells expressing mCherry-a-

tubulin were transfected with the siRNA against p150Glued and

imaged 2 d later with a 3 min interval for 5 h and 30 min.

Found at: doi:10.1371/journal.pbio.1000350.s017 (0.44 MB

MOV)

Video S3 Centrosome separation in dynein-depleted
prophase cells. HeLa cells expressing mCherry-a-tubulin were

transfected with the DHC#2 siRNA and imaged 2 d later with a

2 min interval for 4 h and 20 min.

Found at: doi:10.1371/journal.pbio.1000350.s018 (1.19 MB

MPG)

Video S4 Centrosome separation in control prophase
cells. Control U2OS cells expressing mCherry-a-tubulin were

imaged with a 5 min interval for 1 h and 50 min.

Found at: doi:10.1371/journal.pbio.1000350.s019 (0.73 MB

MOV)

Video S5 Centrosome separation in dynein-depleted
prophase cells. U2OS cells expressing mCherry-a-tubulin were

transfected with the DHC#1 siRNA and imaged 2.5 d later with a

3 min interval for 2 h and 30 min.

Found at: doi:10.1371/journal.pbio.1000350.s020 (0.69 MB

MOV)

Video S6 Peripheral displacement of the nucleus in
dynein-depleted cells prior to mitotic entry. HeLa cells

stably expressing GFP-RanGAP1 were transfected with the

DHC#2 siRNA and imaged 2 d later with a 3 min interval for

8 h and 30 min.

Found at: doi:10.1371/journal.pbio.1000350.s021 (1.17 MB

MOV)

Video S7 Peripheral displacement of the nuclei in
dynein-depleted cells prior to mitotic entry. HeLa cells

stably expressing GFP-RanGAP1 were transfected with the

DHC#2 siRNA and imaged 2 d later with a 3 min interval for

5 h and 30 min. Note abrupt separation of the nuclei.

Found at: doi:10.1371/journal.pbio.1000350.s022 (0.42 MB

MOV)

Video S8 Behavior of the AL in control cells. HeLa cells

stably expressing GFP-RanGAP1 were imaged with a 3 min

interval for 11 h (every second frame is shown).

Found at: doi:10.1371/journal.pbio.1000350.s023 (1.52 MB

MOV)

Video S9 Behavior of the AL in dynactin (p150Glued)-
depleted cells. HeLa cells stably expressing GFP-RanGAP1

were transfected with the siRNA against p150Glued and imaged 2 d

later with a 2 min interval for 6 h.

Found at: doi:10.1371/journal.pbio.1000350.s024 (4.43 MB

MOV)

Video S10 Behavior of the AL in KIF5B-depleted cells.
HeLa cells stably expressing GFP-RanGAP1 were transfected with

the KIF5B#1 siRNA and imaged 2 d later with a 3 min interval

for 6 h and 30 min.

Found at: doi:10.1371/journal.pbio.1000350.s025 (1.57 MB

MOV)

Video S11 Behavior of the AL in BICD2-depleted cells.
HeLa cells stably expressing GFP-RanGAP1 were transfected with

the BICD2#1 siRNA and imaged with a 3 min interval for 5 h

and 24 min.

Found at: doi:10.1371/journal.pbio.1000350.s026 (4.24 MB

MOV)

Video S12 Behavior of the AL in dynein/BICD2-deplet-
ed cells. HeLa cells stably expressing GFP-RanGAP1 were co-

transfected with the DHC#2 and BICD2#1 siRNAs and imaged

2 d later with a 3 min interval for 6 h and 6 min.
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Found at: doi:10.1371/journal.pbio.1000350.s027 (1.45 MB

MOV)

Video S13 Behavior of the AL in KIF5B/BICD2-depleted
cells. HeLa cells stably expressing GFP-RanGAP1 were co-

transfected with the KIF5B#1and BICD2#1 siRNAs and imaged

2 d later with a 3 min interval for 8 h.

Found at: doi:10.1371/journal.pbio.1000350.s028 (3.15 MB

MOV)
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