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ABSTRACT
Wolbachia is an alpha-proteobacterial symbiont widely distributed in arthropods. Since
the identification of Wolbachia in certain animal-parasitic nematodes (the Onchocer-
cidae or filariae), the relationship between arthropod and nematode Wolbachia has
attracted great interest. The obligate symbiosis in filariae, which renders infected species
susceptible to antibiotic chemotherapy, was held to be distinct from the Wolbachia-
arthropod relationship, typified by reproductive parasitism. While co-evolutionary
signatures inWolbachia-arthropod symbioses are generally weak, reflecting horizontal
transmission events, strict co-evolution between filariae and Wolbachia has been
reported previously. However, the absence of close outgroups for phylogenetic studies
prevented the determination of which host group originally acquiredWolbachia. Here,
we present the largest co-phylogenetic analysis of Wolbachia in filariae performed
to date including: (i) a screening and an updated phylogeny of Wolbachia; (ii) a co-
phylogenetic analysis; and (iii) a hypothesis on the acquisition ofWolbachia infection.
First, our results show a general overestimation of Wolbachia occurrence and support
the hypothesis of an ancestral absence of infection in the nematode phylum. The
accuracy of supergroup J is also underlined. Second, although a global pattern of
coevolution remains, the signal is derived predominantly from filarial clades associated
with Wolbachia in supergroups C and J. In other filarial clades, harbouring Wolbachia
supergroupsD andF, horizontal acquisitions and secondary losses are common. Finally,
our results suggest that supergroup C is the basalWolbachia clade within the Ecdysozoa.
This hypothesis on the origin ofWolbachiawould change drastically our understanding
ofWolbachia evolution.

Subjects Evolutionary Studies, Parasitology
Keywords Symbiosis, Horizontal transmission, Cophylogenetic analysis,Wolbachia,
Coevolution, Filarial nematodes

INTRODUCTION
Wolbachia (Rickettsiales,Anaplasmataceae) are α-proteobacteria closely related to Ehrlichia
and Anaplasma species. They are widespread symbionts detected in all arthropod
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classes (infecting between 20 and 70% of insect species) (Bourtzis & Miller, 2003; Zug
& Hammerstein, 2012) as well as in a nematode family, the Onchocercidae, commonly
known as filariae (Bandi et al., 1998; Sironi et al., 1995). Thus, Wolbachia are present in
millions of species. They are vertically transmitted from females to offspring. In addition,
this bacterium induces a large range of phenotypes in its hosts, varying from mutualism,
including obligate dependencies for reproduction and long-term survival (mostly described
in filariae and some arthropods) (Hosokawa et al., 2010;Zug & Hammerstein, 2015;Hoerauf
et al., 2003); to parasitism by interfering with host reproduction (in arthropods only)
(Werren, Baldo & Clark, 2008). The spread of Wolbachia via cytoplasmic incompatibility,
male killing, feminization and induction of parthenogenesis can have a major impact on
the evolution of arthropod host populations, and in some cases, may drive speciation
(Rokas, 2000; Telschow et al., 2007).

Studies onWolbachia are more largely focused on arthropods mainly due to: the higher
incidence ofWolbachia in arthropods (e.g., a greater number of infected species), differences
of accessibility (rearing and collecting are easier for arthropods) and also the relatively late
identification of Wolbachia in filariae. Indeed, although intracellular bacterial organisms
had been observed in filariae tissues decades ago (Kozek, 1971; Kozek, 1977;McLaren et al.,
1975), they were only molecularly identified as closely related toWolbachia pipientis in the
mid-1990s (Sironi et al., 1995). The obligate nature of the relationship between Wolbachia
and filariae has led to clinical trials of antibiotics for the treatment of filarial diseases of
humans, including lymphatic filariasis and onchocerciasis (Bandi et al., 1999; Taylor et al.,
2000; Taylor et al., 2012).

The different Wolbachia strains have been classified in major phylogenetic lineages
named supergroups. Initially, the phylogeny of Wolbachia described two clades (named
supergroups A and B) infecting only arthropods. Two other clades were added after the
investigation of bacteria in filariae (supergroups C andD) (Bandi et al., 1998). From 1999 to
2015, a multiplication of supergroup classifications occurred, with 10 clades identified that
exclusively infect arthropods (supergroups E, G, H, I, K, M, N, O, P and Q) (Augustinos
et al., 2011; Bing et al., 2014; Bordenstein & Rosengaus, 2005; Czarnetzki & Tebbe, 2004;
Dittmar & Whiting, 2004; Glowska et al., 2015; Ros et al., 2009; Rowley, Raven & McGraw,
2004; Vandekerckhove et al., 1999; Wang et al., 2014); one infecting filariae (supergroup J)
(Casiraghi et al., 2004); one identified in the plant parasite nematode Radopholus similis
(Tylenchida) (supergroup L) (Haegeman et al., 2009); and finally supergroup F, which
is apparently unique in infecting both arthropods and filariae (Casiraghi et al., 2001b;
Lo et al., 2002).

These phylogenetic analyses led to Wolbachia classification gradually increasing in
complexity from single gene analysis (Sironi et al., 1995; Werren, Zhang & Guo, 1995) to
multi-locus methods (Baldo et al., 2006b; Bordenstein et al., 2009; Casiraghi et al., 2001a;
Casiraghi et al., 2005; Lefoulon et al., 2012). More recently, the complete sequencing of
various Wolbachia genomes has allowed the development of phylogenomic analyses
(Comandatore et al., 2013; Fenn & Blaxter, 2006; Gerth et al., 2014; Nikoh et al., 2014;
Ramirez-Puebla et al., 2015). The evolutionary history of Wolbachia has been investigated
by using outgroups belonging to the Anaplasma, Ehrlichia or Rickettsia genera (O’Neill
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et al., 1992; Ramirez-Puebla et al., 2015) as an attempt to establish the origin of the bacteria.
However, it has been suggested that these outgroups are too distant to the ingroups, and
thus could introduce artefacts to the phylogenetic reconstruction (such as long-branch
attraction, LBA), rendering it very challenging to determine the host group that initially
acquiredWolbachia infection with confidence (Bordenstein et al., 2009).

The co-evolutionary pattern observed for Wolbachia varies between hosts (Bandi et al.,
1998; Bourtzis & Miller, 2003). First, composite dynamics of acquisition and loss of bacteria
strains in arthropods has made the picture very complex at a co-evolutionary scale (Baldo
et al., 2008; Gerth, Rothe & Bleidorn, 2013; O’Neill et al., 1992; Vavre et al., 1999). Second,
co-speciation of filariae and Wolbachia has been hypothesized (Bandi et al., 1998), even
if several cases of secondary losses and two cases of horizontal transmission between
species have been detected, suggesting this scenario is too simplistic (Ferri et al., 2011;
Lefoulon et al., 2012;Martin & Gavotte, 2010). Moreover, to date, the notion of coevolution
between Wolbachia and filariae was based on a poorly resolved evolutionary history of the
Onchocercidae and limited sampling (just 10 examined species) (Bandi et al., 1998).

We have recently revised the evolutionary history of the Onchocercidae by completing
the most comprehensive analysis to date, using a multi-gene phylogeny on 45 different
species representing seven of the eight subfamilies (Lefoulon et al., 2015). Here, we propose
a reappraisal of the coevolutionary pattern between Wolbachia and filariae using this
significantlymore intensive sampling.We identify newWolbachia strains, critically examine
the accuracy of the Wolbachia supergroups, reassess the prevalence of Wolbachia infection
within the Onchocercidae and revisit the hypothesis of ancestral Wolbachia absence. Our
co-phylogenetic analyses reveal multiple events of losses and acquisitions of the bacteria
in the filariae, highlighting strong but localized patterns of co-evolution in some clades,
in contrast with multiple horizontal transfers and a breakdown of co-evolution in others.
Finally, we apply a new approach to the question of initial acquisition ofWolbachia within
the Ecdysozoa.

MATERIALS AND METHODS
Specimens
DNA from 45 filariae, including 2 outgroup species that fall outside the Onchocercidae
(obtained from Lefoulon et al. (2015)), as well as 5 specimens of arthropods (Tables 1
and 2), were used for molecular analyses. In addition, some filarial specimens were used
for histological analyses (Table 1). All procedures were conducted in compliance with
the rules and regulations of the respective competent national ethical bodies (Table S1)
(Lefoulon et al., 2015). Some non-human vertebrates were captured for experimental
procedures, subject to the ethics approval of the relevant national bodies, while others
were obtained at abattoirs or donated to the MNHN by hunters or veterinarians
(Table S1). TheMNHN does neither solicit nor compensate for these donations. Nematode
accession numbers are reported in Table 1. For the author(s) and year of parasite and host
species collection, the reader is referred to File S1. All the samples were fixed and kept
in 70% ethanol. For nematodes, the median parts were used for molecular analyses; the
anterior and posterior parts being retained for possible morphological analyses.
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Table 1 Details on filariae and other nematodes for which newmolecular and/or histological analyses were performed. The first two columns
indicate the subfamilies and the names of the species. For the author(s) and year of collection of each parasite and host species, the reader is referred
to File S1. The last three columns indicate respectively: host species; Muséum National d’Histoire Naturelle Paris registration number; and country
of specimen collection.

Subfamilies Species Host No. Collection place

Oswaldofilariinae Oswaldofilaria chabaudi Tropidurus torquatus 191YU Brasil
Oswaldofilaria petersi Crocodilurus amazonicus 34PF Peru

Waltonellinae Ochoterenella sp.1 Rhinella granulosa 200YU Venezuela
Ochoterenella sp.2 Rhinella marina 47YT Venezuela
Ochoterenella sp3 Phyllomedusa bicolor 194JW French Guyana

Icosiellinae Icosiella neglecta Rana ridibunda 44YT Ukraine
Rana esculeta 45YT France

Setariinae Setaria labiatopapillosa Bos taurus 413YU Cameroon
Setaria tundra Rangifer tarandus 71YT Finlande

Dirofilariinae Dirofilaria (Dirofilaria) immitis Canis familiaris 79YT ES
Dirofilaria (Nochtiella) repens Canis familiaris 297YU Italy
Foleyella candezei Agama agama 68CE Togo
Loa loa Homo sapiens 80YT France
Pelecitus fulicaeatrae Podiceps nigricollis 49YT Spain

Splendidofilariinae Aproctella alessandroi Saltator similis 117YU Brasil
Cardiofilaria pavlovskyi Oriolus oriolus 180YU Bulgaria
Madathamugadia hiepei Pachycactylus turneri 81YU South Africa
Rumenfilaria andersoni Rangifer tarandus 94YU Finlande

Onchocercinae Acanthocheilonema odendhali Callorhinus ursinus 401YU Alaska
Acanthocheilonema viteae Meriones unguiculatus 7YT ES
Breinlia (Breinlia) jittapalapongi Rattus tanezumi 78YT Laos
Brugia malayi Meriones unguiculatus 8YT ES
Brugia pahangi Meriones unguiculatus 46YT ES
Brugia timori Homo sapiens 6YT Indonesia
Cercopithifilaria bainae Canis familiaris 9YT ES
Cercopithifilaria rugosicauda Capreolus capreolus 350YU France
Cruorifilaria tuberocauda Hydrochoerus hydrochaeris 55YT Venezuela
Dipetalonema caudispina Ateles paniscus 362YU Guyana

Ateles sp. 64YT Guyana
Dipetalonema gracile Cebus olivaceus 124CV Venezuela

Cebus apella 215YU Peru
Ateles sp. 63YT Guyana

Dipetalonema graciliformis Saimiri scuireus 220YU Peru
Dipetalonema robini Lagothrix poeppigii 216YU Peru
Litomosoides brasiliensis Carollia perspicillata 35/37PF Peru
Litomosoides hamletti glossophaga soricina 36PF1 Peru
Litomosoides sigmodontis Meriones unguiculatus 186MS ES
Litomosoides solarii Trachops cirrhosus 213YU Venezuela

(continued on next page)
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Table 1 (continued)

Subfamilies Species Host No. Collection place

Loxodontofilaria caprini Capricornis crispus YG2-58 Japan
Mansonella (Cutifilaria) perforata Cervus nippon 216JW Japan
Mansonella (Mansonella) ozzardi Homo sapiens 77YT Haiti
Monanema martini Arvicanthis niloticus 31NC Senegal
Onchocerca armillata Bos taurus 54FK Cameroon
Onchocerca dewittei japonica S. scrofa leucomystax OB9 Japan
Onchocerca eberhardi Cervus nippon S63-5 Japan
Onchocerca gutturosa Bos taurus 54FK Cameroon
Onchocerca ochengi Bos taurus 54FK Cameroon
Onchocerca skrjabini Cervus nippon S63-6 Japan
Yatesia hydrochoerus Hydrochoerus hydrochaeris 52YT Venezuela

Outgroups Filaria latala Panthera leo 62YT South Africa
Protospirura muricola Gorilla sp. 97YU Central African Republic

Notes.
Abbreviation: ES, Experimental strains.

Table 2 Details of arthropods specimens for which newmolecular analyses were performed. The first
columns indicate the families and the name of the species. For the author(s) and collection year of spec-
imens, the reader is referred to File S1. The two last columns indicate Muséum National d’Histoire Na-
turelle Paris registration number and country of specimen collection, respectively.

Families Species No. MNHN Collection place

Cimicidae Cimex lectularius 11YT France
Drosophilidae Drosophila simulans 394YU France (experimental)
Encyrtidae Ixodiphagus hookeri 383YU France
Isotomidae Folsomia candida EA010816 France (experimental)
Termitidae Nasutitermes sp. 86YT Venezuela

Molecular screening
DNA was extracted from nematodes or arthropods using the QIAamp kit following the
recommended procedures of the manufacturer (Qiagen, France), with a preliminary step
of disruption for 2 cycles of 30 s at 30 Hz using a TissueLyser II (Qiagen, Germany)
and incubation at 56 ◦C with proteinase K overnight. The presence of Wolbachia was
determined by nested PCR screening of the seven genes (16S rDNA gene, dnaA, coxA,
fbpA, gatB, ftsZ and groEL) as described in Table S2. PCR products were purified using
the SV Wizard PCR Purification Kit (Promega, USA) and directly sequenced. A total of
198 sequences were deposited in the GenBank Data Library: KU255197 to KU255395
(Table S3).

Immunohistochemical staining of nematode sections
The presence or absence of Wolbachia was determined by immunohistochemical staining
according to Kramer et al. (2003). A rabbit polyclonal antiserum raised against the
Wolbachia surface protein (WSP) of Wolbachia from Brugia pahangi (Wol-Bp-WSP,
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dilution 1:2000 (designed by Bazzocchi et al. (2000) and provided by Dr. Maurizio
Casiraghi) was used to stain 5 µm paraffin sections of filarial species placed on Superfrost
Plus slides (Thermo Scientific) as described by Ferri et al. (2011). Sections of the laboratory
strain Litomosoides sigmodontis were used as a positive control. Negative controls were
carried out by omitting the primary antibody. In addition, transverse sections were stained
with haematoxylin and eosin for the identification of anatomical structures.

Phylogenetic reconstruction
The Wolbachia 16S rDNA, dnaA, groEL, ftsZ, coxA, fbpA and gatB sequences were aligned
with sequences available in Genbank (Table S3) using Muscle (Edgar, 2004). To check
for the absence of stop codons, the alignment of coding genes was translated using
EMBOSS Transeq (Li et al., 2015), and a comparison with available transcript sequences
was performed. 12 complete genomes or draft genomes of Wolbachia from arthropods
and 5 complete or draft genomes of Wolbachia from filariae were used in the analyses
(Table S3). Wolbachia from arthropods included in the analyses were selected based on
the availability of the 7 genetic markers we used (with exception of Wolbachia from O.
horni, T. deion, Z. angusticollis and Z. nevadensis). Presence of recombination events were
evaluated by RDP (Martin & Rybicki, 2000), GENECONV (Padidam, Sawyer & Fauquet,
1999), BootScan (Salminen et al., 1995), MAXCHI (Smith, 1992), Chimaera (Posada
& Crandall, 2001), SISCAN (Gibbs, Armstrong & Gibbs, 2000) and 3Sequ (Boni, Posada
& Feldman, 2007) methods using RDP v4.38 (Martin et al., 2015). Tests of nucleotide
substitution saturation were performed on alignments with and without outgroups by
Xia’s method (Xia et al., 2003) using DAMBE version 5 (Xia & Xie, 2001). A supermatrix
of these seven alignments was generated using Seaview (Gouy, Guindon & Gascuel, 2010).
Two different nucleotide datasets were analysed for different purposes: one alignment of
64Wolbachia without outgroups for the phylogenic analysis, and one alignment including
only Wolbachia from filarial nematodes was studied for the cophylogenetic analysis. In
addition, both a nucleotide and an amino-acid dataset of 54 Wolbachia strains, including
five outgroups (Anaplasma marginale Theiler, 1910, Anaplasma phagocytophilum (Dumler
et al., 2001), Ehrlichia chaffeensis Anderson et al., 1992, Ehrlichia muris Wen et al., 1995,
Ehrlichia ruminantium (Dumler et al., 2001), were generated. Best-fitting evolutionary
models according to a supermatrix were determined by JModelTest 2.1 (Darriba et al.,
2012) or by ProtTest 2.4 (Abascal, Zardoya & Posada, 2005) using the corrected version of
the Akaike Information Criterion (AICc). For the nucleotide supermatrix, the phylogenies
of filariae andWolbachiawere performed byMaximumLikelihood (ML) inference using the
model GTR+ I+0 with RAxML version 8 (Stamatakis, 2014). For each gene, a partitioned
model was implemented to estimate evolution parameters. The robustness of nodes was
assessed with 1,000 bootstrap replicates. ML analysis of the amino acid supermatrix was
performed using the model HIVb+ I+0+ F with PhyML (Ronquist & Huelsenbeck, 2003).
The robustness of nodes was assessed with 500 bootstrap replicates.

Cophylogenetic analysis
Two methods were performed to study cophylogenetic patterns between filariae and their
Wolbachia symbionts: a global-fit method and an event-based method.
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The global-fit method estimates the congruence between two phylogenetic trees. The
global fit of filarial phylogeny with their bacterial phylogeny was estimated using the PACo
application (Balbuena, Miguez-Lozano & Blasco-Costa, 2013) in the R environment (R Core
Team, 2013). This method is a distance-based test: briefly, the ML phylogenetic trees were
transformed into matrices of pairwise patristic distance, then into matrices of principal
coordinates (PCo). The PCo of Wolbachia were transformed by Procrustes analysis using
least-squares superimposition to minimize the differences with filarial PCo. An ordination
plot was produced, representing the Procrustean global fit. The global fit was evaluated
by the residual sum of squares value (m2

XY ) of the Procrustean fit calculation, which is
inversely proportional to the topological congruence, and its significance was tested by
random permutations (100,000,000 permutations). Each host-symbiont association was
evaluated by a jackknife procedure (Sokal & Rohlf, 1981) to estimate the square residual of
each single association and its 95% confidence interval. A bar chart plot of these jackknifed
squared residual was produced. Low residuals are interpreted as a low contribution of m2

XY
and thus as a strong congruence between the filariae and the bacteria.

The event-based method explores co-evolutionary scenarios in order to find the best
reconstructions by minimizing the overall cost, given a cost regime for evolutionary events
(Charleston, 1998). Jane 4.0 (Conow et al., 2010) was used to associate overall costs of
co-evolutionary scenarios betweenWolbachia and their hosts. The default settings for cost
regimes are: a ‘‘co-speciation’’ event (two partners speciate simultaneously) is associated
with null cost; a ‘‘duplication’’ event (the symbionts speciate in the same host) and ‘‘loss’’
event (the symbiont does not speciate while the host does) are associated with a cost equal
to one; and a ‘‘duplication then host switching’’ event (the symbiont speciates and one
switches to another host) is associated with a cost equal to two (Charleston, 1998). All
analyses were performed with a number of generation of 500 and a population of 30.

This method is only manageable on rooted phylogenies, yet rooting of Wolbachia
phylogeny is contested due to the absence of appropriate outgroups (Bordenstein et al.,
2009). In order to circumvent this problem, the estimation of the co-evolutionary scenario
associated with the minimum overall cost was analysed using different rooting constraints
on theWolbachia phylogeny.

An initial analysis was performed including only filariae and theirWolbachia symbionts
(62 hosts and 36 symbionts). This analysis was performed without constraint or with a time
constraint. Although Jane’s program does not change topologies (i.e., the relationships
between hosts) it can modify the distance branches (i.e., the nodes representing the
events of speciation are not fixed by timescale) (Conow et al., 2010). Thus, without time
constraint, ‘‘host switch’’ events are not limited by temporal scales and the algorithm can
change branch length on the filarial tree to minimize scenario cost, at the risk that this is
inconsistent with filarial evolution. Subsequently, two time zones were defined to provide
constraints to indicate that the first speciation events leading to filariae belonging to ONC1,
ONC2 and ONC3 (thus within time zone no. 1) occurred before the first speciation events
leading to filariae belonging to ONC4 and ONC5 (thus within time zone no. 2) (Lefoulon
et al., 2015). Thus, Wolbachia speciation events were constrained within the second time
zone.
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A second analysis was performed adding Wolbachia from arthropods (64 Wolbachia
strains in total). This analysis was made possible because the Jane program manages
topologies and not distance branches (Conow et al., 2010). A hypothetical arthropod
evolutionary history based on previous studies (Legendre et al., 2015; Misof et al., 2014;
Tong et al., 2015; Wiegmann et al., 2011) was added to the nematode topology in order
to perform these analyses. This second analysis was conducted without time constraint
because the timescale of evolution for all the hosts (arthropods and filariae) is poorly
known. If time zones were defined, events of Wolbachia speciation should be constrained
into these zones. The definition of these temporal constraints appears arbitrary so far as
timescales are not determined.

RESULTS/DISCUSSION
Absence of Wolbachia in filariae: ancestral absence and secondary
losses
The detection of Wolbachia was performed on 16 new filarial species among a total of 45
examined species (Table 1). Nine of the 16 new species wereWolbachia-free (based on PCR
screening and/or WSP antibody staining) (Fig. 1 and Table 3). The Wolbachia infection
status (i.e., presence or absence) in the other species was in agreement with previous
studies (Fig. 1). Absence of Wolbachia infection in filarial species could be explained by
two hypotheses: either an ancestral absence or a secondary loss (Casiraghi et al., 2004).

We have previously identified five strongly supported clades within the Onchocercidae
that we have named ONC1 to ONC5 based on their monophyly (Fig. 1) (Lefoulon et al.,
2015). The ancestrally derived species belonging to the genera Oswaldofilaria, Icosiella and
Ochoterenella (clade ONC1) are not infected by Wolbachia (Fig. 1). This result supports,
as previously suggested, the absence of Wolbachia infection as an ancestral trait (Bain et
al., 2008; Ferri et al., 2011; Lefoulon et al., 2012). Absence ofWolbachia has also been noted
in the other nematodes and nematomorph species examined so far (about 30 examined
species) (Bordenstein, Fitch & Werren, 2003; Duron & Gavotte, 2007; Foster et al., 2014),
with the exception of the plant parasitic nematode Radopholus similis (Haegeman et al.,
2009), emphasizing the hypothesis of ancestral absence. Nevertheless, the hypothesis
of secondary loss(es) cannot be ruled out, especially considering a recent discovery of
Wolbachia genetic sequences within the host nuclear genome (‘‘nuwts’’, nuclearWolbachia
transfers) of the Wolbachia-free nematode Dictyocaulus viviparus (Rhabditina), which
would imply secondary losses in at least some nematode clades outside the Onchocercidae
(Koutsovoulos et al., 2014).

In more recently derived groups (clades ONC3, ONC4 and ONC5), infection was
detected in a majority of species (71%) (Fig. 1). The more parsimonious hypothesis to
explain the lack of infection in species belonging to these groups is a series of secondary
losses, instead of a more costly scenario with multiple independent acquisitions. Thus,
absence of infection in Pelecitus fulicaeatrae, Acanthocheilonema odendhali, Breinlia
(Breinlia) jittapalapongi (ONC5) and Cercopithifilaria bainae (ONC4) are likely due to
such losses. This hypothesis is strengthened by the identification of nuwts in Wolbachia-
free species, such as Onchocerca flexuosa (ONC 3) and Acanthocheilonema viteae (ONC
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Figure 1 Presence/absence ofWolbachia in filariae (Onchocercidae). Sixty onchocercid specimens from 45 species were analysed.Wolbachia
screening was performed by either PCR and/or immunohistostaining with a rabbit polyclonal antiserum againstWolbachia surface protein (WSP)
of Brugia pahangi Wolbachia (Wol-Bp-WSP, dilution 1:2,000). Results ofWolbachia screening are indicated by colour: light blue forWolbachia-free
species and dark blue forWolbachia-positive species. Detection methods forWolbachia are illustrated next to the species name using specified sym-
bols: DNA double helix symbol, DNA amplification by PCR; microscope symbol, immunohistostaining of WSP; ∗, determine by previous studies.
The filarial clades (ONC1-ONC5) were defined according to Lefoulon et al. (2015). Phylogeny of Onchocercidae was based on partitioned concate-
nated datasets of 12S rDNA, coxI, rbp1, hsp70,myoHC, 18S rDNA, and 28S rDNA sequences using Maximum Likelihood Inference.

4) (McNulty et al., 2010) and small Wolbachia-derived sequences (<500 bp) in Loa loa
(ONC 5) (Desjardins et al., 2013).

Occurrence of Wolbachia infection: where do we stand?
Among the 26 species harbouring a Wolbachia infection, seven new Wolbachia strains
were identified (Fig. 1) in the following filarial species: Cruorifilaria tuberocauda, Yatesia
hydrochoerus, Dipetalonema caudispina, D. graciliformis, D. robini, Litomosoides solarii (all
in ONC4) and Cardiofilaria pavlovskyi (ONC5). Thus, Wolbachia infection occurs in 58%
of our sample. Combining these data with those from former studies (Table S4), the
occurrence of Wolbachia infection is 52.9% across 85 analysed filarial species. However, it
is important to emphasise that most of the examined species belong to the more recently
derived Onchocercinae subfamily, so the estimated occurrence of Wolbachia infection
within the filariae still may be biased towards infected species (Fig. 1). For example, the
filariae from birds, squamates and amphibians are largely understudied (Ferri et al., 2011).
Wolbachia were typically present in the hypodermis of filariae and in the female germline
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Table 3 Wolbachia distribution in tissues of 20 filarial nematode specimens by immunostaining.

Species MNHN no Sex LC GL Testes SG Intestine

Oocyte Egg mf

Acanthocheilonema odendhali 401YU f − NA NA − NA − −

Breinlia (Breinlia) jittapalapongi 78YT m − NA NA NA − − −

Cardiofilaria pavlovskyi 180YU f + NA + NA NA − +

Cruorifilaria tuberocauda 57YT f + NA NA + NA − −

Cruorifilaria tuberocauda 60YT f + NA NA + NA − −

Dipetalonema caudispina 64YT f + NA − NA NA − −

Dipetalonema gracile 215YU f + NA + NA NA − −

Dipetalonema graciliformis 220YU f + NA + NA NA − −

Dipetalonema robini 216YU f + NA + NA NA − −

Icosiella neglecta 122YU f − − NA NA NA − NA
Litomosoides brasiliensis 35PF f + + + NA NA − −

Litomosoides solarii 213YU f + NA + NA NA − −

Ochoterenella phyllomedusa 194JW f − NA − − NA − −

Oswaldofilaria chabaudi 102YU f NS NA − NA NA − NS
Oswaldofilaria petersi 34PF f − − NA NA NA − NA
Pelecitus fulicaeatrae 150YU f − NA − − NA − −

Setaria tundra 71YT f − NA − NA NA − NS

Notes.
Abbreviation: LC, lateral chords (hypodermis); GL, germline; mf, microfilaria; SG, somatic germline;+, positive staining;−, no staining; ns, no specific staining; NA, not
available due to position of the section.

(Table 3, Figs. S1 and S2), except for a specimen of Cardiofilaria pavlovskyi, in which an
additional localisation in the intestinal wall cells was observed. This tissue distribution
has also been reported for Madathamugadia hiepei (Lefoulon et al., 2012) and Mansonella
(Cutifilaria) perforata (Ferri et al., 2011).

Updated, unrooted Wolbachia phylogeny highlights accuracy of
supergroup J
The present unrooted Wolbachia phylogeny includes 64 Wolbachia strains and is based
on the concatenation of seven genes (16S rDNA, groEL, ftsZ, dnaA, gatB, fbpA and coxA)
(Fig. 2). While no events of recombination were found within coxA, gatB, ftsZ, dnaA
sequences, some were detected in 16S rDNA, fbpA and groEL sequences as presented
in Table 4. These events occurred exclusively between supergroups A and B Wolbachia,
as previously described (Baldo et al., 2006a). The resultant phylogeny reveals 7 strongly
supported clades representing the seven previously defined supergroups A, B, C, D, F, H,
and J (Bandi et al., 1998; Lo et al., 2002; Ros et al., 2009;Werren, Zhang & Guo, 1995).

Wolbachia from the Dipetalonema species (D. gracile, D. caudispina, D. robini and D.
graciliformis) constitute a strongly supported group (Fig. 1). Wolbachia from Yatesia
hydrochoerus and Cruorifilaria tuberocauda were closely related and are also linked to the
Wolbachia from the Dipetalonema species. All together, they formed a strongly supported
clade that confirm the validity of supergroup J (Ros et al., 2009), even if our results suggest
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Figure 2 Phylogenetic tree ofWolbachia based on 7markers byMaximum Likelihood. Analysis based on concatenation of 16S rDNA, dnaA,
groEL, ftsZ, coxA, fbpA and gatB. The total length of datasets is approximately 4,600 bp. Sixty-fourWolbachia strains were analysed. The topology
was inferred using Maximum Likelihood (ML) inference using RaxML. Nodes are associated with Bootstrap values based on 1,000 replicates. The
Wolbachia supergroups (A–H) were identified according toWerren, Zhang & Guo (1995), Bandi et al. (1998), Lo et al. (2002) and Ros et al. (2009).
The scale bar indicates the distance in substitutions per nucleotide. Abbreviation: wb,Wolbachia; n, number of studied specimens.

two distinct J subgroups. However, we do not propose a new supergroup to prevent the
multiplication of Wolbachia clades. We hold this position due to the following facts: the
status of several supergroups is questionable because either they were described only on
the basis of a few genetic markers (for example supergroups M and N infecting aphids
(Augustinos et al., 2011; Bing et al., 2014)), or they contained only one or few host species
such as supergroup J (Casiraghi et al., 2004; Ros et al., 2009). Up to now, Wolbachia in
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Table 4 Detection of potential recombination events betweenWolbachia sequences. Analyses of trace evidence of recombination events were
performed using different methods as specified in the first column, and a p-value for their significance is indicated in parentheses. Regarding the
trace evidence detected, no beginning breakpoint was identified.

Methods 16S rDNA coxA gatB ftsZ dnaA fbpA groEL

RDP 0 0 0 0 0 0 0
GENECONV 0 0 0 0 0 0 0
BootScan 0 0 0 0 0 0 1 (9,12×10−3)
MaxChi 7 (1,7161×10−2) 0 0 0 0 0 11(3,35×10−2)
Chimaera 0 0 0 0 0 0 0
SiScan 3 (1,909×10−13) 0 0 0 0 0 0
3Sequ 0 0 0 0 0 2 (8,522×10−3) 0

Dipetalonema gracile was the only representative of supergroup J. It was initially described
as a deep branch within the supergroup C (Casiraghi et al., 2004), and then defined as
a divergent lineage (Casiraghi et al., 2005; Ros et al., 2009). The accuracy of supergroup
J was subsequently questioned, and its insertion into supergroup C has been proposed
(Bordenstein et al., 2009; Glowska et al., 2015; Koutsovoulos et al., 2014). Our result clearly
supports the accuracy of supergroup J and confirm its position as a sister group of
supergroup C as previously suggested (Casiraghi et al., 2005).

Coevolution of Wolbachia and Onchocercidae
Since 1998, the hypothesis suggesting thatWolbachia is ubiquitous in filariae and co-evolved
with them has been commonly accepted (Bandi et al., 1998). However, our recent studies
on supergroup F of Wolbachia have clearly exposed incongruences with this hypothesis
(Ferri et al., 2011; Lefoulon et al., 2012). The key problem in the former studies was that they
were based on either a small sampling of Wolbachia-infected filarial species and/or a low
phylogenetic resolution of the onchocercid evolutionary history. Indeed, the commonly
accepted phylogeny of Onchocercidae was erroneous, with distant species considered to
be close and vice-versa (Lefoulon et al., 2015). Now, given the 5 strongly supported clades
we described within the Onchocercidae (Fig. 1) (Lefoulon et al., 2015), the coevolution
of Wolbachia and filariae needs to be reassessed. Although a general co-evolutionary
pattern was observed (Fig. 3), and the PACo global-fit analysis also indicated a global
coevolution between filariae and their Wolbachia symbionts (m2

XY = 1.097837, p-value
<0,001), distinct local features are apparent. Indeed, the superimposition plot shows 7
groups of filariae-Wolbachia associations (Fig. 4A), and the relative contribution of each
association to the global fit appears strongly unequal (Fig. 4B). The comparison of both
filariae andWolbachia phylogenies revealed strong disparities of the co-phylogenies among
the different symbiont supergroups (Fig. 3).

Thus, supergroup C Wolbachia and their filarial hosts form one cluster as a result of
a strong congruence between their phylogenies (Fig. 4A). Each association in this group
presents low squared residual values, which are representative of strong co-evolutionary
associations (Fig. 4B). Interestingly, in general, supergroup C Wolbachia follows the
same evolutionary pattern as that of the ONC3 filarial clade (Fig. 3). Two exceptions can
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Figure 3 Congruence between filariae andWolbachia phylogenies. The phylogenies of filariae and
Wolbachia were performed by Maximum Likelihood (ML) inference using RAxML. The scale bar indicates
the distance in substitutions per nucleotide. The filariae clades (ONC1-ONC5) were defined according
to Lefoulon et al. (2015). TheWolbachia supergroups (A–H) were identified according toWerren, Zhang
& Guo (1995), Bandi et al. (1998), Lo et al. (2002), and Ros et al. (2009). Abbreviation: wb,Wolbachia; n,
number of studied specimens. Dotted lines show the association between a filarial species and its sym-
biont. Colors illustrate the bacterial supergroup in filariae.
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Figure 4 Analysis of coevolution between filariae andWolbachia. A PACo global-fit analysis ofWol-
bachia and their filarial hosts phylogenies was performed. (A) Representative plot of a Procrustes superim-
position analysis which minimizes differences between the two partners’ principal correspondence coordi-
nates of patristic distances. For each vector, the start point represents the configuration ofWolbachia and
the arrowhead the configuration of filarial hosts. The vector length represents the global fit (residual sum
of squares) which is inversely proportional to the topological congruence. (B) Contribution of eachWol-
bachia-filariae association to a general coevolution. Each bar represents a Jacknifed squared residual and
error bars represent upper 95% confidence intervals. Abbreviation: wb,Wolbachia.
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be observed: the position of Wolbachia from Loxodontofilaria caprini appears not to be
congruent, although statistically weakly supported (bootstrap: 42); andOnchocerca flexuosa
is not infected byWolbachia, which is known to be a secondary loss due to the large number
of nuwts in the genome of this species (McNulty et al., 2010).

Supergroup JWolbachia and their filarial hosts are divided in two clusters, one including
Dipetalonema spp. and their endosymbionts, and the second one including C. tuberocauda
and Y. hydrochoerus and their endosymbionts (Fig. 4A). Within the type J, evolution of
Wolbachia from Dipetalonema species displays a strong congruence with the evolution
of their host, unlike Wolbachia from Cruorifilaria and Yatesia (Fig. 4B). Indeed, these
two filariae species are not closely related, although they both belong to the same ONC4
clade (Fig. 3). Nonetheless, C. tuberocauda and Y. hydrochoerus share the same host
(Hydrochoerus hydrochaeris) and the same neotropical localization as the Dipetalonema
species; therefore, horizontal transmission is conceivable. Supergroup J Wolbachia infect
exclusively filariae from ONC4, but this clade also contains five Wolbachia-free species:
Acanthocheilonema viteae, A. odendhali, Monanema martini, Cercopithifilaria bainae and
C. rugosicauda (Fig. 3). Hence, our results suggest events of horizontal transmission of
supergroup J Wolbachia in the ONC4 clade, as well as secondary losses.

The supergroups D and F Wolbachia and their filarial hosts are each divided into two
clusters, supporting an absence of global coevolution between the bacteria and the filariae
(Fig. 4). Indeed, the evolution of supergroups D and F are not perfectly congruent with
the evolution of their filarial hosts (Fig. 3). Some associations are clearly incongruent
with a co-evolutionary hypothesis, such as the relationship between Wolbachia and C.
japonica (supergroup F), M. hiepei (supergroup F), M . (C .) perforata (supergroup F), and
L. sigmodontis (supergroup D) (Fig. 4B). Regarding the Wolbachia from supergroup D,
one subgroup is distributed in the Litomosoides group belonging to the ONC4 clade, and
a second group is distributed in the Brugia/Wuchereria group belonging to the ONC5
clade. The filarial host discontinuity observed in the supergroup D Wolbachia suggests
that horizontal transfer events occurred between the two filarial host groups. Regarding
the supergroup F Wolbachia, the bacteria were identified in distant filarial host species
(Fig. 3): Madathamugadia hiepei and Mansonella spp. belonging to the ONC5 clade, and
Cercopithifilaria japonica belonging to the ONC4 clade. The ONC5 clade also contains
7 Wolbachia-free species: Pelecitus fulitraceae, Foleyella candezei, L. loa, Breinlia (B.)
jittapalapongi, Aproctella alessandroi, Cardiofilaria pavlovskyi and Rumenfilaria andersoni.
Supergroup F also has the peculiarity of including some bacteria infecting arthropods
species (e.g,. Cimex lectularius and termite species), supporting one or several horizontal
transfers from filariae to arthropods during evolution.

Our current results indicate local patterns of co-evolution and multiple horizontal
transmission events of Wolbachia within the Onchocercidae family, which are not limited
to supergroup F. In addition, supergroup C is the only one to exhibit strong co-speciation
with their hosts and not to show any evidence of horizontal transmission events. Recent
identification of higher genome plasticity and a lack of synteny within supergroup
D compared to supergroup C (Comandatore et al., 2015) supports the uniqueness of
supergroup C.
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Origin of Wolbachia infection
To date, 26 scientific articles have presented a rooted phylogenetic tree of Wolbachia
and discuss the evolutionary origin of Wolbachia using different methods and a variety
of datasets (genes, multi-genes or genomes). The majority of these phylogenetic trees
were rooted with Ehrlichia, Anaplasma or Rickettsia as outgroups. Among them, 10 have
established the origin ofWolbachia between symbionts of arthropods (supergroupsA andB)
and symbionts of filariae (supergroups C, D, and J) (Baldini et al., 2014; Bandi et al., 1998;
Comandatore et al., 2013; Dumler et al., 2001; Fenn & Blaxter, 2006; Ferri et al., 2011;Nikoh
et al., 2014; Sironi et al., 1995; Taylor & Hoerauf, 1999; Unver et al., 2003); 4 have indicated
a rooting in the symbionts of arthropods, and more specifically between supergroups
A and B (Anderson & Karr, 2001; Bordenstein & Rosengaus, 2005; Bordenstein et al., 2009;
Giordano, O’Neill & Robertson, 1995; Koutsovoulos et al., 2014); 6 have found a rooting
in the symbionts of filariae (Casiraghi et al., 2001a; Casiraghi et al., 2004; Casiraghi et al.,
2001b; Czarnetzki & Tebbe, 2004; Dittmar & Whiting, 2004; Rowley, Raven & McGraw,
2004); 2 studies have proposed the symbiont of Radopholus similis as a sister group
of all other Wolbachia (Glowska et al., 2015; Haegeman et al., 2009); and finally 3 studies,
including a recent phylogenomic analysis (Casiraghi et al., 2003;Gerth et al., 2014;Ramirez-
Puebla et al., 2015), have presented the symbiont of Folsomia candida (supergroup E) as a
sister group of all otherWolbachia.

Our rooted phylogenetic tree of Wolbachia is based on the concatenation of six genes
(groEL, ftsZ, dnaA, gatB, fbpA and coxA) and presents the supergroup B of Wolbachia as a
sister group of all otherWolbachia (Fig. 5). However, our analysis also reveals high branch
distance between outgroups and ingroups suggesting that the choice of Ehrlichia and
Anaplasma as outgroups induces a long-branch attraction (LBA) artefact due to their high
genetic divergence compared to ingroups, as previously suggested (Bordenstein et al., 2009).
Moreover, when their outgroups are included in the alignments, substitution saturation
was also detected by the Xia method (Xia et al., 2003) for three molecular markers (coxA,
p-value= 0.92; gatB, p-value= 0.15; and dnaA, p-value= 0.83) out of 7 analysed (Table 5).
Substitution saturation decreases phylogenetic information contained in the sequences
and generates phylogenetic reconstruction which does not reveal correct phylogenetic
relationships (Xia & Xie, 2001; Xia et al., 2003). Thus, without identification of accurate
outgroups, rooting of Wolbachia phylogeny and subsequent analyses are misleading.
Consequently, alternative methods need to be investigated.

The current phylogenies of bothWolbachia and their filarial hosts allow us to attempt an
explanation of the symbiotic history on the basis of the most parsimonious co-phylogeny
scenario. Our data raise the hypothesis thatWolbachia infection in the onchocercid family
was acquired between the diversification of ONC2 (Setarinae) and the later derived clades
(Fig. 3). Phylogenetic and co-evolutionary data suggest that supergroup C has diverged
in the ONC3 filarial clade, which is the first diverged clade from ONC2 (Fig. 3). These
data imply that supergroup C of Wolbachia would be the ancestral symbionts. All other
alternatives involve numerous horizontal transfers ofWolbachiawithin the Onchocercidae.
Upon agreement on the basal position of supergroup C in the co-phylogeny of Wolbachia
and filariae, a ‘‘walking’’ method can be used to analyse the other bacteria supergroups
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Figure 5 Rooted phylogenetic tree ofWolbachia based on 7markers byMaximum Likelihood. Anal-
ysis based on partitioned concatenation of dnaA, groEL, ftsZ, coxA, fbpA and gatB amino acid sequences.
The total length of datasets is approximately 1,100 aa. 54Wolbachia strains were analysed. The species
Anaplasma marginale, A. phagocytophilum, Ehrlichia chaffeensis, E. muris and E. ruminantium species were
used as outgroups. The topology was inferred using Maximum Likelihood (ML) inference using phyML.
Nodes are associated with Bootstrap values based on 500 replicates. TheWolbachia supergroups (A–H)
were identified according toWerren, Zhang & Guo (1995), Bandi et al. (1998), Lo et al. (2002) and Ros
et al. (2009). The scale bar indicates the distance in substitutions per nucleotide. Abbreviation: wb,Wol-
bachia; n, number of studied specimens.
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Table 5 Detection of substitution saturation in dataset.Detection of substitution saturation in align-
ments of fbpA, ftsZ, coxA, 16S rDNA, gatB, groEL, and dnaAmarkers with and without inclusion of out-
groups by the Xia method (2003). ‘‘N ’’ indicates the number of operational taxonomic units (OTU) si-
multaneously analysed. ‘‘DF’’ indicates the number of nucleotides considered by the analysis. ‘‘ISS’’ is the
index of substitution saturation computed by the Xia method (2003). ‘‘ISS.cSym’’ and ‘‘ISS.cAsym’’ are
the theoretical critical substitution saturation index for extreme symmetric or asymmetric topologies, re-
spectively. Saturation is detected if ISS is superior to ISS critical. The difference between indices is com-
pared by a two-tailed t test, and the p-values are indicated for each alignment.

Markers N DF ISS ISS.cSym p-value ISS.cAsym p-value

fbpA 32 462 0.244 0.698 0 0.372 0
fbpA+ outgp 32 461 0.281 0.698 0 0.371 0.0002
ftsZ 32 515 0.177 0.704 0 0.378 0
ftsZ + outgp 32 518 0.246 0.704 0 0.378 0
coxA 32 488 0.274 0.701 0 0.376 0.0001
coxA+ outgp 32 489 0.378 0.701 0 0.376 0.9229
16S rDNA 32 1,255 0.339 0.763 0 0.471 0
16S rDNA+ outgp 32 1,251 0.327 0.763 0 0.471 0
gatB 32 564 0.251 0.709 0 0.381 0
gatB+ outgp 32 558 0.338 0.708 0 0.38 0.155
groEL 32 745 0.13 0.727 0 0.405 0
groEL+ outgp 32 836 0.267 0.735 0 0.419 0
dnaA 32 407 0.259 0.692 0 0.363 0
dnaA+ outgp 32 410 0.357 0.692 0 0.364 0.8301

Notes.
Abbreviation: Outgp, outgroups.

(Fig. 3): supergroup J is thus the closest to supergroup C, infecting filarial species in ONC4
clade; subsequently, supergroups F and D appear, infecting respectively both ONC4 and
ONC5 and showing horizontal transfers and losses, but also local coevolution.

To further analyse the coevolution scenarios, an event-based method using Jane v4
(Conow et al., 2010) was applied to our data, computing each scenario while minimizing
the cost of evolutionary events. Focusing onWolbachia from filariae reveals that a rooting of
the phylogeny of Wolbachia within supergroup C represents the co-evolutionary scenario
associated with the lowest cost (Figs. 6A and 6B). Cost differences between different
Wolbachia-rooted tree analyses are increased if a time constraint is applied to limit host
switch events which could be inconsistent with filarial phylogeny (seeMaterial andMethod)
(Figs. 6A and 6B). Similarly, the analysis includingWolbachia from arthropods also suggests
a rooting of the phylogenetic tree of Wolbachia within supergroup C because of its lowest
co-evolutionary scenario cost, even if cost differences are weak (Fig. 6C). Unfortunately, it
would be difficult to increase these cost differences by defining time zones, as for analysis
performed with the Wolbachia from filariae (see Material and Method). Indeed, timescale
evolution of filariae is unknown due to absence of paleontological data, so it is not possible
to position their speciation versus the evolutionary history of arthropods. The two proposed
analyses using Jane have limitations (such as time zone definition), but all results suggest
that supergroup C is the ancestrally derived group of nematodeWolbachia symbionts. This
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Figure 6 Estimation of the cost of co-evolutionary scenarios based on different rootedWolbachia phy-
logenies. An event-cost method with Jane software was performed. Representations of the costless co-
evolutionary reconstructions betweenWolbachia and their hosts are shown using the following regime
cost criteria: co-speciation= 0; duplication= 1; loss= 1; and duplication and host switch= 2. Different
roots for the phylogeny ofWolbachia were tested. The colored drop tips indicate the examined rooting and
the color represents the lowest associated cost. (A) co-evolutionary reconstruction between 36Wolbachia
and their filarial hosts without time constraint. (B) co-evolutionary reconstruction between 36Wolbachia
and their filarial hosts with time constraint. (C) co-evolutionary reconstructions between 60Wolbachia
and their filarial and arthropod hosts.
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scenario may lead to the hypothesis that Wolbachia have primarily infected and diverged
within the filarial species and then were transferred from the supergroup D Wolbachia to
arthropod species.

Such a hypothesis on the origin of Wolbachia does not simply change the reading of
the phylogenetic tree, but may also improve our understanding of Wolbachia adaptation
to their hosts at the evolutionary scale. Indeed, the genome structures of Wolbachia
infecting arthropods are relatively large and plastic, including numerous mobile elements
(repeated elements, transposons, and phages); whereas symbionts of filariae present
more compact genomes without actively mobile DNA. Thus, the genomic structure
could be regarded differently, as the acquisition of plasticity and increased insertions
of mobile DNA may be patterns linked to a change of host range. Recently, analyses of
complete genomes ofWolbachia indicated that symbionts belonging to supergroup C from
Onchocerca ochengi (wOo) and Dirofilaria immitis (wDi), present specific genomic features
including reduced genome size, a low number of genomic rearrangements, fewer insertion
sequences, and losses or pseudogenization of numerous genes (e.g., 88 unique losses for
wOo) (Comandatore et al., 2015; Darby et al., 2012). These data would support a reductive
evolution of supergroup C (Darby et al., 2012). However, it was also suggested that such
features are characteristic of endosymbiotic bacteria with long-lasting relationships with
their hosts (Comandatore et al., 2015), which is consistent with our results showing that
supergroup C is strongly co-evolved with its hosts. Nevertheless, we cannot rule out
that Wolbachia could have originally had a very plastic genome structure and reductive
evolution may have been promoted by strong coevolution with their hosts.

In conclusion, we show that patterns of coevolution betweenWolbachia and their filarial
hosts are much more complex than previously assumed, with numerous examples of
secondary losses of symbionts and horizontal transfers between clades. Strict coevolution
is restricted to filarial clade ONC 3 with Wolbachia in supergroup C. Moreover, since
tree-rooting options are contentious for Wolbachia, we have applied a series of novel
analyses to address the question of the origin of the Wolbachia symbiosis. These methods,
although not without their own limitations, place the origin within supergroup C rather
than an arthropod-specific supergroup.
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de l’Agriculture, de l’Agroalimentaire et de la Forêt’’, National licence number 75-1415
approved animal experiments: protocols were approved by the ethical committee of the
Museum National d’Histoire Naturelle (Comité Cuvier, Licence: 68-002) and by the
‘‘Direction départementale de la cohésion sociale et de la protection des populations’’
(DDCSPP) (No. C75-05-15).

Some non-human vertebrates were captured for experimental procedures, subject to
the ethics approval of the relevant national bodies, while others were obtained at abattoirs
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or donated to the MNHN by hunters or veterinarians (Table S1). The MNHN does not
solicit nor compensate for these donations.’’

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

All information is indicated in Table S1.
- Marine Mammal Protection Act; 14327 NMML.
- Universidad Nacional Agraria La Molina Ethical Committee; WGS84.
- Ethical committee of theMuseumNational d’HistoireNaturelle; EUDirective; Comitee

Cuvier Licence: 68-002; DDCSPP: No. C75-05-15.
- BESK; 55/17.04.2006.
- CNRS; Prob-DOM-06-PCVI-0007.
- National Agriculture and Forestry Research Institute; BDIV 012 CERoPath.
- Ministerio del Ambiente de la Republica Bolivariana de Venezuela; Nu 33/2007.
- Brazilian Institute of the Environment and Renewable Resources; 261/05, NUFAS/MG-

IBAMA.
- Peru: local hunting (food collection).
- Venezuela: national hunting (population regulation + food collection).

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

GenBank Data Library: KU255197 to KU255395.

Data Availability
The following information was supplied regarding data availability:

TreeBase: http://purl.org/phylo/treebase/phylows/study/TB2:S19008.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.1840#supplemental-information.
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