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Abstract

Malaria vectors in sub-Saharan Africa have proven themselves very difficult adversaries in the global struggle against
malaria. Decades of anti-vector interventions have yielded mixed results—with successful reductions in transmission in
some areas and limited impacts in others. These varying successes can be ascribed to a lack of universally effective vector
control tools, as well as the development of insecticide resistance in mosquito populations. Understanding the impact of
vector control on mosquito populations is crucial for planning new interventions and evaluating existing ones. However,
estimates of population size changes in response to control efforts are often inaccurate because of limitations and biases in
collection methods. Attempts to evaluate the impact of vector control on mosquito effective population size (Ne) have
produced inconclusive results thus far. Therefore, we obtained data for 13–15 microsatellite markers for more than 1,500
mosquitoes representing multiple time points for seven populations of three important vector species—Anopheles gambiae,
An. melas, and An. moucheti—in Equatorial Guinea. These populations were exposed to indoor residual spraying or long-
lasting insecticidal nets in recent years. For comparison, we also analyzed data from two populations that have no history of
organized vector control. We used Approximate Bayesian Computation to reconstruct their demographic history, allowing
us to evaluate the impact of these interventions on the effective population size. In six of the seven study populations,
vector control had a dramatic impact on the effective population size, reducing Ne between 55%–87%, the exception being
a single An. melas population. In contrast, the two negative control populations did not experience a reduction in effective
population size. This study is the first to conclusively link anti-vector intervention programs in Africa to sharply reduced
effective population sizes of malaria vectors.
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Introduction

Throughout much of sub-Saharan Africa, Anopheles gambiae s.s. is

the most important vector of malaria, a disease that claims over

780,000 lives every year [1]. Its effectiveness as a vector stems from

its close association with human habitat, its habit of readily

entering houses at night to feed, and its preference for human

blood meals. This species is comprised of two molecular forms; the

M and S form [2,3] which are considered incipient species. An.

gambiae s.s. also has six, morphologically nearly-identical sibling

species. Together these make up the An. gambiae species complex,

also known as An. gambiae s.l. One of these, Anopheles melas, is a

dominant vector in locations along the West African coast, where

it breeds within mangrove belts and tidal swamps [4]. On Bioko

Island, Equatorial Guinea, An. melas feeds readily on humans, both

indoors and outdoors [5], and together with An. gambiae s.s. is

responsible for malaria transmission [6,7]. Besides the Anopheles

gambiae complex, various other species contribute to transmission

as well, and in the equatorial rainforests of Central Africa the

anthropophilic and endophilic Anopheles moucheti is an important

vector [4].

Malaria vectors have been subjected to insecticide-based anti-

vector interventions throughout numerous locations in sub-

Saharan Africa. Currently, the two most frequently applied vector

control methods are indoor residual spraying (IRS) and long-

lasting insecticidal nets (LLINs), which in recent years have largely

replaced insecticide-treated nets (ITNs). Both types of approaches

have had a demonstrable impact on malaria transmission in a

variety of locations throughout sub-Saharan Africa [8,9]. At least

part of this impact is the result of reductions in mosquito

abundance, rather than reduced contact between mosquitoes and

humans, or reductions in mosquito longevity. Reduced abundance

has been reported in several locations in which IRS and ITNs/

LLINS have been implemented [eg., 6,10], although not all studies

observed a noticeable reduction in mosquito density in areas

controlled by ITNs [reviewed in 11].

PLOS Genetics | www.plosgenetics.org 1 December 2012 | Volume 8 | Issue 12 | e1003097



On occasion, vector control has resulted in the disappearance of

a vector species. For example, in the Pare region of Tanzania an

indoor residual spraying campaign with dieldrin in the 1950’s

eliminated An. funestus and is estimated to have reduced the

abundance of An. gambiae s.l. to one-fifth of its former density .

After control was eliminated in 1959, it took approximately five

years before An. gambiae densities approached pre-intervention

levels [12]. On Bioko Island, Equatorial Guinea, both An. funestus

and the S form of An. gambiae all but disappeared soon after the

start of an IRS campaign in 2004 [6]. In two villages in Kenya, An.

gambiae s.s. has largely disappeared following the start of ITN/

LLIN distribution, although the abundance of its sibling vector

species An. arabiensis was not impacted [10]. These cases are species

and location specific and the result of vector control on abundance

depends on the behavior, ecology, and possibly the genetics of a

vector species. For example, An. melas and An. gambiae (M) remain

abundant on Bioko Island after the disappearance of An. funestus

and An. gambiae (S) [5].

Except when species are eliminated, estimates of changes in

mosquito abundance can be imprecise due to a variety of

limitations in trapping approaches. For example, indoor collec-

tions may be strongly influenced by the repellent effects of residual

insecticides present within the home, or shifts in host choice.

Weather conditions can also greatly affect any comparisons of

abundance between time points. In the case of window traps,

consistent and continuous operation of the trap by the home

occupant may be compromised over time. For example, Sharp et

al. [6] reported virtually no anopheline mosquitoes collected using

window traps on Bioko after two years of IRS, even though

subsequent light trap catches and human landing catches showed

that both An. melas and An. gambiae (M) were present in large

numbers [5, HJ Overgaard et al. unpublished data]. However, it

remains to be answered whether these reported decreases in

abundance correspond to changes in the genetic size of a

population, i.e. the effective population size (Ne), which ultimately

reflects on the impact of anti-vector interventions on mosquito

populations.

The effective population size is defined as the size of an ideal

population that experiences genetic drift, accumulates inbreeding

or looses variation at the same rate as the actual population

[13,14]. Ne is central to the dynamics of several population genetic

processes, such as migration, drift and selection, all of which

determine the amount of genetic variation that is present in a

population. Typically, Ne is smaller than the total population

(census size), owing to a variety of factors including variance in

reproductive success among individuals in a population. Only two

studies have assessed changes in effective population size in

malaria vectors in response to control measures, but both failed to

provide a definitive answer [15,16].

Wondji et al. [16] examined the impact of ITN distribution on

the genetic structure of An. arabiensis populations in a village in

northern Cameroon by estimating Ne both before and after a local

ITN distribution campaign. These authors used the temporal

method based on the standardized variance in allele frequencies

[17], and detected a non-significant decline in Ne following ITN

distribution. Furthermore, the decline was transient, which the

authors attributed to the small scale of the intervention and the

migration of An. arabiensis mosquitoes from neighboring popula-

tions into the study village.

Pinto et al. [15,18] examined the impact of a successful IRS-

based nation-wide malaria control program conducted in the early

1980’s in the archipelago of São Tomé and Principe. Even though

this project significantly reduced indoor mosquito densities, a

microsatellite-based study did not detect any signs of a bottleneck

associated with this control effort, calling into question the

effectiveness of IRS in reducing malaria vector populations. It

was proposed that the outdoor feeding and resting tendencies of

the vector on the island [19] might have prevented exposure of the

vector to the insecticide. However, these authors used the program

Bottleneck [20] for their analysis, which recently shown to have a

potential false-negative period spanning 2–4Ne generations [21].

Even Ne estimates of only a few thousand would necessitate a gap

of several thousand generations separating the event and sampling,

before a bottleneck could reliably be detected. Therefore, despite

decades of malaria vector control, no study has ever convincingly

demonstrated the impact of ITN/LLIN or IRS interventions on

the Ne of malaria vectors.

Applying a rigorous sampling of multiple populations combined

with the use of recently developed coalescent-based methods could

help us answer this long-standing question. The Approximate

Bayesian Computation method [ABC, 22], is a coalescent

simulation based approach that compares summary statistics from

observed data with data from simulated hypothetical scenarios to

determine the most likely demographic scenario. ABC methods

are now being widely employed for understanding evolutionary

histories of populations [for examples, see 23,24–26], for

estimating parameters of interest such as the effective population

size, or the timing of population size changes. ABC has proven

especially valuable in recovering demographic history in a variety

of contexts: for example, Lombaert et al., [27] addressed

phylogeographic questions and inferred routes of invasion in an

invasive ladybird species; Wegmann et al., [28] re-evaluated

evolutionary hypotheses about chimpanzee population history and

found evidence for a population expansion. Athrey et al., [29] used

temporal samples to estimate the timing and magnitude of

population declines in the endangered Black-capped Vireo. The

ABC approach is especially powerful if genetic samples are

collected across several generations, with the accuracy and

precision of estimates increasing with the number of generations

Author Summary

The battle against malaria mosquitoes in sub-Saharan
Africa is being fought with two main weapons: indoor
residual spraying of insecticides (IRS) and long-lasting
insecticidal net (LLIN) campaigns. Although many pro-
grams have been successful in reducing malaria infection,
demonstrating the impact of these programs on vector
populations is typically confounded by numerous variables
associated with collection methods. Here, we analyzed
more than 1,500 samples of three important malaria
vectors—Anopheles gambiae, An. melas, and An. mou-
cheti—from seven sites in Equatorial Guinea that were
collected over the course of anti-vector programs in that
country (2004–2010). Taking advantage of recently devel-
oped coalescent genetic approaches, we derived the
demographic history, estimated the effective population
size, and determined the timings of population size
changes. We demonstrate convincingly for the first time
that both IRS– and LLIN–based control resulted in lowered
effective population sizes in most cases. No such reduc-
tions were observed in negative control populations. Our
findings are especially important to malaria control
because estimating population sizes using conventional
trapping approaches is often limited by our ability to
obtain representative samples. More importantly, we were
able to conclusively link anti-vector interventions to
genetic impacts, a linkage that has been difficult to
establish in the past.

Control Reduces Effective Size of Malaria Vectors
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between samples. Accuracy of estimates is also expected to

increase with the use of summary statistics, compared to other

estimators that may rely on single variance components.

Here, we determine the extent to which IRS and/or LLIN use

in Equatorial Guinea has impacted the effective population sizes of

three important malaria vectors; An. gambiae (M+S), An. melas and

An. moucheti. Mosquito populations in Equatorial Guinea have been

subject to IRS and/or ITNs as part of the Bioko Island Malaria

Control Project (BIMCP) on Bioko Island and the Equatorial

Guinea Malaria Control Initiative (EGMCI) in continental

Equatorial Guinea in cooperation with the National Malaria

Control Program. On Bioko Island this has resulted in malaria

infection rates in children falling from 42% to 18% after four years

of high IRS coverage [30], and from 59% to 46% on the mainland

after four years of IRS and LLIN coverage (unpublished data,

Medical Care Development International). Our study is based on

a series of samples collected between 2004 and 2010, and with the

exception of one location, were collected before or concurrent with

the start of anti-vector intervention programs in Equatorial

Guinea. This temporal sequence empowers us to probe the

demographic history of these populations in relation to the impact

of vector control measures.

We studied a total of seven Equatoguinean populations – two on

Bioko island (Arena Blanca and Punta Europa), and five mainland

populations (Cogo, Mongomo, Niefang, Ukomba and Yengue). In

addition to these seven study populations, we also analyzed

existing microsatellite data from two negative control populations

that did not experience vector control –Tiko in Cameroon and

Fanzana in Mali. This was done to examine how seasonal or

yearly fluctuations in population size affect our inference of

demographic history. Our main objectives were to determine if

vector control has resulted in lowered effective population sizes of

malaria vector mosquitoes. In six out of seven study populations,

vector control coincided with a demographic bottleneck that

substantially lowered effective population sizes of malaria vectors.

In the negative control populations, no reduction in effective

population sizes was observed.

Results

A data set comprising 13 (An. moucheti), 15 (An. melas) or 17 (An.

gambiae) microsatellite markers was obtained for a total 1,519

mosquitoes from the study populations (Figure 1) from Equatorial

Guinea. This data represents 2 to 4 time points for each of the

seven populations included in this study (Table 1). After discarding

markers showing evidence for the presence of null alleles, the

following number of loci were included in our final analyses: An.

gambiae M form, Punta Europa 13 loci; An. gambiae M form,

Ukomba 14 loci; An. gambiae S form, Mongomo 13 loci; An. gambiae

S form, Yengue 16 loci; An. moucheti, Niefang 13 loci; An. melas,

Arena Blanca 13 loci, An. melas, Cogo 12 loci. For the two negative

control populations (Tiko, Cameroon and Fanzana, Mali,

Figure 1), microsatellite datasets containing 11 loci were analyzed

for a total of 236 samples.

Figure 1. A map indicating the seven study sites in Equatorial Guinea. Two locations were sampled on Bioko Island and five locations on
mainland Equatorial Guinea. Additionally, two negative control populations; Tiko in Cameroon and Fanzana in Mali were included in our study.
doi:10.1371/journal.pgen.1003097.g001

Control Reduces Effective Size of Malaria Vectors
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Severe bottlenecks are expected to reduce genetic variability

and thus reduce both allelic richness (AR) and heterozygosity (HE),

especially when populations become very small, although HE is

expected to decline at a slower rate compared to AR. Values for AR

and HE for each time point in the seven populations are reported

in Table 2. Six of the seven sampled populations displayed a

decline in AR between the first and second time point (see Figure

S1), although the reduction was significant only in the cases of

Ukomba, Arena Blanca, and Cogo. The number of effective alleles

(Ae) over time is represented in Figure S2, and displays the same

trends as the reported HE. In the six populations for which samples

were collected prior/close to the start of the vector control, only in

An. gambiae (M) from Ukomba was a slight (non-significant) decline

in HE detected coincidental with the vector control. The two Bioko

Island populations, An. gambiae (M) in Punta Europa and An. melas

in Arena Blanca, both had lower levels of HE compared to

mainland values (0.65 vs. 0.70 and 0.45 vs 0.64 respectively),

although the difference was substantial only in An. melas. There

were no significant decreases in HE or AR between time points in

either of the two control populations (Table 3).

To infer the demographic history of each population, the

microsatellite data sets were compared to ones simulated under

competing demographic scenarios using ABC analyses (Figure 2,

Figures S3 and S4, Table 4). Posterior density plots of Ne estimates

before and after control initiatives are shown in Figure 2, and

posterior probability plots for the various scenarios are shown in

Figure S3. The posterior density plots of the timing of

demographic events are shown in Figure S4. In all but one study

population (Cogo, An.melas), a demographic model that includes a

recent decline/bottleneck that resulted in a smaller current Ne

provided the best fit to the observed data (Figure S3). Ne typically

decreased between 55% to 85% following initiation of vector

control. The sole exception was An. melas in Cogo, in which a large

historic increase in Ne was detected. In contrast, neither of the

negative control populations showed drastic decreases or increases

over the time-scale on which vector control effects are being

evaluated (Figure 3A and 3B, Table 5), but instead experienced

moderate increases over much longer timescales.

Study Populations
An. gambiae (M), Punta Europa, Bioko Island. In the

ABC analyses, the ‘‘bottleneck’’ scenario was the superior model

(Figure S3), with a posterior probability of 0.74 (Table 4). In this

area, the IRS intervention has resulted in an approximate 79%

reduction in the Ne of An. gambiae (M). The historical Ne was

estimated to be around 15,700 and was reduced to a current Ne of

approximately 3,230 (Table 4, Figure 2A). The timing of the

bottleneck is estimated to be around 314 generations before the

most recent collection (generations before present, gbp) (Table 4,

Figure S4). However the posterior density profile for this

parameter is fairly broad, meaning that this estimate has a wide

credibility interval. Assuming 24 generations a year the anti-vector

intervention started approximately 150 gbp. This falls well within

the range of the estimate, indicating that the Ne reduction occurred

around the time that the intervention was implemented.

An. gambiae (M), Ukomba. A fluctuating population

model, where a population expansion was followed by a more

recent bottleneck provided the best fit for the data for Ukomba,

with a posterior probability of 0.81 (Table 4, Figure S3). The An.

gambiae (M) population in Ukomba had a relatively small

(ancestral) population of only 938, which expanded to a larger

historical size of 13,000. This was followed by a more recent,

approximately 83% reduction, resulting in a current Ne of

approximately 2,570 (Table 4, Figure 2B). The timing of this

Table 1. Study species, sites, sampling years, and sample sizes that were the basis for estimations of Ne and comparisons of
alternate demographic scenarios in ABC analysis.

Species Location No. of Houses Intervention Type Start of Intervention Sampled Year Sample Size (N)

An. gambiae (M) Punta Europa ,80 IRS 2004 April 2004 119

September 2006 63

August 2007 78

April 2010 94

Ukomba ,35000 IRS Late 2007 March 2007 78

May 2009 46

Feb 2010 95

An. gambiae (S) Mongomo ,6000 ITN Early 2008 Feb 2007 83

April 2009 56

May 2010 53

Yengue ,50 IRS Late 2007 Feb 2007 62

May 2009 92

May 2010 32

An. moucheti Niefang ,2000 ITN Early 2008 May 2007 48

Aug 2009 34

An. melas Arena Blanca ,40 IRS 2004 April 2009 89

Sept 2010 68

Cogo ,400 IRS Late 2007 April 2007 70

Nov 2007 76

June 2010 50

doi:10.1371/journal.pgen.1003097.t001

Control Reduces Effective Size of Malaria Vectors
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bottleneck was estimated at 74 gbp, corresponding well with the

implementation of IRS on the mainland in 2007, approximately

72 gbp. The estimate for the historical expansion had a median

value of 423 gbp. Assuming 24 generations per year, the

population expansion occurred about 18 years ago (1992)

(Table 4, Figure S4).

An. gambiae (S), Mongomo. According to our analyses the

An. gambiae (S) populations in Mongomo also experienced a recent

bottleneck (posterior probability = 0.69, Table 4, Figure S3). The

Ne prior to the intervention is estimated to be 1,770 but was

reduced approximately 57% to a current Ne of 750 (Table 4,

Figure 2C). The 95% credibility interval for the timing estimate

was broad, but the median value of 57 gbp corresponds closely

with the start of the LLIN campaign 56 gbp (Table 4, Figure S4).

An. gambiae (S), Yengue. The bottleneck model was also

the best supported for the Yengue population data, with a

posterior probability of 0.98 (Table 4, Figure S3). This population

experienced the greatest decline in Ne observed in our study. Ne

dropped approximately 85% from 13,200 to 1,900 (Table 4,

Figure 2D). This bottleneck was estimated to have taken place at

approximately 88 gbp (Table 4, Figure S4), corresponding closely

to the stasrt of IRS in this location approximately 72 gbp.

An. moucheti, Niefang. The bottleneck model provided the

best fit to the data from An. moucheti populations from Niefang,

Table 2. Summary of heterozyosity estimates (HE) and Allelic Richness (AR) for all sampled species, populations, time points,
including standard errors (SE).

Species Site Year N HEXP SE P(EL) AR SE P(EL)

An. gambiae (M) Punta Europa April, 2004 119 0.654 0.040 8.12 0.46

September, 2006 63 0.648 0.033 0.56 7.79 0.51 0.26

August, 2007 78 0.678 0.038 7.69 0.55

April, 2010 94 0.631 0.039 0.96 7.27 0.41 ,0.001

Ukomba March, 2007 78 0.736 0.038 9.48 0.97

May, 2009 46 0.681 0.037 7.98 0.51 0.042

February, 2010 95 0.673 0.041 0.75 7.07 0.55 0.001

An. gambiae (S) Mongomo February, 2007* 83 0.700 0.043 9.02 0.67

April, 2009 56 0.721 0.059 0.12 9.25 1.18 0.053

May, 2010 53 0.734 0.033 0.07 8.28 0.86 0.119

Yengue February, 2007 62 0.734 0.040 8.35 0.82

May, 2009 92 0.715 0.043 7.52 0.67 0.069

May, 2010 32 0.743 0.037 0.53 8.19 0.58 0.387

An. moucheti Neifang May, 2007 48 0.805 0.014 10.79 0.75

August, 2009 34 0.845 0.011 0.36 10.19 0.82 0.184

An. melas Arena Blanca April, 2009 89 0.484 0.066 4.8 0.6

September, 2010 68 0.425 0.073 0.74 3.97 0.59 0.040

Cogo April, 2007 70 0.649 0.069 9.98 1.89

June, 2009 76 0.641 0.070 0.87 9.4 1.82 0.005

June, 2010 50 0.644 0.069 0.94 9.78 1.86 0.253

P values for tests of the null hypothesis that mean heterozygosity or allelic richness is the same between time points (based on a paired t-test) are also presented. Two
P(EL) values are reported for the pairwise comparison between the earliest and second, as well as the earliest and latest time points. P-values for comparisons that
showed significant differences are in bold.
*The February 2007 sample is from the nearby village of Mongomoyen.
doi:10.1371/journal.pgen.1003097.t002

Table 3. Summary of heterozygosity estimates (HE) and Allelic Richness (AR) for the two negative control populations—each with
two time points, and standard errors (SE).

Species Site Year N HEXP SE P(EL) AR SE P(EL)

An. gambiae (M) Tiko, Cameroon September, 2003 52 0.739 0.028 8.6 0.70

August, 2006 52 0.711 0.044 0.44 8.9 0.92 0.51

Fanzana, Mali August, 2002 43 0.803 0.031 13.00 1.193

September, 2006 89 0.801 0.031 0.78 15.417 1.264 0.30

P values for tests of the null hypothesis that mean heterozygosity or allelic richness is the same between time points (based on a paired t-test) are also presented. One
P(EL) value is reported for the pairwise comparison for statistical difference between estimates for the two time points. P-values for comparisons that showed significant
differences are emboldened.
doi:10.1371/journal.pgen.1003097.t003

Control Reduces Effective Size of Malaria Vectors
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with a posterior probability of 0.87 (Table 4, Figure S3). The An.

moucheti population at Niefang declined approximately 55% from a

pre-intervention Ne of about 10,300 to a current Ne of 4,600

(Table 4, Figure 2E). The 95% credibility interval for the timing

estimate was also broad with a median of 80 gbp (Table 4, Figure

S4), and the start of the LLIN distribution approximately 60

generations ago falls well within the range of the estimate.

An. melas, Arena Blanca, Bioko Island. The An. melas

population at Arena Blanca on Bioko Island also experienced a

sharp recent reduction in Ne, with the bottleneck model having a

posterior probability of 0.99 (Table 4, Figure S3). The Ne of An.

melas in this location dropped approximately 76%, from 1,090 to

261 (Table 4, Figure 2E). The estimate of timing of this reduction

is approximately 61 gbp (Table 4, Figure S4), and the initiation of

IRS on Bioko Island approximately 140 gbp ago falls at the upper

limit of the range of the estimate.

An. melas, Cogo. The An. melas population in Cogo was the

only one not experiencing a reduction in Ne coinciding with the

start of the intervention. In fact, a demographic model describing a

dramatic increase in Ne provided the best fit to the data, with a

posterior probability of 0.99. (Table 4, Figure S3). The An. melas

population at this site increased from a historic Ne estimate of

1,510 to a current Ne of 17,100 (Table 4, Figure 2G). Unfortu-

nately, no estimate of the timing of this event was possible, as the

posterior probability distribution is completely flat across the range

of the priors (5000 generations, not shown).

Figure 2. Density plots of effective population size estimates. Posterior density plots of estimated Ne from ABC analysis for the seven study
populations A) Punta Europa, B) Ukomba, C) Mongomo, D)Yengue, E) Niefang, F) Arena Blanca and G) Cogo. Solid line depicts the post-intervention
Ne, whereas the dashed line corresponds to the pre-intervention Ne.
doi:10.1371/journal.pgen.1003097.g002

Control Reduces Effective Size of Malaria Vectors
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Negative Control Populations
An.gambiae (M), Tiko, Cameroon. A demographic model

describing a constant or increasing population size was the best-fit

model (posterior probability = 0.92) for the negative control

population in Tiko. Ne estimates indicate that it increased from a

historic Ne of 1,458 to a current Ne of 5,102 (Table 5, Figure 3A).

This expansion is estimated to have occurred approximately

4,120 gbp (about 160 years ago).

An.gambiae (M), Fanzana, Mali. As with Tiko, Cameroon,

the demography of the negative control population at Fanzana,

Mali was also best described by a constant/increasing population

model (posterior probability = 0.85). In this case, a historic

population with Ne = 15,700 increased moderately (17%) to a

present Ne of 18,560 (Table 5, Figure 3B). This change in

population size was estimated to have occurred approximately

1,250 gbp (about 50 years ago).

Confidence in Scenario Choice
We performed an analysis of the confidence in the choice of the

best scenario using the simulation approach implemented in DIY

ABC. The type I error (probability of falsely rejecting the correct

hypothesis) for each population ranged from 6.6–27.6% (Table

S1). More important for evaluating our conclusions is the

probability of the inferred scenario being the incorrect one (type

II error). This probability is very low in each of the nine analyses,

ranging between 0.8% and 3.8% (Table S1). These low type II

error estimates strongly support our conclusions regarding the

inferred demographic scenarios for all nine populations, and the

rejection of alternate scenarios.

Discussion

Over the last few years ABC approaches have emerged as

powerful analytical tools for exploring demographic history in

fields as varied as conservation biology, epidemiology, and

phylogeography [23,31]. Here, we use the coalescent ABC

approach to evaluate the impact of anti-vector interventions on

the effective population size of three African malaria mosquitoes.

Our study is the first to conclusively correlate anti-vector

interventions (IRS or LLINs) with a reduction of Ne in malaria

mosquito populations. In all but a single case, a model describing a

recent decline in population size provides the best fit for the data.

In all of these six cases, the start of the intervention lies well within

the boundaries of the estimate of the timing of the Ne reduction.

Both IRS and LLIN interventions resulted in a lowered Ne

compared to pre-intervention times.

The second important result is that the two types of interventions

have similar consequences for vector population size. Although IRS

is specifically designed to kill mosquitoes, much of its protective

effect may be due to the repellent effect of the insecticide used.

Although a repellent effect may still play a role in the effectiveness of

IRS, clearly IRS is effective in reducing the population size of An.

gambiae (M+S), as well as the An. melas population on Bioko Island.

Similarly, much of the protective effect of ITNs/LLINs might also

be the result of the reduction of contact between the vector and the

human host as pyrethroid insecticide are known to have a repellent

effect [32]. Epidemiologically, there is mixed evidence for the

protective effect of IRS as compared to ITNs/LLINs, and it has

been suggested that quantitative comparisons between IRS and

ITNs may not be possible with present data [33].

While we did not evaluate the impacts of either vector control

method on infection rates, we demonstrated that both IRS and

LLINs approaches are successful in suppressing mosquito popu-

lation sizes. The analysis shows that the effective population size of

the anthropophilic and endophilic species An. gambiae (S) and An.

moucheti can be reduced over 50% by the use of LLINs. Although

the comparison is limited, the two An. gambiae populations

controlled only by IRS experienced an 83–85% decline in Ne,

whereas the An. gambiae population from Mongomo, which was

targeted with LLINs, declined only 57%. If true, this pattern could

reflect the fact that only pyrethroids were used in the LLIN

campaign, while a rotation of insecticide classes (described below)

Table 4. Results from ABC analysis for each sampled population—showing best-fit scenario, pre-intervention Ne (with 0.025 and
0.975 quantiles), post intervention Ne (with quantiles), and the timing of a population change (generations before present), t (with
quantiles), and percentage change in Ne. Medians are reported for all estimates.

Species Population
Best-fit
Scenario Pre-intervention Ne Post-intervention Ne Timing

Ne Q 0.025 Q 0.975 Ne Q 0.025 Q 0.975 Change % t Q 0.025 Q 0.975

An.gambiae (M) Punta Europa Bottleneck
(p.pr. = 0.74)

15700 6400 92100 3230 1090 4780 79 314 96 943

Ukomba Fluctuating
(p.pr. = 0.81)

9381 100 6270 2570 765 15300 42 74 71 146

130002 4790 19600 83 958 268 1970

An.gambiae (S) Mongomo Bottleneck
(p.pr. = 0.69)

1770 766 12300 750 468 851 57 57 11 549

Yengue Bottleneck
(p.pr. = 0.98)

13200 4160 76600 1900 310 5190 85 88 15 326

An.moucheti Neifang Bottleneck
(p.pr. = 0.87)

10300 10100 26400 4600 2510 4985 55 80 60 196

An. melas Cogo Increasing
(p.pr. = 0.99)

1510 769 5810 17100 6940 24600 1132 Not
estimable

Arena Blanca Bottleneck
(p.pr. = 0.99)

1090 801 9780 261 153 396 76 61 53 193

1Ne ancestral estimate,
2Ne historical estimate.
doi:10.1371/journal.pgen.1003097.t004
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was used in the IRS. Alternatively, it may be that IRS is somewhat

more efficient at controlling mosquitoes than LLIN.

IRS on Bioko Island, following an initial spray round using a

pyrethroid, has been implemented using bendiocarb, a carbamate

insecticide against which mosquito populations on the island have

not yet developed resistance (HJ Overgaard et al. submitted). On

the other hand, IRS on mainland Equatorial Guinea has been

implemented using a rotation between pyrethroid and carbamate

insecticides. An. gambiae (partial) resistance against pyrethroids is

widespread in the form of knockdown resistance (kdr), which may

undermine the effect of IRS and ITN use. Kdr is found in two

different forms in An. gambiae; the L1014F [34] and L1014S [35]

alleles. In Yengue the combined pre-intervention frequencies of

these two alleles was already 90.4% and increased only slightly to

93.5%. However, kdr frequencies were low in Ukomba prior to the

intervention (19.7%) and increased dramatically to 97.5% after the

intervention [36].

Clearly An. gambiae mosquitoes carrying kdr had a strong

selective advantage in Ukomba, which could conceivably have led

to a rebounding of a kdr carrying population, following the initial

decrease in population size of the still mostly susceptible

population. As far as we can tell, this did not happen. Together

with the large Ne reduction observed in the Yengue population this

suggests that the presence of kdr does not prevent pyrethroid

insecticides from being highly effective, a result also supported by

recent modeling approaches [37]. One might ask if the dramatic

increase in kdr in the Ukomba population could have biased our

results. Of the markers used in this study, locus AG2H770 is

located closest to the sodium channel gene that carries the kdr

allele, about 2 Mb away. However, this locus actually showed a

slight, non-significant increase in HE between 2007 and 2010,

indicating that selection for kdr is not likely to have affected our

analyses of this population through a hitchhiking effect on our

markers.

The An. gambiae (S) population in Mongomo, which was

subjected solely to pyrethroids through the distribution of LLINs

also experienced a sharp decline, even though kdr frequencies were

high before the control started (90%613.2%) [36]. Although a

decline in efficacy of pyrethroid based IRS and ITN has been

reported from Benin [38], most studies have actually found only a

weak association between kdr and resistance against pyrethroids

[Eg., 39,40,41]. Our results showing a substantial, non-transient

decline in this An. gambiae population through LLINs using

pyrethroids are consistent with these observations.

Interestingly, the two An. melas populations responded quite

differently to IRS. Although An. melas in Arena Blanca on Bioko

Island exposed to IRS had its Ne impacted dramatically, this is

clearly not the case in Cogo on the mainland. In that location,

An. melas actually underwent a drastic increase from approxi-

mately 1,510 to 17,100. On Bioko Island An. melas readily enters

houses to feed on humans [42], and this has been found in Cogo

as well (MR Reddy, unpublished results). However, a study by

Muirhead–Thomson [43] around Lagos, Nigeria, showed that

An. melas is an opportunistic feeder that will feed primarily on

the host that is most available. Although there are no cattle in

Cogo, it is possible that this population has sufficient access to

other vertebrate hosts so that only a small proportion of its

blood meals come from humans, hereby making the impact of

IRS negligible. In such a case, we would not expect to see a

reduction in Ne. This supposition is supported by the fact that

An. melas typically has a much lower sporozoite rate than An.

gambiae s.s. [44,45]. In fact, none of 232 An. melas mosquitoes

collected in Cogo in 2009 were sporozoite positive (MR Reddy,

Unpublished results), whereas the sporozoite rate was 9.9%

(63.5%) in An. gambiae in the same location. It should be noted

however that some sporozoite positive An. melas were collected

prior to the intervention in 2007 (3.2%61.8%) (MR Reddy,

Unpublished results), showing that An. melas did contribute to

malaria transmission to some degree in Cogo.

The lack of efficacy of IRS on the An. melas population in Cogo

does not explain the dramatic increase in Ne it experienced at some

time in the past however. One possible explanation could have

been that An. melas in Cogo was able to expand after a decline in

An. gambiae s.s. following IRS. A reduction of An. gambiae s.s might

have allowed An. melas to breed in what normally would be An.

gambiae s.s larval habitat. Such dominance of An. gambiae larvae

with respect to An. arabiensis has been demonstrated in a laboratory

setting [46]. Even so, a decrease in the absolute numbers of An.

gambiae s.s. in Kenya following ITN/LLIN use did not lead to an

increase in sympatric An. arabiensis populations [10]. In any case,

pre- and post-intervention mosquito collection data clearly

indicate that this is not what happened. In 2007 the ratio of An.

melas to An. gambiae s.s. in Cogo was 1.82 (n = 243) (window traps),

whereas a year post-intervention this ratio declined to 1.68

(n = 284) (indoor HLC+LTC), actually indicating a small and

insignificant decrease in the proportion of An. melas. Earlier work

demonstrated large fluctuations in An. melas population sizes

associated with rainfall and tide levels [47]; Gillies and De Meillon

Figure 3. Density plots of effective population size estimates and time of population size change. Posterior density plots of estimated Ne

from the ABC analysis of the two negative control populations, Tiko, Cameroon (3A) and Fanzana, Mali (3B).
doi:10.1371/journal.pgen.1003097.g003

Table 5. Results from ABC analysis for the two negative control populations—showing best-fit scenario, historical Ne (with 0.025
and 0.975 quantiles), recent Ne (with quantiles), and the timing of a population change (generations before present), t (with
quantiles), and percentage change in Ne. Medians are reported for all estimates.

Species Population Best-fit Scenario Historical Ne Current Ne Timing

Ne Q 0.025 Q 0.975 Ne Q 0.025 Q 0.975 Change %t Q 0.025 Q 0.975

An.gambiae (M) Tiko,
Cameroon

Constant/Increasing
(p.pr. = 0.92)

1458 435 3570 5102 958 11980 3 Fold 4120 780 7790

Fanzana, Mali Constant/Increasing
(p.pr. = 0.85)

15700 2850 21310 18560 7530 23950 17% 1250 325 5990

doi:10.1371/journal.pgen.1003097.t005
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[4] characterized An. melas as a species with notoriously unstable,

and very widely fluctuating numbers. However, the analysis of our

negative control populations indicates that periodical expansions

and contractions across a few seasons or years are not detected by

our study design, and frankly we do not know the reason for this

dramatic increase in effective population size of An. melas in

Cogo.

In contrast to the Cogo populations, An. melas on Bioko Island

clearly was affected by the IRS campaign, having its Ne reduced

from 1,090 to 261. This suggests that An. melas on Bioko Island is a

more important vector than it is in Cogo. Possibly, a difference in

availability of alternative hosts may play a role. For example, little

livestock is being kept on Bioko Island [48], which may have

resulted in An. melas being more closely associated with humans on

the island. Alternatively, innate host preference may be different

between the two populations. Deitz et al. [49] showed that An. melas

in fact consists of three highly genetically divergent clusters; a

Bioko Island cluster, as well as a Western and Southern cluster on

the African continent.

The demographic history of An. gambiae (M) in Ukomba is also

more complicated than what was observed in most populations. In

Ukomba, a population expansion was detected that increased the

Ne from approx. 938 to 13,000, before once more being reduced

by recent vector control. The estimate of the timing of the

ancestral expansion was about 18 years ago. Other authors have

provided genetic evidence for an expansion of An. gambiae

populations in the past [50,51]. However, these increases in

population size are thought to have been associated with the

expansion of An. gambiae across Africa and might have taken place

as long as 49,000–630,000 years ago [51]. Ukomba is part of Bata,

the largest city in Equatorial Guinea, and possibly changes

associated with urbanization and/or the expansion of human

populations in the area allowed an increase in An. gambiae breeding

in this location during the last few decades.

How a reduction in effective population size correlates to the

census population size (Nc) depends on the presence and nature of

larval competition. In case of strong density-dependent larval

survival, it is conceivable that the reproductive output of surviving

female mosquitoes increases if adult mortality is high due to IRS

and LLIN use. This could conceivably lead to a reduction in Ne

without much of a noticeable reduction in the actual number of

adult mosquitoes. However, it has been shown that an increase in

larval density of An. gambiae s.s. leads to an extension of larval

development time and smaller adult size, but has no effect on

larval survival [52]. Thus the observed reduction in Ne in An.

gambiae likely represents an approximate corresponding decrease in

the census population size.

As noted above, one of the major uncertainties involved in

estimating mosquito numbers is how direct and indirect estimates

correlate with each other. Few studies are available that compare

direct and indirect methods in estimating the sample size of

Anopheles mosquitoes. In Banambani, Mali, An. arabiensis population

size was estimated to be between 9,073 and 36,249 using mark-

release-recapture (MRR) methods [53]. This is approximately five-

fold the Ne of the same population, which was estimated to be

between 2,230 and 5,892 using indirect methods [54]. MRR

experiments in Ouagadougou, Burkina Faso, estimated population

densities of An. gambiae s.l. to be 135,000 and 330,000 in 1991 and

1992, respectively [55]. The 1992 MRR experiment followed a

period of exceptionally heavy rains, accompanied by flooding,

which may explain the very large population size that year. The

differences between Ne and Nc may be due to several factors, the

most important likely being that Ne is close to the minimum census

size of the population during the seasonal fluctuations, whereas

direct methods such as MRR measure the population size at the

time the study is conducted.

These studies, while illustrating the difficulty of estimating

population sizes for mosquitoes, also point to the influences of

various environmental and demographic factors on mosquito

populations that remain obscured, or whose impacts are not fully

understood. In such cases, the ABC approach can be a useful tool

to understand the demographic processes at the population level

[56]. The ABC approach relaxes some of the assumptions

associated with an ‘‘ideal’’ population and models allele frequency

change based on the serial coalescent. It also allows the definition

of priors for Ne, which improves precision [57], and has the ability

to utilize genetic summary statistics from samples that are collected

on diffuse geographical and temporal scales.

The ABC approach is most powerful when samples are

separated by several generations. In our study, all samples were

separated by .20 generations. Within An. gambiae, where gene

flow among populations of the same form is sufficient to preclude

significant differentiation at the geographic scale of this study, the

trend was comprehensive in showing substantial declines following

the intervention program. This suggests that while gene flow may

be sufficient to prevent population differentiation, it is not enough

to augment local effective population sizes.

We did not observe a significant reduction in HE in most of the

populations for which samples were collected close to the start of

the campaign, with the exception of Ukomba. The lack of drop in

HE is perhaps not surprising as reductions in HE can only be

expected when Ne is reduced to very small numbers. However, a

reduction in allelic richness (AR) is expected during large

population size reductions, even when the current Ne is not very

small, because rare alleles, which have a large impact on allelic

richness, are more quickly lost during population reductions. In

our study, we found that AR declined within most populations over

time, although the decline was significant in only three out of the

seven cases. A reduction in allelic richness was also observed in a

small-scale study of Culex quinquefasciatus in Recife, Brazil [58]. This

mosquito population was controlled through source reduction and

the biological control of larvae. The study was not able to provide

estimates of Ne, but a small significant reduction in allelic diversity

was found at a few microsatellite loci. As expected, no change in

HE was observed.

Our results are consistent with field data that indicate a

decreasing abundance of Anopheles mosquitoes and a lowered

entomological inoculation rate (EIR), the most important ento-

mological indicator of the force of transmission. EIR is the number

of infective bites a person receives on average in a single day (or

year), and equals the number of malaria vectors biting a single

human per day (or year) multiplied by the sporozoite rate, i.e. the

proportion of infective mosquitoes. Thus the force of transmission

is linearly correlated with the population size of malaria vectors,

and a reduction of 85% in the population size of a malaria vector

would result in an 85% reduction in the EIR. Further, as a direct

correlation exists between the size of a population and its vectorial

capacity, the vectorial capacity would be reduced by 85% as well.

Therefore, our results indicate that based on its effect on

population size alone, IRS and ITN have led to an approximately

57% to 85% reduction in malaria transmission in six of the seven

vector populations examined. Because IRS and LLINs can also

reduce transmission by decreasing contact between the vector and

the human host and by reducing vector longevity, the actual

reduction in transmission by IRS and ITN could be larger.

Here we demonstrate for the first time, that IRS or LLIN

interventions have a substantial impact on the effective population

sizes of several species of malaria vectors. The results presented
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here are a testament to the inroads that vector control efforts have

made in reducing the burden of malaria in Equatorial Guinea.

The presence of the insecticide resistance allele kdr did not protect

the An. gambiae population against a sharp reduction in Ne during

an ITN distribution program that relied on pyrethroid insecticides.

IRS and LLIN approaches to vector control are expected to be

most effective against endophagic and endophilic mosquitoes, and

the effect on other vector species will vary depending on their host

and resting preferences. Other vector control programs across sub-

Saharan Africa would shed light on this issue by implementation of

a similar study to evaluate the efficacy and status of vector

populations.

Materials and Methods

Vector Control
Anti-vector interventions in the form of IRS started on Bioko

Island in 2004 as part of the Bioko Island Malaria Control Project

(BIMCP), in cooperation with the National Malaria Control

Program within the Equatoguinean Ministry of Health and Social

Welfare and implemented by Medical Care Development

International Inc with financing from Marathon Oil Corporation,

its private partners and the Government of Equatorial Guinea.

Over 80% of domiciliary structures were initially sprayed with the

pyrethroid-class insecticides Deltamethrin and Fendon during an

initial spray round in 2004. After high levels of kdr, a target site

mutation conferring resistance to pyrethroids and DDT was

detected in the course of routine monitoring [59,60], Deltamethrin

and Fendon were replaced with Ficam (bendiocarb) starting in

2005, a carbamate insecticide compound, and spraying frequency

was increased to two rounds per year.

Based on the success on Bioko Island, the control efforts were

expanded to mainland Equatorial Guinea in 2007 under the

Equatorial Guinea Malaria Control Initiative (EGMCI), funded

by the Global Fund to Fight AIDS, Tuberculosis, and Malaria.

Whereas a majority of control efforts on Bioko Island have been

achieved through continuous IRS rounds, supplemented by an

island-wide LLIN door-to-door distribution and hang-up cam-

paign in 2008, sites on mainland Equatorial Guinea have received

either IRS or LLINs. In LLIN areas, bed-nets impregnated with

pyrethroid insecticide were distributed to all households through a

similar door-to-door strategy. In IRS areas a rotating combination

of Ficam, Alphycypermetrhin, and Deltamethrin were employed.

This use of two control methods provides an opportunity to

determine the relative impacts of these two approaches on

mosquito populations.

Study Sites
The study was conducted across several sites in Equatorial

Guinea (Figure 1), with two additional negative control sites

outside Equatorial Guinea (details below). An. gambiae (M) was

sampled in two sites; Punta Europa on Bioko Island and Ukomba

on the mainland. The Punta Europa area of Bioko Island is

located to the west of the capital Malabo, and consists of three

small villages with approximately 80 houses. Punta Europa is also

the base of Marathon Oil Corporation and partners’ industrial

operations on Bioko. This compound houses their largely

expatriate personnel onsite. An. gambiae (M) is currently the

dominant vector in Punta Europa and has been targeted by IRS

since April 2004. Ukomba is a suburb of Bata, the largest city in

continental Equatorial Guinea with an estimated population of

approximately 175,000 in 2005.

An. gambiae (S) was sampled in two mainland sites: Mongomo

and Yengue. Mongomo is on the eastern border of continental

Equatorial Guinea. It is a city consisting of approximately 6,000

houses, and one of two study sites where vector control was

implemented through LLIN distribution. For Mongomo, we

combined samples from a nearby location (Mongomoyen,

,15 km distant) as no significant genetic structuring has been

found within the molecular forms of An. gambiae on this

geographical scale [61,62]. In any case, an analysis without the

Mongomoyen samples did not substantially alter the result.

Yengue is a small village consisting of approximately 50 houses

in the Northwest of the Equatoguinean mainland. Unlike other

study sites, Yengue received only a single round of IRS at the start

of the campaign in 2007.

An. melas was sampled from one site on Bioko Island, Arena

Blanca, as well as a mainland site, Cogo. Arena Blanca is a small

town on the western coast of Bioko Island with approximately 40

houses and is a popular beach location for Bioko Islanders. An.

melas is the dominant vector in this location. Cogo is a small town

located in the Southwest of the mainland containing approxi-

mately 400 houses. It is located on the Rio Muni estuary, where

the brackish water provides ideal breeding sites for An. melas.

Finally, An. moucheti was examined from a single location on the

mainland, Niefang. Niefang is a small town consisting of

approximately 2,000 houses, and is the second study location

where vector intervention consisted of LLIN distribution.

Sites were selected based on the availability of samples from

multiple time points. The locations, time points and species

sampled are presented in Table 1. A total of 1,519 mosquitoes

were analyzed in this study and sample size ranged from 32 to 95

for each time point, the average being 76. We included data sets

from two negative control populations without a history of anti-

vector interventions. The first was comprised of data for 11

microstallites for An. gambiae (M) samples from Tiko, Cameroon for

the years 2002 (N = 52) and 2006 (N = 52). The second

represented 11 microsatellite loci for An. gambiae (M) from

Fanzana, Mali for the years 2003 (N = 43) and 2006 (N = 89).

These data were obtained from the public population genetic

database on malaria mosquito populations available from the

University of California – Davis (https://grassi2.ucdavis.edu/

PopulationData/). These negative control data sets were analyzed

using the same approach as applied to the study populations.

Genetic Analysis
DNA was extracted from the abdomens of individual mosqui-

toes preserved in 70% ethanol on a Qiagen Biosprint (Qiagen Inc,

Valencia, CA) automated DNA Isolation platform and resus-

pended in 200 ml elution buffer. Individual locus PCRs were

carried out in 20 ml reactions with 10 mM dNTP, 2 mM MgCl2,

1 mmol fluorescently labeled (6-FAM, NED, or HEX) forward

primer and 1 mmol reverse primer, in a Promega reagent master

mix with GoTaq Flexi Polymerase and 56 buffer. All An. gambiae

(M & S) were genotyped at 17 microsatellite loci that were

developed for this species [63]. An. melas was genotyped at 15 loci

that were adapted for the species [64] based on the loci published

by Zheng et al. [63], whereas 13 loci were genotyped for An.

moucheti [65]. After successful amplification was confirmed by gel

electrophoresis-visualization of random samples, samples were

prepared for fragment analysis with 1 ml of ROX 500-HD size

standard (Applied Biosystems, Foster City, CA), and analyzed on

ABI 3730696-capillary analyzers at the DNA sequencing facility

on Science Hill (Yale University, New Haven, CT).

Data Analysis
Raw data was downloaded into Genemarker (Softgenetics,

State College, PA), and alleles were called using panels created
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for each locus, using bins with a width of 1 bp. Allelic data for

each locus was imported into the MS Excel based genetic

analysis software GENALEX 6 [66], and formatted for further

analysis. Once genotypes were recorded, the data were

checked for failed amplification, presence of null alleles and

large allele dropout using the program MICROCHECKER

[67]. Samples with possible null alleles were re-genotyped or

discarded. Following tests of HW-equilibrium and for the

presence of null alleles, loci with a significant excess of

homozygotes possibly indicating null alleles were dropped from

further analysis. Final analyses were conducted on 12 to 17 loci

depending on the population and species. Unbiased expected

heterozygosity (HE) was calculated and compared between the

earliest and second time points, as well as between the earliest

and latest time points for each location using a paired t-test.

Allelic richness (AR) was calculated for each population-time

point combination in the genetic analysis software FSTAT. AR

is expected to be more sensitive than HE to sudden declines in

population sizes, as allelic diversity is impacted by the removal

of rare alleles, which hardly affects heterozygosity. Calcula-

tions of means, standard errors and statistical comparisons for

HE and AR were performed in R (version 2.14.1), running on

RStudio (version 0.95).

To examine changes in Ne over time, Approximate Bayesian

Computation (ABC) as implemented in the program DIY ABC

[68,69] was used. ABC [22] is a coalescent statistical method that

utilizes summary statistics from one or more observed population

samples, and compares it with data simulated from hypothetical

scenarios to find the scenario that best explains the observed data.

First, a large number of datasets were simulated based on multiple

user-defined demographic scenarios/hypotheses, mirroring the

genetic marker, the number of loci, and appropriate mutation

rates and models. Each scenario contained the parameters of

interest to be estimated (historical or present Ne for example),

values for which were drawn from uniform prior distributions

during simulations. After the simulation of 1 million datasets for

each scenario, Euclidean distances between observed and simu-

lated datasets were computed, and 1% of the closest datasets were

retained. Logistic regression was subsequently performed to

estimate the posterior probabilities of best-fit scenarios and to

estimate the parameters of interest. We selected the ABC

approach over other available methods for estimating Ne and

demographic history because of difficulties in estimating Ne from

species with overlapping generations and potentially fluctuating

population sizes [70,71]. Additionally, the window trap samples

that represented one month of collections, did not allow point

estimators to be used. Finally, by utilizing a number of different

genetic summary statistics, the ABC method is less vulnerable to

violation of assumptions made in classical population genetic

models, and hence is less biased [56,72].

For each population studied, a number of hypothetical

scenarios were coded to describe possible demographic histories

and to explore alternate outcomes that may follow any given

demographic event. Scenarios tested and priors used are

summarized in Table S2. In brief, four hypotheses, with minor

variations, were tested on data from each population (Figure S5)

– namely a) fluctuating Ne, b) increasing Ne, c) population

bottleneck Ne, resulting in lower contemporary Ne and d) constant

population size. We assumed 24 generations per calendar year

[73,74]. The mutation model was set to the general mutation

model for microsatellites, which includes both stepwise and

infinite-allele modes of mutation. Mutation rates were either

considered to vary independently by locus, or vary around the

same mean value. Following the simulation of 1 million datasets,

the posterior probabilities of the tested scenarios were calculated

through logistic regression on 1% of the closest datasets to

determine the best explanatory scenario. The scenario with the

highest posterior probability was chosen to estimate the

parameters of interest.

Although ‘null hypotheses’ are not typically defined in Bayesian

analyses, selection of hypothetical scenarios based on posterior

probability still provides opportunities for falsely rejecting the

correct hypothesis (type I error), or accepting a hypothesis when it

is in fact not the correct one (type II error). In order to estimate the

false positive (type I) and false negative rate (type II), given the size

and nature of our simulated datasets, we estimated both type I and

type II errors for each of the nine populations as described in [68].

This was done by simulating 1,000 data sets assuming in turn that

each of the four scenarios is the ‘‘true’’ scenario, determining the

posterior probabilities of all four scenarios for each simulated data

set, and calculating how often the assumed ‘‘true’’ scenario had the

highest posterior probability (Table S2).

Data Accessibility
Microsatellite data deposited in the Dryad Repository: http://

dx.doi.org/10.5061/dryad.1rf75.

Supporting Information

Figure S1 Mean Allelic Richness (AR) estimates for the seven

sampled populations. Sampled times are on x-axis, and AR are on

the y-axis. Error bars are standard errors.

(PDF)

Figure S2 Mean number of effective alleles (Ae) for each of the

seven sampled populations. Error bars are standard errors.

(PDF)

Figure S3 Posterior-probability plots comparing tested scenarios

from ABC analysis, for each study population. The scenario with the

highest posterior probability (y-axis) over 1% of simulated datasets (x-

axis) was the best-fit scenario. This scenario was selected to estimate

the posterior probabilities of estimated parameters (Ne, and t).

(PDF)

Figure S4 Posterior density distributions of estimated timing

(generations before present) of the bottleneck event, if population

change occurred. In case of Ukomba, the two curves show the

ancestral expansion event and the more recent post-intervention

event. The dashed (red) line shows the approximate time when

anti-vector interventions started in each location .

(PDF)

Figure S5 A schematic showing the four typical hypotheses

tested on each set of sampled populations. In scenario 1,

population could fluctuate from an ancestral Ne (Nanc) to a

historical Ne (Nhist) to a post-intervention Ne (Npres).

(PDF)

Table S1 Type I and Type II error probabilities for each of the

seven populations in the study. Error probabilities were calculated

based on simulating 1000 datasets with an assumed ‘‘true

scenario’’. Type I error is obtained by cumulating across the

table for a given scenario, where as type II error probabilities are

listed in the column under each specified scenario. Type II errors

indicate the probability that the wrong scenario has the highest

posterior probability in our analyses. For example, for Punta

Europa the probability that our analysis resulted in scenario 3

having the highest posterior probability if scenario 1 was actually

the correct one equals 3.5%. The scenario with the highest

posterior probability for each study population is shaded in gray.
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(DOCX)

Table S2 A description of the most common demographic

models tested using Approximate Bayesian Computation (ABC)

on multiple time-point samples from Anopheline samples from

each site. Generation between samples was customized for each

species-site combination, assuming 24 generations/year. Addi-

tional models or variants were also run based on each particular

case or when one of the common models were not the substantially

better than the competing scenarios.

(DOCX)
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