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Abstract: The high incidence of disability and fatality rates associated with chronic diabetic wounds are difficult problems in the 
medical field. The steady-state and regular changes of the microenvironment in and around the wound provide good conditions for 
wound healing and achieve a dynamic and complex process of wound healing.The pH value and ionic environment composed of 
a variety of ions in wound are important factors affecting the wound microenvironment, and there are direct or indirect connections 
between them. Abnormalities in pH, ion concentrations, and channels in skin tissue may be one of the reasons for the high incidence 
and difficulty in chronic diabetic wounds healing. Currently, different wound-dressing applications have been developed based on the 
efficacy of ions. Here, the effect of pH in wounds, concentrations of calcium (Ca2+), sodium (Na+), potassium (K+) and the metal ions 
silver (Ag+), copper (Cu2+), iron (Fe2+/Fe3+), zinc (Zn2+), and magnesium (Mg2+) in skin tissue, their roles in wound healing, and the 
application of related dressings are reviewed. This manuscript provides new ideas and approaches for future clinical and basic research 
examining the treatment of chronic diabetic wounds by adjusting ion concentrations and channels. 
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Introduction
Chronic diabetic wounds are a major complication associated with diabetes mellitus (DM), and they are associated with 
a poor prognosis and high recurrence rates, often leading to amputation,1 representing a huge burden for both affected 
individuals and the entire healthcare system.2 Wound healing is a complex process which includes coagulation, 
inflammation, proliferation, and remodeling stages. These four stages overlap without obvious boundaries during the 
healing process.3,4 The limited oxygen supply and elevated oxygen consumption of the wound, resulting in persistent 
inflammatory response, are the main reasons for the difficult wound healing.5,6 In addition, high-glucose can also reduce 
the activity of vascular endothelial growth factor (VEGF) and hypoxia-inducing factor-1α (HIF-1α),7 increase the non- 
enzymatic glycosylation of many important proteins, resulting in abnormal cell and Extracellular matrix (ECM) 
functions, which inhibiting angiogenesis and delaying wound healing.8 In recent years, advances in materials engineer
ing, polymer science, biomedicine, and chemistry have led to the development and enhancement of multifunctional 
biomaterials, such as hydrogels, foams, hydrocolloid, nanofibers, sponges, and semi-permeable membranes, which are 
designed to promote wound healing.9

The wound microenvironment is a critical factor in wound healing, which includes internal microenvironments 
comprising various cells and the extracellular matrix, bacterial load, microorganisms, pH, ions, oxygen, temperature, 
humidity, light, electricity, and magnetism for the external microenvironment.10 Specific and complex 
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microenvironmental changes occur in and around the wound after skin damaged, and the steady-state and regular changes 
in the microenvironment provide good conditions for wound healing to achieve a dynamic and complex process. The 
dynamic microenvironment directly or indirectly regulates the function and location of cell activities and maintains skin 
homeostasis. Owing to the continuous presence of a high-glucose environment, the wound microenvironment cannot be 
effectively controlled. Persistent inflammation and biofilm formation, which completely disrupt the microenvironment 
balance, and the limited blood supply leads to tissue oxidative stress disorders and angiogenesis obstruction, delaying the 
process of wound healing.10 The pH of wounds has gained more attention as an important factor influencing wound 
healing. The ionic environment is included in the wound microenvironment and not only exists in the wounds but also 
continuously affects wound healing as an external factor. The plasma content of and ionic channels for calcium (Ca2+), 
sodium (Na+), potassium (K+), and other external metal ions, such as copper (Cu2+), iron (Fe2+/Fe3+), silver (Ag+), zinc 
(Zn2+), and magnesium (Mg2+), in the skin tissue affect wound healing. In addition, there is a complex and remarkable 
relationship between pH and ions.

Therefore, it is necessary to study the abnormal ionic environment of diabetic wounds to restore homeostasis of the 
ionic environment in skin tissues and achieve wound healing. In this study, the effects of pH in wounds, the presence of 
Ca2+, Na+, and K+, as well as the external metal ions Cu2+, Fe2+/Fe3+, Ag+, Zn2+, and Mg2+ in skin tissue, their role in 
wound healing and the application of related dressings are reviewed. Intelligent dressings with various ionic compounds 
interacting with pH have sufficient promise in the treatment of wounds. The purpose of this study is provide new ideas 
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and innovative framework for future clinical and basic research focused on the treatment of chronic diabetic wounds by 
adjusting ionic environment.

Ionic Environment of the Wounds
Kruse proposed the wound microenvironment could be divided into the “external microenvironment” and the “internal 
microenvironment” for the first time in 2015. The external microenvironment is defined as the outside of the wound 
immediately adjacent to the wound. And the internal microenvironment is defined as the space below but adjacent to the 
surface of the wound bed, which is composed of various cells and extracellular matrix. The external and internal micro
environment are constantly exchanged and influenced by each other.11 Ions are very important for the immune environment, 
and the mechanism underlying innate immune stimulation and T cell activation is mediated by essential metal ions.12 Metal 
ions transport is critical for mitochondrial functions and cellular metabolism, including oxidative phosphorylation, ATP 
production, mitochondrial integrity, mitochondrial volume, enzyme activity, signal transduction, proliferation and 
apoptosis.13 They can also affect cell death or apoptosis, for example, iron ions are involved in cell radiation apoptosis.14

Ions affect the internal and external microenvironment of wounds, and dynamic changes in the multi-dimensional, 
temporal and spatial ionic environment affect wound healing at different stages. The plasma contents of Ca2+, Na+, K+, 
Cu2+, Fe2+/Fe3+, Ag+, Zn2+, Mg2+, and other ions in skin tissue constitute the ionic environment, which affects wound 
healing. Furthermore, hyperglycemic environment, hypoxia and inflammation can result in an abnormal ionic environ
ment in skin tissue, affecting and delaying the process of wound healing. The Components of ionic environment in the 
wound shown in Figure 1.

Figure 1 Components of ionic environment in the wound.
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The pH and Chronic Diabetic Wounds
The Changes of pH in Wounds
The pH is an inverse logarithmic measure of the thermodynamic activity of hydrogen ions (H+) in solution. The value of 
the H+ concentration index is commonly known as the pH value, with a larger value indicating a lower ion concentration. 
Since the 1970s, the pH of wounds has gained increasing attention as an important factor influencing wound healing. 
Owing to the secretion of organic acids by skin keratinocytes, the pH of the normal skin surface is between 4.8 and 6.0, 
and the pH gradient of the cuticle increases to 6.8 with the arrival of the lower stratum corneum. Currently, there are no 
reports of significant differences based on sex or race. However, the pH of the skin changes with age. The pH of newborn 
skin is neutral or alkaline after birth, whereas during infancy and old age, the pH is slightly elevated compared to that of 
normal adults.15,16

When the acute wounds occur and the integrity of the skin is compromised, alkaline tissue fluid and plasma in the 
broken capillaries overflow, the pH in wound increase significantly.17 The pH of the microenvironment of an acute 
wound is approximately neutral, with an average value of 7.44.18 However, the pH of the wound constantly changes 
during the process of wound healing. When wound healing enters the coagulation or inflammatory stage, the previous 
blood supply to the wound is interrupted, glycolysis and lactic acid production increases, local tissue carbon dioxide 
stasis occurs, and the pH decreases.19 As the inflammatory response of the wound weakens, necrotic tissue is cleared, the 
blood supply is reestablished, glycolysis is replaced by an aerobic reaction, and the pH increases. At the later stage, with 
wound epithelialization and reduction, the pH becomes neutral before regeneration of the stratum corneum.20 

Subsequently, the increased oxygen demand of the wound tissue leads to glycolysis and lactic acid production in the 
wound tissue, as well as increased epithelial secretion at the edge of the wound, and the wound pH again decreases.21 

Moreover, in terms of the location, the pH of the wound center is higher than that of the entire wound surface.22 

However, the change of pH will be abnormal in chronic wounds.

The Changes of pH in Chronic Diabetic Wounds
Compared to acute wounds, chronic diabetic wounds have a relatively alkaline environment, with higher pH values 
ranging from 7.42 to 8.90.18 The pH of chronic diabetic wounds can be as high as 9.25.23 One reason is that exposure of 
the blood and interstitial fluid to the external environment or the urea enzyme-mediated release of ammonia from urea 
can lead to a more alkaline pH in the wound. When the chronic diabetic wounds reach the epithelial reformation stage, 
the pH again becomes acidic. The pH of chronic diabetic wounds increases, ultimately leading to excessive protease 
levels, decreased tissue inhibitor of metalloproteinase (TIMP), increased reactive oxygen species (ROS) and 
infection.24,25 This can lead to biochemical imbalances and consequent extracellular matrix (ECM) abnormalities, 
where fibroblast activity is reduced, and ECM components essential for wound healing process are destroyed.19 

Furthermore, long-term inflammation in chronic diabetic wounds, defective epithelial reformation and damaged matrix 
remodeling are also observed.26,27

Effects of the pH on Wounds
The pH of the wound microenvironment indirectly or directly affects all biochemical reactions during wound healing. 
Specifically, the pH affects infection, antibacterial activity, oxygen release, angiogenesis, protease activity and bacterial 
toxicity in the wounds. 1) The H+ concentration in the wound directly affects the activity of proteases in the tissue, and 
a decrease in pH from 8 to 4 can reduce protease activity by 80%.28 2) The oxygen content in the tissue affects the wound 
healing, and healing is possible when the oxygen tension is greater than 40mmHg. In an acidic pH environment, the level 
of oxygen released by oxygenated hemoglobin is increased, and when the pH is decreased by 0.60, oxygen dissociation 
from oxyhemoglobin increases by 50%. Further, if the pH is decreased by 0.90, the oxygen dissociation from 
oxyhemoglobin will increase by 5-fold.29 3) Regarding the influence on bacterial biofilms, biofilms exist in 60–100% 
of chronic wounds, and the pH required for the growth of human pathogenic bacteria is greater than 6.0.30 A low pH 
inhibits growth, and therefore, bacterial infections and biofilms are easily formed in an alkaline wound 
microenvironment.31 Moreover, the wounds become alkaline after bacterial colonization, and a long-term alkaline 
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environment is one cause of wound healing difficulties. 4) Regarding the influence on angiogenesis and cell proliferation, 
during wound proliferation, the acidic wound microenvironment stimulates angiogenesis and the production of collagen 
(increased transforming growth factor [TGF]).32,33 When the pH is greater than 7.50, cell migration and DNA synthesis 
are suppressed in an approximately linear manner with an increasing pH.34 In an acidic environment, fibroblasts 
(increased by platelet derived growth factor [PDGF] release) and keratinocytes proliferate actively, and myofibroblast 
contractility is enhanced.35 5) Regarding the influence on the antibacterial activity of dressings, the bioavailability of 
active free metal ions in the wound is affected by many factors, including the solubility of metal ions, which increases as 
the pH decreases.36 The activity of gentamicin, an aminoglycoside antibiotic, exhibits a 90-fold increase in efficacy at pH 
7.80 compared to that at pH 5.50.30 Moreover, a decrease in the pH can enhance the activity of silver ion dressings and 
increase their antibacterial effect.36,37 As most chronic wounds contain bacterial biofilms and require clinical intervention 
with antibiotics, the pH of the wound microenvironment should be considered when selecting the most appropriate 
antibacterial agents to enhance the effects of drugs. 6) Regarding the influence on bacterial toxicity, reducing the pH and 
creating a more acidic environment also reduces the toxicity of bacterial end products, such as ammonia, which is 
released from urea via the action of urease. Ammonia is toxic to the wound tissue and creates an alkaline environment 
that is not conducive to wound healing.38

Applications of pH in Wound Treatment
Currently, the pH of wounds can be measured clinically using a pH meter with a flat glass electrode or pH litmus paper, 
which results in no obvious pain for patients and allows for convenient measurements with a low cost. However, there 
are certain drawbacks, such as differences in the interpretation of litmus paper colors by clinicians, which can lead to 
inaccurate results. In addition, the problem of how electrodes touching patient wounds can be kept sterile and not cross- 
infected has been reported.

Many acids have been used to treat wounds in recent years, most of which are antibacterial agents. One commonly 
used acid is hypochlorous acid, which is a naturally occurring bactericidal agent produced by the innate immune process 
within the body that can remove debris and microorganisms from diabetic foot wounds. The use of hypochlorous acid 
can reduce bacterial load, relieve wound odor and pain, reduce systemic antibiotic use and promote wound healing.39 

Another commonly used acid is citric acid. In a histopathological study of chronic wounds infection, its use increased 
local tissue oxygenation to promote epithelium formation, facilitated the wound healing process by promoting fibroblast 
growth and neovascularization, increased wound microcirculation, promoted healthy granulation tissue formation, and 
accelerated wound healing.40 Additionally, a retrospective review of studies examining acetic acid, boric acid, citric acid, 
ascorbic acid, alginic acid, hyaluronic acid and other acids, in the context of wound acidification, determined that acid- 
based drugs can control infections and promote epithelial tissue growth and wound healing with obvious effects.41 In 
summary, based on alkaline changes in the pH of chronic diabetic wounds, wound acidification could become a future 
treatment modality for chronic diabetic wounds.

The pH measurement is simple, convenient and easy to implement clinically. The pH-based interventions for chronic 
diabetic wounds can be used as a clinical treatment approach, but there are still some associated problems. Strategies to 
effectively and continuously maintain the acidification of the alkaline microenvironment of chronic diabetic wounds need to 
be determined, and the dressing change time for acid drugs or wound dressings requires further study. Owing to the dynamic 
change in the pH of chronic diabetic wounds, multiple factors should be considered when adjusting the pH, including the 
epithelial regeneration rate, granulation growth conditions, and drug efficacy changes. Additionally, chronic diabetic wound 
acidification treatments might require further consideration. The effects of pH on wound healing shown in Figure 2.

Ionic Environment of Chronic Diabetic Wounds
Ca2+ and Chronic Diabetic Wounds
The Changes of Ca2+ in Wounds
The transmission of Ca2+ is thought to be one of the earliest wound signaling events initiated by the ATP released by 
damaged cells, which increases the cytoplasmic Ca2+ from surrounding cells.42 During the skin homeostasis, the Ca2+ 
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concentration peaks in the outer granular layer and is lowest in the basal layer.43 Immediately after skin damage, Ca2+ can be 
detected in the wound bed, facilitating the clotting process.44 The Ca2+ increase lasts for 5 days after wound formation and 
overlaps with the maximum inflammatory activity.45 The concentration of Ca2+ in the wound changes dynamically with the 
progression of the healing process. The extracellular concentration of Ca2+ has been demonstrated to persist during the 
inflammatory and proliferative stages after the onset of injury and then decrease during the remodeling stage.45 After wound 
is formed, the Ca2+ concentration in the skin tissue increases, and the highest concentration can reach more than 60-fold that 
in normal skin.46 Moreover, the cells in the wound must continuously remove excess Ca2+ while maintaining a low Ca2+ 

concentration to maintain the normal living environment of the cells required for wound healing. Transient receptor potential 
vanilloid (TRPV) is a calcium-permeable non-selective cation channel widely expressed throughout mammalian skin tissues, 
and modulates the transmembrane levels of Ca2+ and depolarization of the cells.47,48 TRPV1, TRPV2, TRPV3 and TRPV4 
channels are expressed in basal and supra-basal keratinocytes. TRPV1 and TRPV3 channels are associated with cell death, 
whereas TRPV1 channels induce mitochondrial damage and Ca2+ inflow.47 Further, TRPV3 promotes keratinocyte prolif
eration via calcium/calmodulin-dependent protein kinase II–induced nuclear factor kappa-B.49 TRPV2 channels stimulate 
growth factor-β1 and smooth muscle actin-mediated contractions, ultimately leading to the contraction of dermal fibroblasts, 
affecting scar formation.48 Meanwhile, TRPV4 channels are involved in the organization of actin junctions via Rho-mediated 
processes.50 However, the changes of Ca2+ in chronic diabetic wounds are different from those in acute wounds.

Figure 2 The effects of pH on wound healing. Created in BioRender. Guo, J. (2024) https://BioRender.com/k20j084.
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Ca2+ in Chronic Diabetic Wounds
Abnormal cellular Ca2+ homeostasis and signaling is a common feature of T1DM and T2DM. These abnormalities are 
typically manifested by increased resting Ca2+ levels, decreased Ca2+ transporter activity, and reduced stimulation- 
induced Ca2+signaling.51 The increase in intracellular and extracellular Ca2+ concentrations in keratinocytes under high- 
glucose conditions can cause membrane depolarization and disrupt the inward movement of the cell membrane and 
lamellar body exocytosis, thus affecting the formation of a stratified lamellar membrane between cells and delaying skin 
barrier repair.52

Effects of Ca2+ in Wound Healing
Calcium is involved in the earliest wound-signaling activity and plays an important role in regulating wound healing.53 

Regarding blood clotting, Ca2+, also known as factor IV, promotes the formation of blood clots during the initial clotting 
phase after wound formation and blood coagulation.54 Together with other coagulation factors, it triggers the intrinsic 
coagulation cascade, accelerates the synthesis of thrombin, and promotes early fibrin formation.55 For the regulation of 
neutrophil functions, during the inflammatory phase of wounds, at high levels, extracellular Ca2+ enters neutrophils to 
increase intracellular calcium, which then regulates neutrophilic functions.56 Regarding the initiation and promotion of 
the epithelial healing process, extracellular Ca2+ is a key regulator of epidermal homeostasis that initiates epithelial 
healing by inducing intracellular calcium and E-cadherin mediated signaling, ultimately providing calcium signals to 
promote keratinocyte adhesion, differentiation and survival.44 Ca2+ can regulate the differentiation of keratinocytes, 
induce keratinocyte differentiation and proliferation in the stratum corneum, which is important for the formation of the 
skin barrier.52,57 Keratinocyte proliferation is inversely proportional to the extracellular Ca2+ concentration, with faster 
cell proliferation at low Ca2+ concentrations and cell differentiation at high Ca2+ concentrations.58 High Ca2+ concentra
tions in the wound inhibit the proliferation and migration of keratinocytes and are believed to delay wound healing.59 To 
promote collagen synthesis and angiogenesis, Ca2+ is a key signaling molecule that regulates multiple signaling pathways 
involved in angiogenesis.60 Ca2+ influx into endothelial cells plays a crucial role in their migration, adhesion, prolifera
tion and angiogenesis.61 Higher Ca2+ concentrations in the wound can also increase collagen synthesis and blood vessel 
formation.62 Regarding promoting the functions of fibroblasts, fibroblasts primarily use intracellular Ca2+ for contraction, 
and this helps to reduce the size of wounds by mediating actin remodeling and cadherin recruitment at intracellular 
junctions.63,64 Extracellular Ca2+ supplementation increases cell metabolic activity, migration, Matrix metalloproteinase 
(MMP) production, collagen synthesis, cytokine release and decreases cell contractility. Ca2+ also maintains the functions 
of the epidermal barrier, which is rich in proteins and lipids.43 Regarding activation of the skin’s innate immune system, 
Ca2+ is one of the primary activators of natural killer (NK) cells, which are major players in the innate immune system of 
the skin. Individuals with diabetes are prone to defects in NK cell activity, ultimately leading to an increased risk of 
infection.65–67 NK cells are activated in the wound, exert cytotoxic effects, produce the immune-regulatory cytokines 
IFN-γ and TNF-α,68 activate macrophages and other immune cells. The activated macrophages participate in wound 
debridement and are the key regulatory factors involved in wound healing.69,70

Applications of Ca2+ for Wound Treatment
The principle of Ca2+ applications for wound treatment is that the dressing can decompose Ca2+ after contact with the 
wound, accelerate wound epithelialization and healing by promoting the immune response, increasing bacteriostasis and 
increasing the migration of skin fibroblasts, collagen synthesis and cytokine release.64,71–78 The names and main effects 
of dressings related to Ca2+ are shown in Table 1.

Na+/K+ and Chronic Diabetic Wounds
Na+/K+ in Wounds
Na+ plays a role in osmotic buffering and thermoregulation via sweat in the body.78,79 In the skin, Na+ exhibits the same 
gradient distribution from the center of the cuticle to the top surface of the outermost layer.80 Its spatial distribution along 
the outer layer of the epidermis suggests that sweat glands play a role in wound healing. Sweat could be a key source and 
carrier of Na+ to the outer epidermis, and the amount of Na+ in the stratum corneum of the skin increases during 
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sweating.81 Epithelial sodium channels are strongly expressed in all epidermal layers, except for the stratum corneum. 
Their expression increases in highly differentiated keratinocytes and play a major role in maintaining sodium 
homeostasis.82 During the mature stage of wound healing, after epithelialization, skin barrier dysfunction often leads 
to Na+ dysregulation due to wound dehydration, ultimately resulting in chronic inflammation.83

In the skin, K+ is involved in wound healing by regulating the terminal differentiation of keratinocytes and cuticle 
barrier functions.84 In contrast to Ca2+, K+ levels peak in the spinous layer and decrease to their lowest levels in the 
granular layer.85 K+ channels are activated in response to an increased extracellular Ca2+ concentration.86 Thus, an 
increase in the extracellular Ca2+ levels after skin barrier breakdown leads to an increase in K+. In turn, these K+ 

modifications induce the hyperpolarization of less differentiated keratinocytes. The two main epidermal potassium 
channels involved in maintaining potassium gradients are Kcnh2 and Kcnj8. Kcnh2 is a voltage-activated potassium 
channel that hyperpolarizes the plasma membrane by conducting K+ out of the cell, thereby maintaining 
keratinocytes.87 Kcnj8 channels are inwardly rectified K+ channels that maintain membrane potential 
depolarization.88 Interestingly, Kcnj8 activation and Kcnh2 inhibition promote wound healing and facilitate the net 
inflow of potassium into cells.

Effects of Na+/K+ in Wounds
Regarding the Na/K pump-mediated formation of transepithelial potential (TEP), the wound electric field is considered 
the most important guiding signal for wound healing,89 and the regulation of TEP can promote the wound healing by 
controlling the intensity of the wound electric field. In the skin epithelium, Na/K pumps are expressed asymmetrically to 
establish the TEP, which is sensitive to Na channel inhibitors. During each pumping cycle, the pump molecule releases 
three Na+ ions and takes up two K+ ions via consumption of the energy generated by the hydrolysis of one ATP 
molecule.90 Additionally, K+ can inhibit the differentiation of keratinocytes and increase the rate of Ca2+ inflow.

Applications of Na+/K+ for Wound Treatment
The principle of applying Na+ and K+ in wounds treatment is that the drugs themselves contain Na+ and K+, which can 
remove excess water in the edema-associated cells and tissue cells, and promote wound epithelialization and healing. The 
clinical application of Na+ and K+ deserves further research and development. The names and main effects of dressings 
related to Na+ and K+ are shown in Table 2.

Table 1 Ca2+ Treatment for Wounds

Dressing or materials Main effects

Calcium alginate dressing After dressing contact with wound, Ca2+ can activate NK cells, promote skin immune 
response and reduce the inflammatory response, up-regulate the proportion of type I/III 

collagen in diabetic wounds and promote wound healing.71–73

Chitosan calcium alginate dressing Inhibit inflammation and promote angiogenesis.74

Chitosan/gelatin/nanocrystalline 
cellulose/calcium peroxide films

Facilitate bacteriostasis against Escherichia coli.75

Calcium fluoride containing 

composite hydrogel dressings

Promote wound re-epithelialization and skin cell migration, increase inflammatory cell 

recruitment in vivo. Enhance migration of fibroblasts and endothelial cells, inhibited bacterial 

growth in vitro.64

Extracellular calcium and calcium releasing 

nanoparticles

Extracellular calcium can increase the migration of skin fibroblasts, collagen synthesis and 

cytokine release, reduce the contractility of cells.76

Polymeric composite dressings containing 

calcium-releasing nanoparticles

Promote angiogenesis, collagen synthesis, wound re-epithelialization and fibroblast 

migration, promote diabetic wound healing.77

Calcium phosphate nanoparticles Promote wound healing.80
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Other Ions and Chronic Diabetic Wounds
Ag+

The content of silver in the human body is very low (approximately 2 μg/L), and it can enter the body through inhalation, 
oral ingestion, skin contact and other routes. Ag is an inert metal that produces Ag+ when ionized via contact with an 
aqueous environment, and it is an effective antibacterial agent.93 Data from in vitro microbiological studies indicate that 
Ag+ at 1 ppm can exert a bactericidal effect.94 Its antimicrobial mechanisms include the following. The key to the 
antibacterial mechanism of Ag+ is its ability to induce the production of reactive oxygen species. After passing through 
the peptidoglycan cell wall and entering the bacterial cells, Ag+ destroys the DNA and bacterial proteins involved in key 
metabolic processes, ultimately resulting in the suppression of bacterial replication and death. Ag+ destroys the 
negatively charged structure of the bacterial surface, thus destroying or weakening the cell membrane structure and 
resulting in cell membrane property changes and cell death.95,96 Ag+ binds to membrane proteins and respiratory chains, 
thereby affecting bacterial ATP production, consumption, and death. Additionally, Ag+ promotes the proliferation of 
keratinocytes and fibroblasts.97 Moreover, Ag+ and chloride ions can combine to form AgCl, which is not conducive to 
healing, and thus, the maximum concentration of Ag+ in the wound is approximately 1 μg/mL.98 Moreover, Ag+ can 
exhibit a broad spectrum, high antibacterial activity, inhibit the activity of bacteria, fungi and viruses. It can also inhibit 
inflammation and infection, downregulate MMP and cytokine expression, improve active oxygen components and 
diabetic effects.99

The application of silver-based compounds for wound treatment began in the 1970s. The antibacterial properties of 
Ag+ play a major role in the effects of Ag-containing dressings. As such, silver-containing dressings are suitable for the 
treatment of chronic diabetic wounds and are the first choice when there is no clear indication of the bacterial type 
associated with diabetic foot infection. The names and main effects of dressings related to Ag+ are shown in Table 3.

Cu2+

Cu can catalyze the intracellular oxidation process and inhibit viruses and bacteria, and it exerts good antibacterial and 
antiviral effects for wound treatment.108 The average mass concentration of Cu2+ in normal human serum was reported as 0.94 

Table 2 Na+/K+ Treatment for Wounds

Dressing or materials Main effects

Sodium humate The production of sodium salt in an alkaline environment can shorten the treatment time and promote the healing 
of diabetic wounds.91

Liquid potassium saccharum Potassium chloride, sodium chloride and hypertonic sugar can remove the excess water in and between the 
edema cells, and this is conducive to the proliferation of histiocytic cells.92

Table 3 Ag+ Treatment for Chronic Diabetic Wounds

Dressing or materials Main effects

Nanocrystalline silver Bactericidal, anti-inflammatory, down-regulates MMPs and cytokine levels.100–102

Carboxymethyl cellulose silver Antibacterial, promotes fibrin production and provide a moist wound environment.97

Silver ion alginate dressing Absorbs exudates, maintains wound moisture, improves the regeneration ability of epidermal cells, accelerates 

the movement of epidermal cells, halts bleeding and stabilizes the biofilm, promotes wound healing.103,104

Sulfampyrimidine silver Reduces wound microorganisms.105

Silver nanoparticles Broad-spectrum and high antimicrobial activity against including, Bacteria: Escherichia coli, Klebsiella 

pneumoniae and Staphylococcus aureus; Fungi: Candida albicans and Aspergillus Niger; Viruses: hepatitis B and 

human immunodeficiency virus. 
Promotes wound healing and anti-diabetic effects.106,107
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±0.11 mg/L, and no significant change in the Cu2+ concentration was observed within seven days after wound formation. The 
concentration was found to gradually increase with the healing process and reached 1.24±0.25 mg/L after 21 days, and 
returned to normal levels after 42 days.109 Cu2+ can affect the activity of various enzymes, promote nucleic acid metabolism 
and protein synthesis, induce the synthesis of collagen fibers and collagen, all of which suggest its great value for wound 
treatment. Moreover, Cu2+ exhibits an antibacterial effect similar to that of Ag+, does not induce bacterial resistance. In 
clinical, enhanced Cu2+ activity can stimulate the formation of capillaries in wounds, and wound dressings containing Cu2+ 

can promote wound healing.110 The copper peptide formed by the combination of Cu2+ and glycine-histidine-lysine (GHK) is 
a copper complex isolated from the serum that promotes the synthesis of elastin and collagen, enhances blood vessel growth, 
improves antioxidant capacity, and stimulates the production of glucose-polyamines in the skin to assist skin proliferation and 
self-repair.111 In conclusion, Cu2+ has two main functions in the process of wound healing. 1) It exerts a protective effect on the 
skin and prevents oxidative damage to the skin, and 2) it triggers the recombination process of the skin and initiates the 
removal of damaged skin and the regeneration of normal skin.112

Fe2+/Fe3+

The physiological role of Fe in the skin is complex, it’s levels are not constant and increase during the process of 
aging.113 Fe accumulates in the epidermis, and its concentration increases from the outer layer to the inner layer, with the 
highest concentration reaching 7.33 ± 0.98 µmol/g in the basal layer of the epidermis.114 Fe ions homeostasis depends on 
the expression and activity of transcription factors, Fe regulatory and storage proteins. In chronic wounds, the Fe content 
is higher than that in acute wounds.115 The reason why chronic wounds are difficult to heal might be related to the anemia 
induced by chronic disease and the dysregulation of local cutaneous iron hemostasis. Fe exerts several effects on the 
wound surface. 1) Fe can affect the tissue oxygen content. Fe deficiency will lead to iron deficiency anemia, ultimately 
resulting in tissue hypoxia. Tissue hypoxia caused by iron deficiency anemia can inhibit fibroblast division, collagen 
production and new blood vessel growth, thus directly affecting wound healing.116 2) Fe can influence collagen synthesis. 
Fe deficiency results in harmful effects on collagen synthesis. Collagen attaches to growing cells, and the blockage of 
collagen synthesis negatively affects wound healing.117 3) Fe can also influence oxidative stress levels. When free Fe in 
the local environment is excessive, it can disrupt REDOX homeostasis by inducing oxidative stress, which plays a key 
role in wound healing. Fe mainly exists stably in the form Fe2+ (electron donor) and Fe3+ (electron acceptor),118 and it 
can affect all stages of wound healing. 4) Fe overload affects the activation of macrophages. ROS induced by the fenton 
reaction and pro-inflammatory cytokines secreted by persistent M1 macrophages cause a state of high oxidative stress 
and inflammation in the wounds.119 5) Fe overload leads to fibroblast senescence. Oxidative stress caused by iron 
overload is the main cause of fibroblast senescence and is related to the disruption of lysosomal functions, an increase in 
iron storage proteins, and a reduction in iron death sensitivity. Moreover, the persistence of senescent fibroblasts hinders 
the normal progression of chronic skin wound healing.120 Fe-chelating agents or pharmacological drugs containing Fe 
could thus provide future research directions for the treatment of chronic wounds. The names and main effects of 
dressings related to Cu2+ and Fe2+/Fe3+ are shown in Table 4.

Zn2+

The zinc (Zn) content is approximately 1.4–2.4 g in normal adults, and this can maintain the health of skin tissue and 
improve immune functions.126 When the skin tissue is damaged and a wound surface appears, the Zn content changes. In 
burn wounds, the Zn2+ content in skin tissue decreases on days 1–3 and increases on day 7.127 Large amounts of Zn2+ are 
consumed during wound healing and inflammation. Moreover, oral or local topical Zn supplementation can be used to 
increase the Zn2+ content and promote wound healing. Oral Zn supplementation is also beneficial for improving blood Zn 
levels, the application of Zn-containing medical dressings to wounds can help to increase the Zn2+ content in the skin.128 

Furthermore, Zn can promote an increase in capillaries, granulation tissue and fibroblasts129 and can effectively promote 
the healing of various wounds, such as burns, surgical wounds, lower limb ulcers, bedsores and skin inflammation.130–133 

Additionally, Zn is an important coenzyme involved in tissue repair and is a component of many proteins.134,135 It also 
plays an important role in coagulation,135 cellular immune regulation,134 epithelial regeneration and extracellular matrix 
deposition.136 Zn2+ can participate in the regulation of cell proliferation and differentiation or the preservation of 
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bacterial cell membrane structures,137 stimulate epidermal cell proliferation, promote collagen deposition by fibroblasts, 
inhibit inflammatory factors, promote cell proliferation and migration, promote granulation tissue formation and 
angiogenesis and accelerate the epithelialization process of the wound surface by regulating the inflammatory response 
in the skin.

Numerous clinical studies have demonstrated that the use of Zn-containing medical dressings on wounds can shorten 
healing time.127 In the context of wound treatment, Zn is primarily present in dressings in the form of zinc oxide (ZnO) 
or zinc sulfate (ZnSO4); here, ZnO particles are insoluble in water and dissolved in an aqueous solution containing 
proteins. Thus, Zn2+ can be released continuously and slowly into the wound, but ZnSO4 does not exhibit a slow-release 
effect.138

Mg2+

Mg2+ are the most abundant cations in cells,139 and is closely related to soft tissues. 1) The concentration of Mg2+ affects 
the migration and adhesion of human skin fibroblasts in a dose-dependent manner, 100 μmol/L and 1 mmol/L MgCl2 

solutions can significantly promote the migration of fibroblasts.140 2) Mg2+ can regulate the migration of human 
umbilical vein endothelial cells at a peak concentration of 100μmol/L, and it also promotes angiogenesis.141–145 3) 
Mg2+ promotes collagen synthesis, which is essential for the regeneration of mature wound tissue.139 The names and 
main effects of dressings related to Zn2+ and Mg2+ are shown in Table 5.

Table 4 Treatment Utilizing Cu2+ and Fe2+/Fe3+

Ions Dressing or materials Main effects

Cu2+ Cellulose fibers containing algae ultrafine 
powder

Upon contact with wound exudate, Cu2+ is released by ion exchange.121

Microbacterium nanfibrogenin and alginate Reactive to pH and possess antibacterial activities.122

Conventional dressing Reduces the risk of infection and antibiotic resistance.123

Fe3+ Iron chelator 

(Deferoxamine)

Most commonly used to treat iron over-load. Applied topically to the skin in 

experiments.124

Fe2+/Fe3+ Sodium alginate deferriamine hydrogel 

dressings

Promote angiogenesis and diabetic wound healing.125

Table 5 Treatments Utilizing Zn2+ and Mg2+

Dressing or materials Main effects

Alginate aerogel Increase the availability and anti-inflammatory activity of macrophages.146

Aloe vera-alginate film Promotes wound healing.147

Calcium alginate hydrogel 

and bacterial cellulose

Good bacteriostatic performance.148

Zinc chloride It may enlarge the wound surface.149

Silver and zinc cream Antibacterial zinc supplement, enhances enzyme activity, and promotes wound healing.128,150

GelMA/Mg/Zn hydrogel Good biocompatibility, promotes wound re-epithelialization, angiogenesis.151

Magnesium montmorillonite powder Accelerates the formation of vessels, collagen deposition and maturation.139

Intelligent microneedle patch with MgH2 Promote angiogenesis and reduce microvascular disease.152
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The Connection of pH and Ionic Environment
Currently, there is little relevance with respect to the effect of wound pH on the ionic environment. This section is 
a preliminary summary of the effects of pH on various ions that might not be present solely within the trauma, with the 
objective of providing ideas for exploring the effects of the ionic environment of subsequent traumas. Cardiomyocyte 
intracellular pH (pHi) and extracellular pH (pHO) affect Ca2+, leading to dynamic changes in intracellular calcium ions. 
Extracellular H+ ions inhibit Ca2+ currents, and intracellular H+ ions stimulate Ca2+ currents.153 The inhibition of Ca2+ 

inward flow occurs through Orai channels at a reduced pHO. Moreover, a decreased pH associated with the immune 
response promotes Ca2+ channel activation.154 Different concentrations of H2O2 have diverse effects on the kinetic 
parameters of the Na+ and K+ enzyme systems, which can lead to activation or inhibition of the corresponding enzymes, 
converting the energy of ATP into a transmembrane Na/K gradient, generating membrane potentials, and supporting 
excitability in neurons and myocytes.155 Further, H+/metal ion co-transportation, the extrusion of essential metal ions 
from phagocytic lysosomes, can activate antimicrobial functions in macrophages.156 In summary, there are complex 
effects of pHi and pHo on various ions inside and outside the cell. Keratinocytes are the key cells affecting wound 
healing, and the relationship between changes in intracellular and extracellular pH, the effects on various ions, and the 
roles in wound healing are worthy of further research. The effect of Ca2+, K+, Na+, Ag+,Cu2+, Fe2+/Fe3+, Zn2+ and Mg2+ 

on wound healing shown in Figure 3.

Figure 3 The effects of Ca2+,K+, Na+, Cu2+, Fe2+/Fe3+, Ag+, Zn2+ and Mg2+ on wound healing. Created in BioRender. Guo, J. (2024) https://BioRender.com/h85r722.
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Conclusion
The pH and ionic environment hold great potential in the treatment of wounds. It is critical to explore the pH changes and 
ionic environment that best favor chronic diabetic wound healing. As ions in wounds are dynamically changing, methods 
to capture the nodes of dynamic changes in the ionic environment may be the key to clinical treatment, and the 
development of smart dressings may be an important means of altering the ionic environment. It is worth noting that 
although metal ions have many advantages, certain ions may be toxic when the concentration is too much, and the 
amount of exogenous metal ions absorbed through the wound or skin needs to be further investigated.This manuscript 
provides new ideas and points for future clinical and basic research. How to regulate the local pH of wounds, the 
dynamic regulation of ion concentration and channels, the development of multiple ionic composite dressings, and the 
safety of metal ion absorption in wounds are the focus of future research, which are relevant in wounds treating.

Core Tip
Wound microenvironment is an important factor affecting wound healing, among which complex changes of ionic 
environment affect wound healing. In this paper, the effect of pH in wounds, concentrations of Ca2+, Na+, and K+ and 
external metal ions Ag+, Cu2+, Fe2+/Fe3+, Zn2+, and Mg2+ in normal and diabetic skin tissues, wound healing effects and 
the application of relevant dressings were reviewed. This paper provides a new idea and method for future clinical and 
basic research to explore the treatment of chronic diabetic wounds by adjusting ion concentration and channels.
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