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Abstract: Mushrooms of the Morchella genus exhibit a variety of biological activities. Two polysaccha-
rides (MSP1-1, 389.0 kDa; MSP1-2, 23.4 kDa) were isolated from Morchella sextelata by subcritical water
extraction and column chromatography fractionation. Methylation and nuclear magnetic resonance
analysis determined MSP1-1 as a glucan with a backbone of (1→4)-α-D-glucan branched at O-6, and
MSP1-2 as a galactomannan with coextracted α-glucan. Light scattering analysis and transmission
electron microscopy revealed that MSP1-1 possessed a random coil chain and that MSP1-2 had a
network chain. This is the first time that a network structure has been observed in a polysaccharide
from M. sextelata. Despite the differences in their chemical structures and conformations, both MSP1-1
and MSP1-2 possessed good thermal stability and showed antioxidant activity. This study provides
fundamental data on the structure–activity relationships of M. sextelata polysaccharides.

Keywords: Morchella sextelata polysaccharides; structure; conformation; antioxidant activity

1. Introduction

Natural polysaccharides have attracted extensive attention because of their advantages,
such as safety, biocompatibility, and in vivo biodegradability. Edible mushrooms are rich
sources of natural polysaccharides. Mushroom polysaccharides have wide applications in
the food industry as dietary supplements, nutritional promoters to flour and dairy products,
or edible films for packaging materials [1].

Polysaccharides possess high capacities for carrying biological information because of
their large structural variability. Chemically, most mushroom polysaccharides are glucans
(α-, β-, or α/β) or heteropolysaccharides. However, polysaccharides with the same chem-
ical structure can exhibit different biological activities after changes in conformation [2].
Information on the chemical composition, molecular weight (MW), primary structure
(monosaccharide composition, skeleton structure, and branching structure), and advanced
structure (three-dimensional chain conformation) of polysaccharides is important to un-
derstanding their activities. Therefore, the first step toward elucidating structure–activity
relationships is to determine the molecular structure.

Morchella spp., commonly known as morel, are edible and medicinal mushrooms that
are valued for their unique flavor, and are categorized as morphologically recognizable
mushrooms. In particular, Morchella sextelata belongs to the family of Morchellaceae, and has
been successfully cultivated and commercialized in China. Morel contains polysaccharides,
proteins, phenolics, and sterol derivatives [3], with polysaccharides being considered as the
most effective substance that endows morel with anti-inflammatory effects [4] to enhance
immunity [5] and reduce the risk of tumors and cancer [6,7]. Polysaccharides isolated
from morel are reported to have backbones of 4)-α-D-Glcp-(1→,→4)-α-D-Glcp-(1→6)-α-D-
Galp-(1→,→2)-α-D-Galp-(1→3,6)-α-D-Manp-(1→2,3,6)-α-D-Manp-(1→ [5,8–10]. However,
the fine structure of the polysaccharides in M. sextelata has rarely been investigated. Our
previous study demonstrated that polysaccharides could be extracted from M. sextelata
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using subcritical water, and that the extract (MSPSWE) had potent antioxidant and immune
activities [11]. This study aimed to obtain the structural features of purified MSPSWE.
Moreover, the in vitro antioxidant activities of polysaccharides were evaluated. These
results will be helpful for elucidating the structure–activity relationships of M. sextelata
polysaccharides and promoting their application in functional foods.

2. Materials and Methods
2.1. Materials and Pretreatment Methods

Cultured M. sextelata was collected from Hubei (China). The dried fruiting body of m.
sextelata was pulverized, filtered through an 80-mesh sieve, and preserved in a drying dish.

2.2. Fractionation of M. sextelata Polysaccharide

M. sextelata polysaccharide (MSPSWE) was extracted via subcritical water extraction
as described previously [11]. The MSPSWE (20 mg/mL) was introduced into a DEAE
Sepharose FF (2.6 × 60 cm) column and subsequently washed with running distilled water
(flow rate: 1.2 mL/min; liquid volume: 6 mL/tube). The carbohydrate content in the tubes
was monitored. Then, the main fraction (MSP1) was combined and freeze-dried. MSP1
(30 mg) was fractionated further by gel filtration chromatography on a Sepharose CL-6B
(1.6 × 90 cm) column. The sample (6 mg/mL) was applied to the column, eluted with
distilled water (flow rate: 0.3 mL/min; 3 mL/fraction), and the two fractions obtained were
labelled as MSP1-1 and MSP1-2.

2.3. General Analysis of MSP1-1 and MSP1-2

The average MWs of the samples were determined by high-performance gel filtration
chromatography (HPGFC). Each sample (50 mg) was dissolved in 10 mL 0.1 M NaNO3, and
the sample solution was analyzed using Waters 2695 high-performance liquid chromatog-
raphy (HPLC) system with an Ultrahydrogel™ linear (300 mm × 7.8 mm id) gel-filtration
column at 40 ◦C. The MWs of MSP1-1 and MSP1-2 were estimated based on the standard
curve (Lg MW = −0.517x + 13.3, R2 = 0.9953; x: retention time) acquired using standard
dextrans (T-300, T-150, T-10, and T-5 and glucose).

Ultraviolet-visible (UV–vis) spectroscopy was performed on the purified polysaccha-
rides (1.0 mg/mL each) using a Shimadzu UV-2550 spectrophotometer (Shimadzu, Japan).
The scan-related parameters were set as scan interval 0.5 nm and scan range 200–400 nm.

The functional groups of MSP1-1 and MSP1-2 were analyzed using a Bruker Vertex
70 (Billerica, MA, USA) Fourier transform infrared (FTIR) spectrometer with a vibration
region of 4000–400 cm−1. Polysaccharides were incorporated with KBr (1:100) for analysis.

Constituent sugar analysis of the polysaccharide fractions was conducted using
an ion chromatography system (ICS-5000) equipped with a DionexCarbopacTM PA20
(150 mm × 3.0 mm id) column and pulsed amperometric detector (PAD). Each sample
(10 mg) was precisely weighed and hydrolyzed for 3 h with trifluoroacetic acid (3 M,
10 mL) at 120 ◦C. The acid hydrolysate was dried under nitrogen and mixed thoroughly
with 5 mL distilled water. The mixture (100 µL) was then drawn into deionized water
(900 µL) and centrifuged. The supernatant (5 µL) was analyzed by ICS-5000 and eluted
with a mobile phase (H2O, 15 mM NaOH, and 100 mM sodium acetate solution) at 30 ◦C
and a set elution flow rate of 0.3 mL/min.

2.4. Methylation

The samples were methylated using the method described previously [12]. MSP1-1
and MSP1-2 were permethylated according to the following steps: first, 10 mg of MSP1-1
or MSP1-2 was weighed and dissolved in 500 µL of DMSO, and 50 µL of DMSO/NaOH
solution (120 mg/mL) was added to the sample solution to initiate a reaction. After 30 min,
iodomethane (50 µL) was added and reacted for 1 h. The reaction was terminated by
the addition of deionized water (1 mL). The product was subsequently extracted using
dichloromethane (500 µL) and dried with nitrogen. Trifluoroacetic acid (2 M) was added to
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the product after methylation was completed, and a hydrolysis procedure was performed
(reaction at 121 ◦C for 90 min). Finally, the obtained product was reduced with 2 M
ammonia and 1 M NaBD4, and acetylated with acetic anhydride. To detect the ultimate
derivatives, an Agilent 7890A-5977B gas chromatography–mass spectrometry (GC-MS)
instrument (Santa Clara, CA, USA) with a BPX70 (25 m × 0.22 mm × 0.25 µm, Trajan)
was employed with high-purity helium as carrier gas at an injection volume of 1 µL. The
temperature of the BPX70 column was initially 140 ◦C (held for 2.0 min) and then ramped
up to 230 ◦C (held for 3 min) using a 3 ◦C/min program. The peaks of the derivatives were
identified from the relative retention times and mass spectral data.

2.5. Nuclear Magnetic Resonance (NMR) Spectroscopy

The NMR data were obtained using a 500 MHz Bruker NMR spectrometer (Zurich,
Switzerland) at 25 ◦C. MSP1-1 and MSP1-2 (20 mg each) were dissolved in D2O solvent
and lyophilized. The dried polysaccharides (20 mg) were transferred to a standard 5 mm
probe after dissolution in 500 µL D2O solvent. The operating frequencies of 1H NMR and
13C NMR were 500 and 125 MHz, respectively. The acquisition times were set to 16 times
for 1H NMR spectra, 1024 times for 13C NMR spectra, 12 times for 1H/1H correlation
spectroscopy (COSY), 12 times for heteronuclear single quantum correlated spectroscopy
(HSQC), 32 times for nuclear overhauser effect spectroscopy (NOESY), and 64 times for
heteronuclear multiple bond correlation (HMBC) spectra. MestReNova software (Version:
9.1.0-14011; Mestrelab Reserch, Santiago de Compostela, Spain) was used to process the
NMR data of the polysaccharide samples.

2.6. Congo Red Test

The presence of helical structures in the polysaccharide samples was tested using
a method described by Jia et al. [13]. That is, the sample solution (1.0 mg/mL, 1.0 mL),
Congo red (80 mM, 1.0 mL), and NaOH (1.0 M) were mixed until the NaOH concentration
in the mixed solution gradually increased to 0.5 M. The blank control was a Congo red
solution without polysaccharides. The UV-2550 spectrometer was run to scan the maximum
absorption wavelength (λmax) at each NaOH concentration.

2.7. Light Scattering Measurements and Morphological Observations

The polysaccharide samples were dissolved in 0.9% NaCl solution (3 mg/mL) for
conducting dynamic light scattering (DLS) measurements using a Brookhaven light scat-
tering spectrometer (BI-200SM, Brookhaven, GA, USA) at a wavelength of 532 nm and a
90◦ angle. The sample solutions were diluted to varying concentrations (0.1–0.75 mg/mL)
by using 0.9% NaCl solution and stirred for 24 h after each dilution. The solutions were
measured at angles of 50◦–140◦ for static light scattering (SLS). All solutions were purified
(filter: 0.22 µm) three times before testing. The obtained data were fitted using Berry plots.

The chain conformation of the polysaccharides was assessed using a Tecnai G2 Spirit
Bio transmission electron microscope (TEM; FEI, Portland, OR, USA) at 80 kV. MSP1-1 or
MSP1-2 was dissolved in 0.9% NaCl solution to achieve a final concentration of 5 µg/mL. A
drop of the polysaccharide solution was deposited on the support carbon film (200 mesh),
dried in the air, and stained with 0.2% phosphotungstic acid.

2.8. Thermal Analysis

Simultaneous thermogravimetric and differential scanning calorimetry (TG-DSC) was
performed using an STA 449 F3 thermogravimetric analyzer (Netzsch, Selb, Germany). The
samples (5 mg each) were sealed in an Al2O3 crucible and heated from 25 ◦C to 600 ◦C
(heating rate: 10 ◦C/min) under a nitrogen atmosphere.
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2.9. Antioxidant Activity

The antioxidant activity (DPPH radical scavenging and ferric reducing activity) test of
the polysaccharides was measured as described previously [11]. The specific procedures
are supplied in supplementary data.

2.10. Statistical Analysis

All data were obtained using three independent trials, and results were expressed as
mean ± standard deviation. One-way analysis of variance (ANOVA) was performed using
SPSS 18.0 software. The Tukey test results were significantly different in cases where the
p-values were less than 0.05.

3. Results and Discussion
3.1. Structural Characterization of MSP1-1 and MSP1-2

MSPSWE-derived MSP1-1 (43.3%, w/w) and MSP1-2 (18.2%, w/w) were separated as
shown in Figure S1 (Supplementary date). The total carbohydrate contents of MSP1-1
and MSP1-2 were 98.0% ± 0.8% and 98.7% ± 0.7%, respectively. The extracts showed no
absorption at 260–280 nm, confirming that MSP1-1 and MSP1-2 were free of nucleic acids
and proteins (shown in supplementary date, Figure S2).

The HPGFC profiles of MSP1-1 and MSP1-2 (Figure 1A) both yielded single peaks,
indicating their homogeneity. The MWs of MSP1-1 and MSP1-2 were calculated as 389
and 23.4 kDa, respectively, based on the retention times of dextran standards. Constituent
sugar analyses showed that MSP1-1 contained only glucose, whereas MSP1-2 contained
mostly glucose (46.0 mol%), mannose (37.5 mol%), and galactose (16.0 mol%), with a small
amount of glucosamine (0.5 mol%) (Figure 1B).
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Figure 1. (A) High-performance gel filtration chromatography (HPGFC) elution profiles of MSP1-1
and MSP1-2. (B) Chromatographic analysis results of mixed monosaccharide standard, MSP1-1,
and MSP1-2.

The FT-IR spectra of MSP1-1 and MSP1-2 exhibited the characteristic peaks of gen-
eral polysaccharides (Figure 2). The common bands emerged at 3400, 2931, 1640, and
1406 cm–1, representing the absorptions of the O–H, C–H, associated water, and C–H
groups, respectively [14]. The C–O–C and C–O–H groups in the pyran structure generated
typical peaks at 1157, 1080, and 1024 cm–1 [15]. MSP1-1 exhibited unique absorptions at
931, 854, and 763 cm–1 related to α-glucans [16]. In comparison, an additional absorption
peak at 813 cm–1 in MSP1-2 indicated the presence of mannose [17].
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Figure 2. Fourier transform infrared (FT-IR) spectra of MSP1-1 and MSP1-2.

3.2. Methylation Analysis of MSP1-1 and MSP1-2

The GC-MS results for the methylation analysis are shown in Table 1 and Figure S3
(Supplementary date). Four linkage mechanisms were identified for MSP1-1: t-Glc(p), 6-
Glc(p), 4-Glc(p), and 4,6-Glc(p); and eight linkage mechanisms for MSP1-2: t-Glc(p), t-Gal(f),
2-Man(p), 6-Man(p), 5-Gal(f ), 4-Glc(p), 2,6-Man(p), and 4,6-Glc(p). The degree of branching
(DB) values of MSP1-1 and MSP1-2 were calculated as 28.3% and 34.6%, respectively,
according to the method reported by Hawker and Lee [18].

Table 1. Glycosidic linkage type composition of MSP1-1 and MSP1-2 based on gas chromatography–
mass spectrometry (GC-MS) results.

Sample Retention
Time (min) PMAAs Linkage Pattern Relative

Percentage (%)

MSP1-1 9.3 1,5-di-O-acetyl-2,3,4,6-tetra-
O-methyl glucitol t-Glc(p) 15.9

14.2 1,5,6-tri-O-acetyl-2,3,4-tri-
O-methyl glucitol 6-Glc(p) 10.9

14.5 1,4,5-tri-O-acetyl-2,3,6-tri-
O-methyl glucitol 4-Glc(p) 60.8

18.8 1,4,5,6-tetra-O-acetyl-2,3-di-
O-methyl glucitol 4,6-Glc(p) 12.4

MSP1-2 9.4 1,5-di-O-acetyl-2,3,4,6-tetra-
O-methyl glucitol t-Glc(p) 10.6

9.9 1,4-di-O-acetyl-2,3,5,6-tetra-
O-methyl galactitol t-Gal(f ) 8.0

12.9 1,2,5-tri-O-acetyl-3,4,6-tri-
O-methyl mannitol 2-Man(p) 15.1

14.2 1,5,6-tri-O-acetyl-2,3,4-tri-
O-methyl mannitol 6-Man(p) 7.7

14.2 1,4,5-tri-O-acetyl-2,3,6-tri-
O-methyl 5-Gal(f ) 5.9

14.6 1,4,5-tri-O-acetyl-2,3,6-tri-
O-methyl 4-Glc(p) 36.7

18.8 1,2,5,6-tetra-O-acetyl-3,4-di-
O-methyl 2,6-Man(p) 6.3

18.9 1,4,5,6-tetra-O-acetyl-2,3-di-
O-methyl 4,6-Glc(p) 9.7
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3.3. NMR Analysis of MSP1-1 and MSP1-2

Detailed structural information regarding MSP1-1 and MSP1-2 was elucidated based
on the chemical shifts in the NMR spectra. The 1H NMR spectrum of MSP1-1 (Figure 3A)
reveals a large number of resonance signals of overlapping protons in the δ 3.0–5.5 ppm
region. The signals appear in the anomeric region at δ 5.35, δ 5.31, δ 4.92, δ 4.92, δ 5.18, and
δ 4.58 ppm, and are denoted by A, B, C, D, Rα, and Rβ, respectively. In the 13C spectrum of
MSP1-1 (Figure 3B), the anomeric carbon signals of residues A, B, C, D, Rα, and Rβ were
determined to be at δ 100.0, δ 100.0, δ 98.5, δ 99.9, δ 92.0, and δ 95.8 ppm, respectively.
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correlation spectroscopy (COSY), (D) heteronuclear single quantum correlated spectroscopy (HSQC),
(E) heteronuclear multiple bond correlation (HMBC), and (F) nuclear overhauser effect spectroscopy
(NOESY); (G) proposed structures of MSP1-1.

After the origin of the anomeric signal was determined, the NMR spectra and methyla-
tion results were compared with the reported data for similar glycosyl substitutions [5,19].
All chemical shifts were assigned to the residues of MSP1-1 and given in Table 2.
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Table 2. 1H and 13C NMR chemical shifts for MSP1-1 and MSP1-2 in D2O.

Sample Sugar Residue
Chemical Shifts (ppm) a

1 2 3 4 5 6a 6b

MSP1-1

A →4)-α-D-Glcp-(1→ H 5.35 3.59 3.92 3.60 3.80 3.73 3.80
C 100.0 71.7 73.4 77.1 71.3 60.7

B →4,6)-α-D-Glcp-(1→ H 5.31 3.56 4.01 3.62 3.65 3.37
C 100.0 71.6 70.2 77.1 72.7 69.4

C α-D-Glcp-(1→ H 4.92 3.52 3.66 3.36 3.95 3.73 3.80
C 98.5 72.8 72.9 73.0 74.4 60.6

D →6)-α-D-Glcp-(1→ H 4.92 3.54 3.64 3.46 3.93 3.77
C 99.9 71.3 73.9 69.5 70.8 68.3

Rα →4)-α-D-Glcp H 5.18 3.48 3.86 3.63 3.51 3.66
C 92.0 71.7 71.3 76.1 74.7 62.5

Rβ →4)-β-D-Glcp H 4.58 3.20 3.69 3.80 3.55 3.66
C 95.8 74.1 72.9 76.9 72.9 62.5

MSP1-2

A →2)-α-D-Manp-(1→ H 5.20 4.06 3.92 3.67 3.93 3.73 3.84
C 100.9 78.5 70.3 67.2 73.5 60.9

B →6)-α-D-Manp-(1→ H 5.02 4.01 3.91 3.68 3.93 3.79
C 102.3 70.3 70.6 66.8 73.3 66.6

C →2,6)-α-D-Manp-(1→ H 5.08 4.02 3.89 3.69 3.89 3.77
C 98.4 78.6 69.0 66.1 74.6 66.5

D α-D-Glcp-(1→ H 4.93 3.53 3.67 3.39 3.62 3.73 3.82
C 98.7 73.3 72.9 69.4 74.2 60.7

E →4)-α-D-Glcp-(1→ H 5.36 3.58 3.93 3.61 3.81 3.83 3.71
C 99.7 71.7 73.4 77.1 71.1 60.6

F →4,6)-α-D-Glcp-(1→ H 5.31 3.57 3.92 3.62 3.93 3.66
C 99.9 71.8 73.3 77.2 70.3 67.2

G →5)-β-D-Galf -(1→ H 5.34 4.11 4.00 3.95 3.9 3.65 3.80
C 108.4 81.5 78.7 82.7 78.0 62.7

H β-D-Galf -(1→ H 5.18 4.13 4.00 4.02 3.82 3.66 3.80
C 109.5 81.6 79.8 82.6 72.4 62.7

a The overlapping resonances in the table may be interchangeable. a and b represent the chemical shift signals of
the two hydrogens at position 6.

The HMBC spectrum (Figure 3E) reveals the following correlations: A H-1/A C-4,
A H-1/B C-4, and A H-4/A C-1. The linkages of the polysaccharide samples are further
verified by the NOESY spectrum (Figure 3F). Results of the methylation and NMR analyses
indicate that MSP1-1 is composed of residue A through a 1→4 glycosidic bond, and that
residues A and B are connected to form the sugar backbone. On the branch, residues B and
C are connected to residue D through position 6. The possible repeating structural units of
MSP1-1 are shown in Figure 3G.

Similarly, as shown in Figure 4A–F, the spectra of MSP1-2 reveal eight residues with
signals at δ 5.20/100.9, δ 5.02/102.3, δ 5.08/98.4, δ 4.93/98.7, δ 5.36/99.7, δ 5.31/99.9,
δ 5.34/108.4, and δ 5.18/109.5 ppm labeled as A–H. The monosaccharide composition,
methylation analysis results, and chemical shifts of the abovementioned anomeric pro-
tons and anomeric carbons indicate that residues A–F possess α-configurations, and that
residues G and H are present in β-configurations [20,21]. The COSY, HSQC, HMBC, and 1D
spectra and methylation results were compared with the reported data for similar glycosyl
substitutions [20,22], and the corresponding 1H and 13C chemical shifts in MSP1-2 are given
in Table 2.

The HMBC (Figure 4E) and NOESY spectra (Figure 4F) identify sequences between
sugar residues in MSP1-2. A cross-peak between D H-1 and F H-6 indicates that sugar
residue D is connected to sugar residue F by an α-1,6 glycosidic bond. Observed cross-peak
of G H-1/C H-6 implies the existence of G→C linkage. In addition, the interaction between
B H-1/C H-6 confirms the B→C linkage. Similarly, the observed cross-peaks of A H-1/B
C-6, F H-1/E C-4, and H H-1/G C-5 confirm the A→B, F→E, H→G linkage. Overall, we
infer that MSP1-2 is a polymer with a skeleton consisting of 1,2-, 1,6-, 1,2,6-linked α-D-Manp
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residues and (1→4)-α-D-glucose. The possible sequence fragments present in MSP1-2 are
shown in Figure 4G.
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MSP1-1 and MSP1-2 share similar structures with some polysaccharides displaying
unique biological activities. The glucan with a backbone of→4)-α-D-Glcp→ has been found
in Cordyceps sinensis [23], Agaricus blazei [24], ginger [25], Dictyophora echinovolvata [19],
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quinoa [26], and Glycyrrhiza glabra [27]. The structure of MSP1-1 is closer to that of Morchella
importuna polysaccharide (MIPB50-S-1) [5], which exhibits immunomodulatory activity.
They have the same main chain and branch structure but different DBs and MWs. A
polysaccharide consisting of α-mannose and α-glucose in the structure has been reported in
Boletus edulis [28] and Hippophae rhamnoides L. [29]. A polysaccharide isolated from Boletus
edulis is predominated by α-1, 3-linked Glcp and α-1, 4-linked Manp residues, which can
adsorb heavy metals. A heteropolysaccharide purified from Hippophae rhamnoides L. with a
backbone of α-1, 4-linked Glcp, α-1,4,6-linked Glcp, and α-1, 4-linked Manp residues have
shown an intestinal protective effect. Therefore, further study on MSP1-1 and MSP1-2 may
reveal their potential bioactivities.

3.4. Conformation and Morphological Properties in Solution
3.4.1. Triple Helix Structural Determination

Congo red solution is an indicator for identifying the triple helix conformations in
polysaccharides [30]. With an increasing concentration of NaOH, no characteristic red
shift was observed at λmax related to the polysaccharide–Congo red complexes (shown in
supplementary date, Figure S4), indicating that neither MSP1-1 nor MSP1-2 had a triple
helix structure.

3.4.2. Conformational Characteristics

Polysaccharides tend to aggregate in water, and the chain conformation in 0.9% NaCl
solution was studied by light scattering (shown in supplementary date, Figure S5). MSP1-1
showed a single particle size distribution with a hydrodynamic radius (Rh) of 28.89 nm.
MSP1-2 aggregated in 0.9% NaCl solution and yielded a bimodal size distribution with a
Rh of 34.87 nm. The calculated values of the conformational parameters are presented in
Table 3. The second virial coefficient (A2) of MSP1-1 is positive, indicating that 0.9% NaCl
solution is a good solvent, whereas A2 is negative for MSP1-2, showing that aggregates
existed in MSP1-2/0.9% NaCl solution [31]. Both MSP1-1 and MSP1-2 had a random coil
conformation as their structure parameter ρ = Rg/Rh values (Rg: radius of gyration) were
calculated as 1.89 and 1.46, respectively [32].

Table 3. Molecular parameters of MSP1-1 and MSP1-2 derived from Berry plots.

Sample A2 (cm3mol/g2) Mw (Da) Rg (nm) Rh (nm) ρ (Rg/Rh)

MSP1-1 5.4 × 10−3 1.37 × 105 54.6 28.9 1.89
MSP1-2 −4.5 × 10−3 1.65 × 104 51.0 34.9 1.46

The chain conformations of MSP1-1 and MSP1-2 were verified using TEM in 0.9% NaCl
solution. In Figure 5A, MSP1-1 resembles a random coil chain, which is consistent with
the light scattering results. MSP1-2 exhibits a unique fishnet-like conformation (Figure 5B).
Similar aggregates have been reported in lentinan polysaccharides, and the driving force
for this aggregation was hydrogen bonding [33]. This is the first time that a network
structure has been observed in an M. sextelata polysaccharide. In this conformation, the
polysaccharide may exhibit utility as a carrier.

3.5. Thermal Properties

TGA curves indicate two-stage decomposition for both MSP1-1 and MSP1-2 (Figure S6).
The first stage of degradation occurred before 100 ◦C due to the rapid evaporation of free
water [34] with a weight loss of 10.49% for MSP1-1 and 8.89% for MSP1-2. The second
degradation occurred in the temperature interval of 140–400 ◦C, and the weight loss of
MSP1-1 and MSP1-2 were 74.56% and 82.49%, respectively. This is related to the thermal de-
composition of the polysaccharides [35]. The derivative thermogravimetric curves revealed
that the maximal degradation of MSP1-1 and MSP1-2 occurred at 308.50 ◦C and 309.01 ◦C,
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respectively. This thermal behavior was similar to that observed for polysaccharides
derived from Ribes nigrum L. [36] and Ocimum album L. seed [37].
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Figure 5. Transmission electron microscopy (TEM) images of (A) MSP1-1 and (B) MSP1-2 in 0.9%
NaCl solution.

The DSC thermograms of MSP1-1 and MSP1-2 were consistent with the TGA results,
revealing two marked endothermic transitions attributed predominantly to the dehydration
and thermal decomposition of the polysaccharides. Degradation began at 261.70 ◦C for
MSP1-1 with a maximal peak at 305.06 ◦C, and at 279.69 ◦C for MSP1-2 with a maximal peak
at 315.57 ◦C. The higher decomposition temperature of MSP1-2 indicates that it has better
thermal stability compared to MSP1-1 [38]. Additionally, the higher endothermic enthalpy
change (∆H = 263.86 J/g) confirms that MSP1-2 possesses better thermal stability [39],
which may be related to its shorter chain.

3.6. Antioxidant Activity In Vitro

Compared to the positive control group (Vc), MSP1-1 and MSP1-2 can scavenge
free DPPH radicals (Figure 6A). The scavenging activity of samples was correlated with
increasing concentration (0.5–4 mg/mL). At a concentration of 4 mg/mL, the scavenging
activities of MSP1-1 and MSP1-2 were 43.41% and 58.09%, respectively, suggesting that
MSP1-2 has higher antioxidant activity than MSP1-1 (p < 0.05). This activity is related to the
chemical structure of MSP1-2 because polysaccharides containing glucose and mannose
were reported to have good antioxidant activity. Moreover, the higher molecular weight of
MSP1-1 affects its scavenging ability [12,40]. The scavenging activity of pure M. sextelata
polysaccharide was significantly decreased compared with that of crude polysaccharides
at the corresponding concentration (p < 0.05) [11] because some active substances with
antioxidant properties have been removed in the purification process. The ferric reducing
abilities of MSP1-1 and MSP1-2 were significantly decreased compared to that of the Vc
group (p < 0.05). However, they still showed a certain reducing ability, which was higher
than that of Laminaria japonica polysaccharides at 2.0 mg/mL [41]. In summary, these results
showed that M. sextelata polysaccharides have antioxidant capacity and may be potentially
used as a natural antioxidant.
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4. Conclusions

In the present study, we successfully isolated two novel polysaccharides (MSP1-1 and
MSP1-2) via the subcritical water extraction from M. sextelata fruiting bodies. The structure,
chain conformation, and thermal stability of these two polysaccharides were investigated
using different analytical methods. MSP1-1 displayed random coil chains with a backbone
of α-1, 4-linked Glcp, which was substituted at the O-6 by a short branch. MSP1-2 showed a
network chain with two domains, a backbone of α-1, 2-linked Manp and α-1, 6-linked Manp,
and another α-1, 4-linked Glcp backbone. Both polysaccharides showed antioxidant activity
with some variations due to differences in their chemical structures and molecular weights.
This research outcome will be beneficial to the development of green applications in the
food and medical sciences. The antioxidant activity in vivo of M. sextelata polysaccharides
requires additional investigations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11070982/s1, Figure S1: Elution profiles of the Morchella
sextelata polysaccharides extracted using subcritical water extraction (MSPSWE) on a DEAE-Sepharose
fast flow column (A) and Sepharose CL-6B column (B); Figure S2: UV spectra of MSP1-1 and MSP1-2;
Figure S3: GC–MS profiles of partially methylated alditol acetates of MSP1-1 and MS fragments (A);
GC–MS profiles of partially methylated alditol acetates of MSP1-2 and MS fragments (B); Figure S4:
Maximum absorption wavelength when MPS1-1 or MPS1-2 were mixed with Congo red at various
NaOH concentrations; Figure S5: Hydrodynamic radius distributions of MSP1-1 (A) and MSP1-2
(B); Berry plots of MSP1-1(C) and MSP1-2 (D) in 0.9%NaCl solution determined from static light
scattering measurements; Figure S6: Thermal properties of polysaccharides extracted from Morchella
sextelata. (A) MSP1-1, and (B) MSP1-2.
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HPGFC: high-performance gel filtration chromatography; DEAE FF, DEAE Se-pharose Fast
flow; HPLC, high-performance liquid chromatography; UV–vis, Ultraviolet-visible; FTIR, Fourier
transform infrared; PAD, pulsed amperometric detector; GC-MS, gas chromatog-raphy–mass spec-
trometry; Fuc, fucose; GalN, galactosamine; Rha, rhamnose; Ara, arabinose; GlcN, glucosamine; Gal,
galactose; Glc, glucose; Xyl, xylose; Man, mannose; Fru, fructose; Rib, ri-bose; GalA, galacturonic acid;
GulA, guluronic acid; GlcA, glucuronic acid; ManA, mannuronic acid; TEM, transmission electron
microscopy; λmax, maximum absorption wavelength; DLS, dynamic light scattering; SLS, static
light scattering; TG-DSC, thermogravimetric and differential scanning calorimetry; A2, the second
virial coefficient; COSY, 1H/1H correlation spectroscopy; HSQC, heteronuclear single quantum corre-
lated spectroscopy; NOESY, nuclear overhauser effect spectroscopy; HMBC, heteronuclear multiple
bond correlation.
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