
 International Journal of 

Molecular Sciences

Article

DeepMiR2GO: Inferring Functions of Human
MicroRNAs Using a Deep Multi-Label
Classification Model

Jiacheng Wang 1, Jingpu Zhang 2 , Yideng Cai 1 and Lei Deng 1,3,*
1 School of Computer Science and Engineering, Central South University, Changsha 410083, China;

jiachengwang@csu.edu.cn (J.W.); iamcyd2017@csu.edu.cn (Y.C.)
2 School of Computer and Data Science, Henan University of Urban Construction, Pingdingshan 467000,

China; zhangjp@csu.edu.cn
3 School of Software, Xinjiang University, Urumqi 830008, China
* Correspondence: leideng@csu.edu.cn; Tel.: +86-188-7492-9663

Received: 26 October 2019; Accepted: 26 November 2019; Published: 30 November 2019 ����������
�������

Abstract: MicroRNAs (miRNAs) are a highly abundant collection of functional non-coding RNAs
involved in cellular regulation and various complex human diseases. Although a large number of
miRNAs have been identified, most of their physiological functions remain unknown. Computational
methods play a vital role in exploring the potential functions of miRNAs. Here, we present
DeepMiR2GO, a tool for integrating miRNAs, proteins and diseases, to predict the gene ontology
(GO) functions based on multiple deep neuro-symbolic models. DeepMiR2GO starts by integrating
the miRNA co-expression network, protein-protein interaction (PPI) network, disease phenotype
similarity network, and interactions or associations among them into a global heterogeneous network.
Then, it employs an efficient graph embedding strategy to learn potential network representations of
the global heterogeneous network as the topological features. Finally, a deep multi-label classification
network based on multiple neuro-symbolic models is built and used to annotate the GO terms of
miRNAs. The predicted results demonstrate that DeepMiR2GO performs significantly better than
other state-of-the-art approaches in terms of precision, recall, and maximum F-measure.

Keywords: MicroRNA function; heterogeneous network; graph embedding; deep multi-label
classification

1. Introduction

MicroRNAs (miRNAs) are an abundant collection of short non-coding RNAs encoded by
endogenous genes about 20∼25 nucleotides in length [1]. They play vital roles in regulating mRNA
translation and suppressing post-transcriptional modification in human beings and other organisms
by base-pairing with mRNA molecules [2]. Since researchers reported lin-4 and let-7 RNAs encoded in
worms and mammals, thousands of miRNAs have been discovered in a multitude of organisms [3–5].
The number of identified miRNAs has increased significantly in recent years, with a massive amount
of research focused on this field [6,7]. Accumulating evidence demonstrates that miRNAs are involved
in numerous biological processes, including regulation of cell proliferation, cell death, development,
differentiation, and immune reactions [1,8]. Numerous studies have indicated that miRNAs are also
related to various diseases [9–12]. However, no method can detect the function of miRNAs at a large
scale, and the functions of most miRNAs remain unknown. Thus, the annotation of unknown miRNA
functions has become a research hotspot within biology and bioinformatics.

Upregulation or downregulation analysis of high-throughput miRNA expression profiles is
primarily employed to identify the functions of miRNAs [13]. Lu et al. adopted an miRNA expression
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profiling method based on beaded flow cytometry to perform systematic expression analysis on
mammalian miRNA and found a general downregulation of miRNA in tumours. In addition,
building the genome-wide interaction maps of molecules for analysis of miRNA mechanisms is also
an indispensable approach for high-throughput sequencing technology [14]. The molecular functions
of miRNAs can be regarded as multi-type functions of the interactions between miRNAs and other
biological molecules (e.g., DNAs, proteins, RNAs, etc.). Focusing on exploring RNA-DNA interactions,
various experimental methods have been proposed, such as capture hybridization analysis of RNA
targets (CHART) developed by Simon et al. [15]. In addition to DNA, RNA-protein interactions
generally play a vital role in a substantial number of cellular processes [16,17]. Combining those
interactions is usually necessary to investigate the functions of miRNAs. However, identifying
functions of miRNA by experimental approaches is considerably expensive and progressing slowly.

With abundant useful data regarding the produced miRNAs, many computational methods
have been proposed for inferring miRNA function. Some approaches, based on the theory that genes
with similar expression schemas across various different tissues tend to share identical or similar
biological functions [18,19], analyse the miRNA co-expression patterns to investigate their functional
roles [20]. In addition, many researchers focused on elucidating miRNA functions through target
gene prediction in view of the relations between functions of miRNA and functions of their target
gene production [21,22]. Benjamin et al. designed a tool called TargetScan [23]. TargetScan combined
sequence comparison analysis with the thermodynamic model of RNA-RNA duplex interactions to
infer the mRNAs of vertebrate miRNAs, and predicted diverse molecular functions of 121 miRNAs by
assessing target gene functions. DIANA-microT [24], a tool developed by Maragkakis et al. to predict
target genes of miRNA, further elucidated miRNA functions through analysing Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways of predicted targets. However, there are two critical challenges
for the above methods. First, because the majority of the predicted target genes of miRNAs are
negative, the predictive performances are not very reliable. Second, the methods based on predicting
target genes of miRNAs overlook other important biological data, such as the expression profiles of
miRNAs [25]. Hence, the performances of these tools are not satisfactory or reliable. Backes et al. [26]
proposed an efficient approach, called miEAA, to infer functions of miRNA based on enrichment
analysis. However, a significant challenge to miEAA is that miRNAs usually do not function in
isolation. In general, one miRNA may act on numerous target genes, and one target gene may
be regulated by many miRNAs together [27,28]. The potential associations between miRNAs and
co-expression patterns also play an essential role in understanding the biological mechanisms and
inferring the physiological functions of miRNAs. Moreover, miEAA ignores the significant associations
of miRNAs with proteins and diseases, which provide sufficient latent information for annotating
miRNAs. To address these challenges, we recently designed a novel tool, named PmiRGO [29],
to predict the gene ontology (GO) terms of miRNAs on a large scale by integrating multiple biological
molecule networks, including the miRNA co-expression similarity network, protein-protein interaction
(PPI) network, and their interaction network.

In this paper, we propose a novel approach, called DeepMiR2GO, which utilizes multiple
deep neuro-symbolic models to annotate gene ontology (GO) functions of miRNAs at a large
scale. First, we build a global miRNA-protein-disease network by combining three biological entity
networks, including miRNA co-expression similarity network, PPI network, and disease similarity
network, via interaction or association networks among them. Secondly, we apply an efficient graph
embedding algorithm, LINE [30], to generate low-dimensional and higher-order structural features
of the heterogeneous network. Finally, we construct a deep neuro-symbolic model for every GO
result that resembles dependencies and the structure among GO terms and annotates GO functions of
miRNAs over the whole ontology hierarchy by utilizing structural features to refine representations
and predictions for each level of GO [31]. DeepMiR2GO achieves a maximum F-measure of 0.399 on the
independent miRNA2GO-337 dataset and demonstrates that DeepMiR2GO significantly outperforms
two state-of-the-art computational approaches: miEAA and PmiRGO.
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2. Results

2.1. Benchmarks

To assess the predictive performance of DeepMiR2GO more accurately, we built a benchmark
including 337 mature miRNAs (named as miRNA2GO-337) based on the GOA database [32,33].
In miRNA2GO-337, each miRNA has at least one manually curated GO annotation supported by
non-IEA evidence. The miRNA2GO-337 dataset appears in Supplementary Table S1.

2.2. Parameter Selection

Here, we discuss the parameter settings for our model. There are several hyper-parameters
necessary to be optimized in the step of learning network topological features. Among these
parameters, the dimension of features has a significant influence on the performance of the prediction
of miRNAs. To evaluate the effect of the hyper-parameters on the predictive performance, we vary the
number of dimensions and carry out an independent test on the benchmark. For the other parameters,
including the starting value p0 of the learning rate, the number of negative samples n, and the total
number of samples T, we selected the values of the three parameters by executing experiments
with different values and screening out the combination which performed best (p0 = 0.025, n = 10,
T = 100 billion).

Table 1 demonstrates the effects of the dimension of network features, which ranges from 64 to 512.
Generally speaking, effective feature selection algorithms can eliminate irrelevant or redundant features
to obtain the optimal feature set, thereby improving the performance of predictive model [34–36].
In our work, the network features we obtained contain local and global information of each node
about a certain context in the heterogeneous biological graph. In order to preserve these local and
global information, we did not apply the feature selection process. As shown, the maximum F-measure
reaches the highest BPs (biological processes) when the number of dimensions is set to 64. Therefore,
64-dimensional features of the network are selected in our work.

Table 1. Predictive performance among different dimensions of network features for the
miRNA2GO-337 dataset.

Biological Processes

Dimensionality Fmax AvePre AveRec

64 0.399 0.404 0.394
128 0.389 0.403 0.376
256 0.393 0.383 0.403
512 0.374 0.345 0.409

Molecular Functions

Dimensionality Fmax AvePre AveRec

64 0.510 0.500 0.520
128 0.399 0.376 0.424
256 0.504 0.510 0.498
512 0.411 0.470 0.364

AvePre denotes average precision, AveRec denotes average recall.

For the parameters of the hierarchical neuron network model, including the amount of neurons in
the fully connected layer, starting learning rate and minibatch size, we manually tuned them and chose
the combination of parameters with the best evaluated performance (minibatch size = 64, amount of
neurons in fully connected layer = 1024, starting learning rate = 0.025).
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2.3. Incorporating Disease Similarity Network

Increasing evidence suggests that the majority of miRNAs have many vital associations with
various diseases, including cardiovascular diseases, schizophrenia and cancer [37,38]. In addition,
the dysregulation of miRNA target genes may also lead to many kinds of diseases. We reasoned that
introducing disease entities would be an efficient approach to significantly improve the performance
of prediction. In our work, we incorporated disease phenotype similarity network into our
miRNA-protein entities network. To evaluate the effect of incorporating disease similarity network and
validate our deduction, we trained our model with global heterogeneous networks with and without
disease entities, respectively, and then evaluated both on the independent test set miRNA2GO-337.
In the set of comparative experiments, all of the parameters were the same. The results are shown in
Table 2. The predictive performance with disease entities is significantly better than the performance
without disease entities among all three measurements, with the maximum F-measure increased by
4% on BP and 23% on MF (molecular function). The results demonstrated that incorporating the
disease entity network significantly improves the predictive performance of the miRNA gene ontology
function for almost all GO classes.

Table 2. Performance evaluation of the global network with and without the disease similarity network.
The predictive performances were evaluated on the miRNA2GO-337 dataset.

Biological Processes

Dimensionality Fmax AvePre AveRec

With 0.399 0.404 0.394
Without 0.360 0.372 0.349

Molecular Functions

Dimensionality Fmax AvePre AveRec

With 0.510 0.500 0.520
Without 0.279 0.238 0.339

AvePre denotes average precision, AveRec denotes average recall.

2.4. Comparison of Three Classic Network Representation Algorithms

Recently, vast research efforts have proven that representation learning for networks can produce
reasonably effective features for common tasks of machine learning on graphs, such as multi-label
classification [39], tag recommendation [40], and link prediction [41,42]. Most of these studies primarily
investigated latent topological information associated with each vertex from the network structure.
A recently proposed approach for graph representation learning, DeepWalk, truncates random walks
starting from each node to extract the contextual information based on a neural network model [43].
On this basis, node2vec improves the random walk phase and combines BFS-like and DFS-like
neighbourhood investigations to obtain different network structure information by introducing a
return parameter p and an in-out parameter q [44]. Moreover, a novel network embedding approach,
named LINE, was developed for large-scale networks. LINE optimizes an objective function which
synthesizes the first-order and second-order approximations to extract the local and global topological
network structure [30].

In this paper, three network representation algorithms were applied to obtain the topological
feature vectors of the same global heterogeneous network, respectively. Then, we utilized the hierarchy
multi-classification model for training and compared the performances of three network embedding
models on the miRNA2GO-337 dataset. Figure 1 shows that LINE achieves the highest maximum
F-measure and average precision on BP, while DeepWalk and node2vec outperform LINE on MF.
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Figure 1. Performance comparison among three network representation learning approaches
(DeepWalk, node2vec, and LINE). The predictive performances of the three approaches were evaluated
on the miRNA2GO-337 dataset.

2.5. The Effect of Hierarchical Multiple Classification Model

In our work, we built a deep hierarchical multi-label classification model to infer probable
functions of miRNAs on a large scale. The deep classification model can optimize the predictive
performance of GO functions through utilizing the hierarchy of GO and their dependencies between
its terms. To evaluate the effect of the deep classification model, we also selected three conventional
machine learning methods, including SVM [45–47], decision tree [48], and random forest [49,50],
that are well known for good effects on the multi-class issue, as the base multi-label classifier
and compared their predictive performances. These classic machine learning methods have been
successfully applied in the field of bioinformatics to solve various problems, such as the prediction of
therapeutic peptides used to treat cancers and autoimmune diseases [51–54]. In this study, the training
data, test data, and the network features used in the three base classifiers are the same as in our deep
classification model. We optimized the penalty parameter C and the kernel parameter γ of SVM by
grid search method. The hyper-parameters of decision tree and random forest, including the maximum
depth of the tree and the minimum number of samples at a leaf node, were optimized by the same
way as well as SVM. Furthermore, we applied a 10-fold cross validation to evaluate the performance
of each combination of these hyper-parameters for the three base methods. These hyper-parameters of
SVM, decision tree and random forest were tuning in the following search range, respectively.{

2−5 ≤ C ≤ 215, step = 2

0 ≤ γ ≤ 2, step = 2−5 (1)

{
3 ≤ MaxDepth ≤ 13, step = 1

1 ≤ MinSamplesLea f ≤ 10, step = 1
(2)


3 ≤ MaxDepth ≤ 13, step = 1

1 ≤ MinSamplesLea f ≤ 10, step = 1

100 ≤ Numbero f Trees ≤ 500, step = 50

(3)

Figure 2 displays the predictive performances of our deep hierarchical multi-label classification
model, as well as those of the base multi-label classifiers. Compared with SVM and Random Forest,
our classification model performs better in terms of all metrics. Moreover, our model achieves the
highest Fmax, 0.399, among all of the classification models.
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Figure 2. Performance comparison of different multi-label classification models (SVM, decision tree,
random forest and our model) on the miRNA2GO-337 dataset.

2.6. Performance

For further evaluation of performance, we compared our DeepMiR2GO model with two
state-of-the-art approaches, miEAA [26] and PmiRGO [29], on the independent test set miRNA2GO-337.
Backes et al. designed miEAA based on GeneTrail, a statistical framework of the gene set analysis
toolkit [55]. miEAA offers the functional analysis of precursor miRNAs as well as mature miRNAs by
utilizing enrichment analysis. In miEAA, 14,000 different miRNA sets from various common miRNA
databases and academic literature were collected and integrated to provide a wide range of functions
and applicability. PmiRGO is an approach based on traditional machine learning. It combines multiple
networks, including the miRNA co-expression similarity, miRNA-target gene interaction and PPI
networks, and then applies the multi-classification model based on SVM to predict the gene ontology
functions of miRNAs. As PmiRGO only performs on BP, we carried out the comparison in terms
of BPs.

The predictive performance comparison among DeepMiR2GO and the two other approaches is
shown in Figure 3. Our DeepMiR2GO significantly outperforms miEAA and PmiRGO in terms of all
measures. For the maximum F-measure metric, DeepMiR2GO achieved 0.399 on BP with increases of
11.7% and 8.9%, respectively, while miEAA and PmiRGO achieved values of 0.282 and 0.31. In terms
of average precision and recall, our method is also better than miEAA and PmiRGO, and reached
0.404 and 0.394, respectively. Moreover, we present the precision-recall curves of our method as well
as two state-of-the-art methods. As shown in Figure 4, the P-R curve of DeepMiR2GO is far above
PmiRGO and miEAA, further demonstrating that our model performs much better than PmiRGO
and miEAA.

In addition, we also compared the coverage on the miRNA2GO-337 dataset among the three
methods through counting the number of miRNAs predicted with at least one BP GO term.
As depicted in Figure 5, DeepMiR2GO correctly predicted 198 miRNAs out of 337 miRNA samples,
much higher than miEAA and slightly lower than PmiRGO, which proves that DeepMiR2GO achieves
good coverage.
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Figure 3. Performance comparison among miEAA, PmiRGO, and DeepMiR2GO in terms of precision,
recall, and Fmax. The predictive performances of the three methods wew evaluated on the
miRNA2GO-337 dataset.
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Figure 4. Precision-recall (P-R) curves of miEAA, PmiRGO, and DeepMiR2GO. The performances of
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2.7. Case Study

To further verify the predictive performance and widespread applications of our approach,
DeepMiR2GO was applied to infer the GO functions of two miRNAs in the independent
dataset miRNA2GO-337 as instances: hsa-miR-92a-3p and hsa-miR-138-5p. The mature miRNA
hsa-miR-92a-3p forms from two hairpin precursor miRNAs: hsa-miR-92a-1 on chromosome
13 and hsa-mir-92a-2 on chromosome X. Researchers have demonstrated that hsa-miR-92a-3p
regulates the development and homoeostasis of cartilage by evaluating the in vitro expression
of hsa-miR-92a-3p in a human mesenchymal stem cell (hMSC) model of chondrogenesis [56].
Sharifi et al. [57] applied cell proliferation and phase-locking nucleic acid (LNA) to block
hsa-miR-92a-3p in a human acute megaloblastic leukaemia cell line (M-07e) and found that it
plays an important role in regulating the viability of M-07e cells. Ma et al. [58] used real-time
quantitative polymerase chain reaction (RT-qPCR) and identified aberrantly expressed hsa-miR-92a-3p
in schizophrenia, which revealed that hsa-miR-92a-3p has essential roles in the context of schizophrenia.
Moreover, researchers have demonstrated that the secretion of hsa-miR-92a-3p by liposarcoma cells
promotes the proliferation, invasion and metastasis of liposarcoma cells through this interaction with
the surrounding microenvironment by extracellular vesicles and through stimulation of the secretion
of the pro-inflammatory cytokine interleukin 6 in the TLR7/8-dependent manner of tumour-related
macrophages [59].

We apply DeepMiR2GO to predict the GO classes of hsa-miR-92a-3p. The GO terms predicted are
listed in Table 3, and most of them are associated with macromolecule metabolic processes and cellular
processes. The previous experiments have validated these physiological functions. The predicted
results of hsa-miR-92a-3p demonstrate that DeepMiR2GO can automatically annotate the ontology
functions of miRNAs with high accuracy.

To further evaluate the predictive performance about the precise terms, we use DeepMiR2GO
to predict the GO terms of hsa-miR-138-5p. The top 10 GO terms predicted, as well as their depth in
the DAG (directed acyclic graph) of GO, are list in Table 4. Most of them are more than 8 layers deep,
and the deepest term is in the 13th layer. Among these predicted GO terms, GO:0045944, GO:0010629
and GO:0008285 have been experimentally verified. The results demonstrate that DeepMiR2GO can
predict very specific biological functions of miRNAs.

Table 3. The top 17 GO terms of miRNA hsa-miR-92a-3p predicted by DeepMiR2GO.

ID GO Terms GO Names

1 GO:0044260 cellular macromolecule metabolic process
2 GO:0060255 regulation of macromolecule metabolic process
3 GO:0031323 regulation of cellular metabolic process
4 GO:0080090 regulation of primary metabolic process
5 GO:0043170 macromolecule metabolic process
6 GO:0050794 regulation of cellular process
7 GO:0050789 regulation of biological process
8 GO:0065007 biological regulation
9 GO:0044763 cellular process

10 GO:0071704 organic substance metabolic process
11 GO:0010468 regulation of gene expression
12 GO:0044237 cellular metabolic process
13 GO:0009987 cellular process
14 GO:0044238 primary metabolic process
15 GO:0019222 regulation of metabolic process
16 GO:0044699 biological process
17 GO:0008152 metabolic process
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Table 4. The top 10 GO terms of miRNA hsa-miR-138-5p predicted by DeepMiR2GO. Depth denotes
the number of layers of the miRNA in the DAG of GO.

ID GO Terms Depth GO Names

1 GO:0045892 12 negative regulation of transcription
2 GO:0010629 7 negative regulation of gene expression
3 GO:0045944 13 positive regulation of transcription by RNA polymerase II
4 GO:1903507 11 negative regulation of nucleic acid-templated transcription
5 GO:1902679 10 negative regulation of RNA biosynthetic process
6 GO:0008285 6 negative regulation of cell population proliferation
7 GO:1903508 11 positive regulation of nucleic acid-templated transcription
8 GO:0000122 13 negative regulation of transcription by RNA polymerase II
9 GO:2000113 8 negative regulation of cellular

10 GO:0051253 9 negative regulation of RNA metabolic process

3. Discussion

A variety of computational approaches have been developed to predict the biological functions of
microRNA in the last dozen years. Among these approaches, the most basic strategy is to first predict
the target genes of miRNA and then to infer the ontological functions of miRNA through analysing
ontological functions of its target genes [24]. However, the performance of this strategy is directly
affected by the tools used to predict target genes. Methods based on the analysis of miRNA expression
profiles adopt a more direct approach to identify the functions of miRNA and can perform better than
those target gene prediction tools. In addition, some deep-level physiological functions are not able to
be determined from the analysis of a single miRNA’s expression profile but require more interaction
or association information, all of which contribute much to the ontological functions and biological
processes of miRNA. To address this problem, Deng et al. [29] introduced protein-protein interaction
networking by connecting with the miRNA co-expression network to learn potential topological
information between miRNA and protein entities or significant network patterns that are considered
quite useful to predict the functions. In this work, we take the important associations between miRNA
and disease into consideration and introduce disease entities into our research. Three biological entity
networks, including the miRNA co-expression network, PPI network, and disease similarity network,
and the association networks among them, are integrated into a global heterogeneous network.

Furthermore, many researchers have applied network representation learning to extract effective
structural features of a large information network, which are very useful in many challenging tasks such
as visualization, node classification, tag recommendation, and link prediction [60]. Various network
representation learning algorithms have been proposed to address machine learning issues and have
proven to be significantly effective. In our work, we also employed a classic and efficient method,
called LINE [30], to learn some latent topology information and obtain low-dimensional network
representations of the global heterogeneous network.

Furthermore, the deep hierarchical multi-label classification model also contributes to our
work [31]. It utilizes the hierarchy of GO and the dependencies between its terms to learn latent
representations and to optimize the predictive performance on whole hierarchies in an end-to-end
manner. Especially, the latent energy for end-to-end learning of the deep hierarchical model provides
advantages over those methods that depend on hand-crafted feature vectors, such as structured SVM.

4. Materials and Methods

4.1. MiRNA Co-Expression Similarity Network

We downloaded the miRNA expression profiles from the miRmine database, which contains
2822 precursor miRNA expression profiles collected from different miRNA-seq datasets available
to the public and substantial detailed data regarding various miRNAs [61]. Each expression profile
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consists of 135 columns of expression values measured from 15 types of human tissues. Generally, two
or more homologous precursor miRNAs may produce a mature miRNA. In this paper, we averaged
the expression profiles of different homologous precursor miRNAs to obtain the standard expression
values of the mature miRNA they generated. In consequence, we obtained the expression profiles
of 2588 mature miRNAs. Then, the Pearson’s Correlation Coefficient (PCC) scores of the expression
profiles between each pair of miRNAs were calculated as the co-expression similarity [62]. Finally, an
miRNA co-expression network was constructed based on the co-expression similarity scores. Since we
used the PCC values as the weights of the edges of the network and only considered non-negative
weights, the negative PCC scores were screened out in our work.

4.2. Protein-Protein Interaction Network

We extracted the PPI data from the STRING database V10.0, which contains known and predicted
PPIs [63]. These interactions include both physical and functional associations, stemming from not
only biological experiments, but also computational prediction tools and text mining approaches.
Single or multiple available lines of evidence with high probability contribute to the confidence scores
of each interaction. The higher the confidence score of the interaction, the more likely two proteins
in the entry are to interact with each other. We then constructed a PPI network, which consists of
18,143 proteins and 7,866,428 interactions between these proteins. Moreover, we treated the confidence
score as the weight of the edge in the PPI network and set the weight to 0 if two proteins have no
interaction.

4.3. Disease Similarity Network

We obtained the disease phenotype similarity data consisting of 5080 diseases from MimMiner [64].
By text mining and analysing phenotype records in the Online Mendelian Inheritance in Man (OMIM)
database utilizing Medical Subject Headings (MeSH) terms, MimMiner provides a disease similarity
value for each phenotype pair. Driel et al., the developer of MimMiner, uses a weighted vector of
normalized phenotypic features to characterize every phenotype. After that, the similarity score
between each disease phenotype pair is generated by computing the cosine value of their eigenvector
angle. In our work, the similarity score of two disease phenotypes is regarded as the weight of their
edge in the disease similarity network.

4.4. miRNA-Target Interaction Network

The miRNA-target gene interactions data used in our work were retrieved from the miRTarBase
database of release 7.0 [65]. The database contains a large number of experimentally verified
miRNA-target interactions obtained by surveying pertinent literature after systematic natural language
processing of the text systematically to screen out research articles relevant to functional studies of
miRNAs. After removing the duplicate and out-of-range entries, 355,684 miRNA-target interactions
of high quality were obtained, including 2588 miRNAs and 18,143 target genes, and we built an
miRNA-target interaction network. Note that the weight of the edge of the network is set to 1 if one
miRNA interacts with one protein.

4.5. miRNA-Disease Association Network

The human microRNA and disease associations were extracted from HMDD v3.0 [66].
The database includes 32,281 high-quality association entries among 1206 miRNAs and
893 diseases with multiple types of experiment-supported evidence. We merged the different
pre-miRNAs, which generate the same mature miRNA, and converted them into mature miRNAs.
Moreover, we removed those associations that were out of range of the disease similarity network
and miRNA co-expression network. Finally, 11,824 miRNA-disease associations were employed in
our work.
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4.6. Gene-Disease Association Network

To obtain protein-disease associations for connecting the two biological entity networks of
PPIs and disease similarity, we downloaded the gene-disease association data from the DisGeNET
database, collecting data from expert-curated repositories, the scientific literature, GWAS catalogues,
and animal models [67]. Additionally, this resource provides a few primary metrics to prioritize the
genotype-phenotype associations. The DisGeNET database consists of 628,685 entries of gene-disease
association, including 17,549 genes and 24,166 diseases. In our work, we turned genes into proteins
using the mapping between them and unified the name of diseases. After removing the redundancy
and out-of-range associations, a set of 87,347 protein-disease associations was retrieved and utilized to
build the protein-disease association network.

4.7. Methods

The flowchart of DeepMiR2GO is illustrated in Figure 6. There are four steps in our method:
(A) construct an miRNA co-expression similarity network, a PPI network, a disease similarity network,
and association networks among the three biological entities; (B) build the global heterogeneous
biological entity network by integrating the six networks described above; (C) employ network
representation learning to obtain the low-dimensional topological features vector for each node of the
global heterogeneous network; and (D) construct a deep hierarchical multi-label classification model
using the feature vectors of the nodes to train the model and predict the gene ontology functions
of miRNA.
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Figure 6. Flowchart of DeepMiR2GO. (A) Construct the miRNA co-expression similarity network,
the PPI network, the disease similarity network, and their association networks among the three
biological entities. (B) Build the global heterogeneous biological entity network by integrating the
six networks described above. (C) Employ a representation learning strategy (LINE) to extract
low-dimensional feature vectors of the global heterogeneous network. (D) Construct a deep hierarchical
multi-label classification model using the feature vectors of nodes to train the model and to predict the
gene ontology classes of miRNAs.
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4.7.1. Constructing Global Heterogeneous Network

Three biological entity networks are constructed as described in the previous chapter: the miRNA
co-expression similarity network, the PPI network, and the disease phenotype similarity network.
Specifically, miRNAs with identical expression patterns tend to share similar biological pathways
or functions [18,68]. The Pearson’s correlation coefficient (PCC) scores of the expression profiles
between each pair of miRNAs are calculated to represent the co-expression similarity. Furthermore, the
similarity scores of the miRNA co-expression and disease phenotype similarity networks are treated as
weights of the edges in the networks, as well as the predicted scores of the PPI network. By assembling
the miRNA co-expression similarity network, PPI network, and disease phenotype similarity network
and utilizing associations or interactions among the three biological entity networks, we connect them
and construct a global heterogeneous network.

4.7.2. Learning Topological Features

We apply a novel graph representation learning strategy, called LINE, that suites large-scale
and multiple types of data networks to obtain the low-dimensional topological features vector for
each node of the global heterogeneous network [30]. Given an information network, we define it as
G = (V, E), where V represents the set of vertices and E indicates the set of edges between the vertices.
Each edge e ∈ E represents a relationship between two vertices and is possessed with a weight wij > 0,
indicating the strength of the relationship. Note that the global heterogeneous network in our work is
undirected, as it can be considered as a social network.

To extract sufficient topological information from the network, LINE explores not only the local
but also the global network structures. Specifically, the local structures are defined as the first-order
approximation between the nodes. For every undirected edge e(i, j) in the network, the weight, wij,
representing the joint probability between node Vi and Vj, denotes the first-order proximity. If there
is no edge between two nodes, their first-order proximity is set as zero. Based on the assumption
that vertices shared with neighbours have a high probability of similarity, the second-order proximity
between the nodes, which measures the global structures of the network, is further explored by
determination through the shared neighbourhood structures of the nodes. Mathematically, we use
Proi =

(
wi,1, wi,2, . . . , wi,|V|

)
to denote the first-order proximity of Vi with all of the other nodes,

then we calculate the similarity between Proi and Proj as the second-order proximity Vi and Vj.
Furthermore, two models separately preserved with first-order and second-order approximations are
trained and then concatenated to generate the representations of the network.

4.7.3. Training the Hierarchical Multi-Label Classification Network

A common challenge to machine learning-based multi-label classification methods is the scarcity
of training datasets. Moreover, approaches based on deep neural networks require far more training
samples for accurate predictions. In our work, building the training datasets based on the miRNAs
directly would lead to poor predictive performance because of the lack of experimentally validated
GO annotations of miRNAs. Thus, we downloaded gold standard GO annotations of proteins from
the GOA database (version 201604) to train our model [69]. In particular, we picked the proteins
with sequence lengths of 50–100 aa and clustered them with a sequence similarity of 90 percent [70].
Then, we selected only one sample from each cluster. In addition, we screened out those samples
without at least one GO term supported by non-IEA evidence (not inferred from electronic annotation).
After that, 19,208 proteins as well as their GO annotations of 2342 classes were obtained. Gene Ontology
consists of three branches: molecular functions (MF), biological processes (BP), and cellular components
(CC).In this paper, we divided the 2342 classes of GO annotations into the three subsets: 1727 GO
terms for BP, 355 GO terms for MF and 260 GO terms for CC, respectively.

As gene ontology (GO) terms are regarded as a form of hierarchical Directed Acyclic Graph
(DAG), where each term is associated with one or more other terms in the same domain or different
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domain, the prediction of miRNA GO terms can be regarded as a hierarchical multi-classification [31].
In our work, we build a deep multi-label hierarchical classification model consisting of multiple
neural-symbolic models for each class in GO, which encodes for the transitivity of subclass relations.
The low-dimensional feature vectors of the global heterogeneous network are input to the hierarchical
classification model and trained sequentially, level by level. For those training samples which do not
have network features, we assign a vector of zeros with the same dimension. Each neural network
consists of one fully connected layer and a sigmoid activation function layer. The output vectors of
the first fully connected layer are input into the following layer. Note that all neurons share the fully
connected layer. To ensure consistent hierarchical classification, we created a maximum merge layer for
each term with child nodes in GO. The merge layer picks the maximum value from the predicted scores
of the term and all of its child terms. As a result, the final output vector of the classification model is
the concatenation of activation layers of leaf nodes and the maximum merge layers of non-leaf nodes.

In our method, we employed hold-out validation to evaluate the performance of the model
predictions. 80% of our training set is fed to the model, and the rest is used as a validation set.
In training, the loss function is calculated by using multi-output binary cross entropy. Then, we employ
the Rmsprop optimizer with the learning rate of 0.01 as well as the mini batch size of 64 to minimize
the loss [71]. Initially, we initialize the weights of our deep neural model according to a uniform
distribution [72]. To pick the model with best performance, we monitor the convergence of the
loss function on the validation set and update the weights of the model after each training epoch.
Finally, we employ dropout layers as regularizers to prevent our model from over-fitting. The source
code and data of DeepMiR2GO are freely available at https://github.com/JChander/DeepMiR2GO.

4.7.4. Evaluation Measures

Since the output of the hierarchical multi-classification model for each class is a prediction score
between 0 and 1, we use a threshold value, denoted by t, to conclude the prediction results. For each
threshold t ranging from 0 to 1, all GO terms with predicted scores greater than or equal to t are selected
to make up the predicted set, which is indicated as P(t). In addition, we employ R to represent the
set of GO terms determined by experimental validation. Three widely used statistical measurements
are employed to assess the predictive performance of our model: precision, recall, and maximum
F-measure [73,74]. For a given threshold t and miRNA i, the mathematical definitions of precision and
recall are given as follows:

Prei(t) =
∑g I(g ∈ Pi(t)

∧
g ∈ Ri)

∑g I(g ∈ Pi(t))
(4)

Reci(t) =
∑g I(g ∈ Pi(t)

∧
g ∈ Ri)

∑g I(g ∈ Ri)
(5)

Here, g denotes a specific GO class among the hierarchy, and I(x) denotes an indicator function
stated as follows:

I(x) =

{
1,x = true

0,x = f alse
(6)

For each threshold t, the average precision is computed for the miRNAs which have at least one
predicted term with a score higher than or equal to the threshold t, and m(t) represents the amount of
these miRNAs. Similarly, we calculate the average recall and use N to denote the total number of all
miRNAs in the benchmark. The definitions of the average precision and recall are as follows:

Pre(t) =
1

m(t)
×

m(t)

∑
i=1

Prei(t) (7)

https://github.com/JChander/DeepMiR2GO
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Rec(t) =
1
N
×

N

∑
i=1

Reci(t) (8)

However, precision and recall are usually a pair of inversely related metrics. To handle the
problem and utilize a single score to evaluate the performance, we calculate F-measure values for
the threshold t ranging from 0 to 1 by combining average precision and average recall. Then, the
maximum F-measure among all thresholds is selected.

Fmax = max
{

2× Pre(t)× Rec(t)
Pre(t) + Rec(t)

}
(9)

5. Conclusions

In the past dozen years, large quantities of miRNAs have been identified. Accumulating evidence
and studies have proven that miRNAs are involved in various essential biological processes and
are associated with various diseases. However, the physiological functions of most miRNAs remain
unknown. In this paper, we designed a novel method, DeepMiR2GO, based on multi-network
convergence to annotate the ontological terms of miRNA by using a deep hierarchical classification
model. Firstly, a global heterogeneous network is built by integrating the miRNA co-expression
network, PPI network, disease similarity network, and network of associations among the three
biological entities. Secondly, a network embedding approach, LINE, is applied for learning the
low-dimensional topological features vector for each node of the global heterogeneous network.
Then, a deep hierarchical multi-label classification model is constructed and trained with the
low-dimensional network features. Finally, the miRNA2GO-337 dataset is used as an independent test
set to assess the predictive performance. As a result, our DeepMiR2GO significantly outperforms two
state-of-the-art approaches, miEAA and PmiRGO, in terms of three classic metrics: precision, recall,
and Fmax.

However, there is still room for improvement in the future. First, the miRNA co-expression
network contains only a fraction of human miRNAs. More expression profiles of miRNA are expected
to improve the performance of DeepMiR2GO. Next, the classification model of our work requires quite
numerous training samples for each GO class, which are not available for prediction in other areas of
application. Furthermore, we only focus on predicting functions of human miRNA: more species will
be explored and applied to our model.
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