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Abstract: The investigation of gas transport in fractured porous media is essential in most petroleum
and chemical engineering. In this paper, an apparent gas permeability model for real gas flow in
fractured porous media is derived with adequate consideration of real gas effect, the roughness
of fracture surface, and Knudsen diffusion based on the fractal theory. The fractal apparent gas
permeability model is obtained to be a function of micro-structural parameters of fractured porous
media, relative roughness, the pressure, the temperature, and the properties of gas. The predictions
from the apparent gas permeability model based on the fractal theory match well with the published
permeability model and experimental data, which verifies the rationality of the present fractal
apparent gas permeability model.

Keywords: fractured porous media; apparent gas permeability; fractal theory; roughened surfaces

1. Introduction

The behavior of gas transport in porous media has received increased critical attention
in recent decades due to many engineering applications such as the development of shale
gas reservoir, water purification, industrial filtration, synthesis of adsorbents, micro-electro-
mechanical systems, the design of functional clothing, and so on.

It is demonstrated that the gas flow in tight porous media is significantly different from
that in conventional gas reservoirs. Permeability of medium-to-high permeability matrices
is only a property of porous medium and irrelevant to fluid property. However, many
researchers have pointed out that the permeability of tight porous media containing a large
fraction of micro/nano pores or fractures is not only dependent on structural parameters
of tight porous media but also on gas properties and pressure and temperature, due to
the Knudsen diffusion and the compressibility of gas [1]. Up to now, the large amount of
theoretical research on gas transport in porous media may be divided into two methods:
numerical simulation method and analytical-theoretical method. Numerical simulation
method contains the Monte Carlo simulation method, the Lattice Boltzmann method, and
the molecular dynamic simulation. However, numerical simulation methods are limited by
very long computing time and expensive computer memory, which make them simulate
impractically gas flow in fractured porous media. Analytical-theoretical methods include
slip models and volume diffusion hydrodynamics models [2]. However, most of slip
models incorporate one or more empirical constants, which are very difficult to determine.
Volume diffusion hydrodynamics models are based on the linear stacking of convection
flow and diffusion component. In recent years, a growing number of investigators have
attempted to develop theoretical models for gas transport in porous media. For the sake of
clarity, a summary of available models for gas transport in porous media are illustrated
in Table 1. As Table 1 indicates that some models contain the tangential momentum
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accommodation coefficient (TMAC) or other empirical constants, others do not consider
roughness of pore surface. Moreover, literature research shows that there is no appropriate
method to evaluate the value of TMAC [2,3].

Table 1. A summary of different gas transport models.

Model Description Comment

Beskok and Karniadakis (1999) [4] A unified Hagen–Poiseuille type equation to
describe various flow regimes

two empirical constants introduced,
suitable for a pipe and a rectangular

channel with smooth surfaces

Javadpour (2009) [5]
A model for fluid flow in a single, straight,
and cylindrical nanochannel with Knudsen

diffusion and slip flow included

TMAC introduced, only suitable for a
tube with smooth surfaces

Thomas Veltzke and Jorg Thöming
(2012) [6]

A model developed based on superposition
of convective transport and Fickian diffusion

without TMAC and suitable for a tube
and a rectangular channel with smooth

surfaces

Darabi et al. (2012) [1] The extension of Javadpour model TMAC introduced; only suitable for
circular tube and smooth walls

Ziarani and Aguilera (2012) [7]
Knudsen’s Permeability model developed

based on Beskok and Karniadakis model for
microflows

some empirical constants introduced

Singh and Javadpour (2014) [8]
A model developed based on superposition

of convective transport and Knudsen
diffusion

suitable for a tube and a rectangular
channel; without the effect of rough

surface morphology on gas transport

Wu et al. (2015) [9]
A model developed based on the weighted

superposition of slip flow and Knudsen
diffusion

slip effect, real gas effect, the impact of
nanopore type and shape included;

without the consideration of pore wall
roughness

Wu et al. (2015) [10]
A model developed by coupling slip flow
and Knudsen diffusion together using the

weighted coefficients

weighted factor included; suitable for
fractures with rectangular cross-sections

with smooth surfaces

Yuan et al. (2016) [11]
A model developed based on Beskok and

Karniadakis general slip boundary condition
and fractal theory

suitable for circular capillaries with
smooth surfaces

Cai et al. (2020) [12]
A fractal permeability model developed with

consideration of axial stress and creeping
microstructure

suitable for circular capillaries with
smooth surfaces

Although a lot of gas transport models have been developed in recent years, the
majority of published analytical permeability models for porous media are established
based on the hypothesis about porous media consisting of smooth circular capillaries.
Nevertheless, porous media in nature are composed of a great number of randomly dis-
tributed and irregular nanopores or micro/nano-fractures with diverse geometrical cross
sections [9,13–19]. Furthermore, most of fractures/capillaries surfaces are rough. The flow
part of fluid through rough-walled porous media is very complicated, and the roughness
of fractures/capillaries has a significant impact on fluid transport in porous media. A few
comprehensive reviews on fluid flow in rough-walled fractures were published [20,21].
In recent years, there has been an increasing interest in the impact of roughness of frac-
tures/capillaries on transport properties in a porous medium, and interested readers can
consult the relevant literature [22–28]. Therefore, a good understanding of the physical
mechanism of fluid transport in fractured porous media with rough surfaces is essential. In
addition, the literature also indicated that the effective hydraulic aperture of the rough-wall
fracture is reduced due to the existence of surface roughness. Zimmerman et al. applied the
lubrication theory to investigate the permeability of rough-walled rock fractures, in which
the roughed fracture is regarded as sinusoidal variation wall [29]. Felisa et al. presented an
analytical flow rate model for non-Newtonian fluid in a rough channel to simulate natural
or artificial rock fractures [30]. Miao et al. developed a fractal permeability model for
fractured rocks with smooth surfaces on the basis of the cubic law [31]. Xu et al. obtained
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an analytical expression for effective permeability of fractured porous media according
to the fractal theory and analyzed the influence of fractal dimensions on the effective
permeability [32]. However, the influence of real gas effect and fracture wall roughness
on the permeability for fractured porous media was neglected in the above-mentioned
articles [31,32]. Yang et al. [27] developed a permeability model based on porous media
consisting of a bundle of tortuous circular capillaries with rough walls; however, they did
not consider the effect of gas rarefaction on the permeability of porous media. Recently,
Xiao et al. [26] presented a fractal model for Kozeny–Carman constant and dimensionless
permeability of fibrous porous media by considering the influence of the roughness of
capillaries surface. Wang et al. [33] proposed a new permeability model for 2D complex
tortuous fractured porous media on a basis of fractal-like tree fracture network model and
the cubic law but neglected the impact of surface roughness of capillaries. The concept
about apparent gas permeability was initially proposed by Javadpour el at. [5] to simplify
the complexity of the calculation. When pore/fracture scale is comparable to the gas
molecular mean free path or the pressure is low, Knudsen diffusion is dominated. Thus,
apparent gas permeability is higher than intrinsic permeability (it is also called as liquid
permeability). It has been shown that gas flows in tight porous media in a low-pressure
range; apparent gas permeability could vary with pressure [34]. Therefore, it is more mean-
ingful for practical engineering application to develop an apparent gas permeability model
for fractured porous media with roughened surfaces and Knudsen diffusion included.
So far, few studies have investigated simultaneously the influences of real gas effect, gas
rarefaction, and surface roughness of fracture on apparent gas permeability of fractured
porous media. Therefore, a comprehensive and simple permeability model capturing effect
of roughened surfaces, gas rarefaction, and real gas is urgently required.

Although some researchers have studied the flow in fractal porous media with rough
surfaces [22,26,27], the aim of this paper is to obtain the derivation of an analytical expres-
sion for apparent gas permeability of fractured porous media with roughened surfaces,
including the effect of gas rarefaction and real gas effect based on fractal theory and tech-
nology. In the following, a brief introduction of the fractal theory and technology is first
illustrated. Then in Section 3, a novel fractal model for apparent gas permeability of frac-
tured porous media is developed based on the linear stacking of convection mass transfer
and Knudsen diffusive mass transfer with consideration of fracture surface roughness
and real gas effect. Next, the results and discussions of the proposed model are given in
Section 4, and then comes a brief summary in Section 5.

2. Basic Fractal Theory

Fractured porous media with roughened surfaces is ubiquitous in nature such as oil
and gas reservoirs, underground water resources and nuclear waste disposal systems. In
general, oil and gas reservoirs may be considered to be composed of a large number of
randomly distributed fractures embedded with a low permeability porous matrix and
form called a dual-porosity medium. In this work, we consider porous media which
are embedded with a series of parallel rectangular section capillaries with roughened
surface (i.e., micro/nano-fractures) to approximately simulate fractured porous media,
as shown in Figure 1. Since the permeability of fracture networks serving as main flow
pathways is much higher than that of porous matrix, fluid flow in porous matrix may be
neglected in this paper. In recent years, an increasing amount of literature has presented
convincing evidence that most porous media in nature are fractal objects [19,31,35–39].
Suppose that both aperture sizes and rough wall surface morphology of fractures satisfy
the fractal power laws. The aperture and width of a single micro/nano-fractures are
denoted by h and w, respectively. According to the fractal theory, the cumulative width
distribution of micro/nano-fractures in tight reservoir rocks complies the following fractal
scaling law [31]:

N(W ≥ w) = (
wmax

w
)

d f
(1)
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where df is the fractal dimension for micro/nano-fractures widths and can be calculated by

d f = dE − ln φ
ln(wmin/wmax)

[31], 0 < df < 2 in two dimensions and 0 < df < 3 in three dimensions.
Owing to thousands of micro/nano-fractures in tight reservoir rocks, Equation (1) can be
regarded as a continuous and differentiable function. Differentiating it with respect to w,
one can find the number of micro/nano-fractures lying in the infinitesimal range w,

dN = −d f w
d f
maxw−(d f +1)dw (2)

Figure 1. A schematic diagram of tight reservoir rocks composed of a bunch of parallel micro/nano-fractures.

Due to the tortuous characteristic of the flow pathways, the actual length for gas
transport in tight reservoir rocks is longer than the straight length L0, and the actual
length lt can be expressed as by the tortuous fractal dimension dt [13],

lt = w1−dt Ldt
0 (3)

Several studies have documented that the aperture of the micro/nano-fracture is
proportional to its width [31,40]

h = βw (4)

where β is the proportionality coefficient.
In general, wall surfaces of micro/nano-fractures in tight reservoir rocks are not

smooth. Majumdar and Bhushan [41] argued the size distribution of contact spots on
engineering surfaces to obey the fractal scaling law. Herwig et al. [42] carried out exper-
imental measurements for the gas flow in micro-channels and pointed out that surface
roughness played a very important role in gas microscale flows. Yang et al. [27] applied
conic-shaped rough elements to characterize surface roughness of micro channels and also
analyzed the effect of surface roughness on the laminar flows in micro channels. Recently,
Zheng et al. [25] investigated the impact of rough morphology of pore wall of micro- and
nano-porous media on gas slip flow and obtained the fractal model of gas slippage factor
based on fractal theory. Furthermore, Zheng et al. [43] developed the fractal model of gas
diffusion through porous fibrous materials with rough surfaces, based on the assumption
of pore size distribution and surface roughness following the statistically self-similar fractal
characteristics. For conic-shaped rough elements, interested readers may consult some
relevant References [25,27,28,41–43]. In this paper, we assume that cone-shaped rough
elements randomly distribute on wall surfaces of each micro/nano-fracture, as shown
in Figure 2.
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Figure 2. Typical morphology of a rough surface: (a) top view of a rough surface, (b) a representative
cone-like rough element.

Generally speaking, a higher peak means a larger bottom area of a cone peak. That
is to say, the ratio of the height of the peak to the base diameter of conic rough element is
considered as a constant. Based on the assumption of Yang et al. [27] and Zheng et al. [25,43],
the ratio of the height of the peak to the base diameter of conic rough element is considered
as a constant, viz.

ξ = hi/di (5)

where hi and di denote the height and the base diameter of conic rough elements, respec-
tively. Since the size distribution of rough elements obeys the fractal scaling law, the
cumulative size distribution of rough elements on the surface wall of micro/nano-fractures
is expressed as [27]

N(l ≥ d) = (
dmax

d
)

dr

(6)

where N represents the total number of conic-shaped rough elements with diameter scale l
is larger than or equal to the base diameter d. dmax and dr represent the maximum base
diameter and roughness fractal dimension. In Equation (6), 0 < dr < 2 in two dimensions
and 0 < dr < 3 in three dimensions. Suppose that the relative roughness in micro/nano-
fractures with different widths is the same value due to the self-similarity. The average
height of cone-shaped rough elements he f f is defined as the ratio of the total volume of
a set of fractal cones to the total area for a unit cell. Interested readers can consult the
Reference [28]. Therefore, the average height of cone-shaped rough elements in a single
micro/nano-fracture with width w can be calculated as [27]

he f f =
ϕareaw(hmax)wmin

3wmin

2− dr

3− dr

1− ( wmin
wmax

)
3−dr

1− ϕarea
(7)

where ϕarea is the area ratio of the total base area of the whole conic rough elements to the
cross-sectional area of a unit area. wmin denotes the minimum width of microfracture, and
(hmax)wmin

represents the maximum height of the rough element in the fracture with the
minimum width wmin. According to the definition of the relative roughness, the relative
roughness in a single micro/nano-fracture with aperture h is expressed as

ε =
2he f f

h
(8)

Then, the actual aperture of a single micro/nano-fracture with aperture h is obtained as

hr = h− 2he f f (9)
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The convection mass flow rate through a single tortuous micro/nano-fracture with
smooth surface is obtained by soluting the Navier–Stokes equations with no-slip
boundary condition [6]

mc =
wh3Mp∆p
12µRZTlt

(10)

Considering the rough surface of microfractures in tight reservoir rocks, the aperture
of micro/nano-fracture will be reduced. Therefore, Equation (10) will be modified as

mc =
w(h− 2he f f )

3
Mp∆p

12µRZTlt
(11)

where Z is the gas dimensionless compressibility factor, and R and M are the universal
gas constant (Pa · m3/(mol· K)), and the gas molar mass (g/mol), respectively. The gas
viscosity µ depends on the temperature, pressure, and gas properties, which are given by
Lee et al. [44],

µ = c exp(XρY) (12)

c =
(9.4 + 0.02M)T1.5

209 + 19M + T
(13)

X = 3.5 +
986
T

+ 0.01M (14)

Y = 2.4− 0.2X (15)

where ρ and M are gas density and gas molecular molar mass, respectively.
Inserting Equations (3) and (8) into Equation (11), Equation (11) can be rewritten as

mc =
β3w3+dt(1− ε)3Mp∆p

12µRZTLdt
0

(16)

Due to the fact that numerous microscale and nanoscale microfractures coexist in tight
reservoir rocks, Knudsen diffusion occurs. The Knudsen diffusion mass flow rate in the
single micro/nano-fracture with smooth surface is obtained by Fick’s first law, which is
expressed as [13]

mk =
8h2w∆p

3πlt

√
2M

πZRT
(17)

However, the surface of micro/nano-fracture is seldom smooth, the aperture of
micro/nano-fracture will be reduced by considering the surface roughness of micro/nano-
fractures. Then Knudsen diffusion mass flow rate in the single micro/nano-fracture with
rough surface can be corrected as

mk =
8(h− 2he f f )

2
w∆p

3πlt

√
2M

πZRT
(18)

With the aid of Equations (3) and (8), Equation (18) can be rewritten as

mk =
8β2w2+dt(1− ε)2∆p

3πLdt
0

√
2M

πZRT
(19)

Z-Factor is a key thermodynamic parameter in the petroleum and chemical engineer-
ing disciplines [45], which is expressed as

Z = 1 + (A1 +
A2
Tr

+ A3
T3

r
+ A4

T4
r
+ A5

T5
r
)ρr + (A6 +

A7
Tr

+ A8
T2

r
)ρ2

r − A9(
A7
Tr

+ A8
T2

r
)ρ2

r

+[ A10
T3

r
ρ2

r (1 + A11ρ2
r )exp(−A11ρ2

r )]
(20)
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where A1 = 0.3265, A2 = −1.0700, A3 = −0.5339, A4 = 0.01569, A5 = −0.05165,
A6 = 0.5475, A7 = −0.736, A8 = 0.1844, A9 = 0.1056, A10 = 0.6314, A11 = 0.721.

The reduced density can be expressed as [45]

ρr =
0.27pr

ZTr
(21)

where Tr and pr are the reduced temperature and the reduced pressure, respectively. Once
the values of Tr and pr are given, the value of Z-Factor can be calculated by Newton–
Raphson iterative algorithm.

3. A Novel Fractal Model for Gas Apparent Permeability of Tight Reservoir Rocks
with Rough Surfaces

The mechanism of gas transport in tight/shale reservoirs is very complicated. Con-
vection volume flow and Knudsen diffusion coexist in shale porous media. It is noted
that surface diffusion is beyond the scope of this paper, which is our future study. For the
sake of simplicity, we assume that convection volume flow and Knudsen diffusion do not
interact with each other. However, convection volume flow and Knudsen diffusion may
interact in a more complicated manner in nature, and this is still an open question and
will be the subject of our next study. Assuming the slip flow can be regarded as a part of
Knudsen diffusion [2], the volumetric flow rate through a single fracture is taken as the
linear superposition of convection volumetric flow rate and Knudsen diffusive volumetric
flow rate as follows:

m(w) = mc + mk (22)

In this section, we focus our attention on developing a fractal model for apparent
gas permeability of tight reservoir rocks with the consideration of surface roughness of
micro/nano-fracture walls, based on the superposition of convection transfer and Knudsen
diffusion. The total mass flow through all the micro/nano-fractures in tight reservoir rocks
can be calculated by integrating Equation (22) from the minimum width to the maximum
width in a unit cell, i.e.,

mtotal = −
∫ wmax

wmin
(mc(w) + mk(w))dN

=
(1−ε)3β3d f Mpmw3+dt

max

12µZRTLdt−1
0 (3−d f +dt)

∆p
L0
[1− (wmin

wmax
)

3−d f +dt ]

+
8β2(1−ε)2d f w2+dt

max

3πLdt−1
0 (2−d f +dt)

√
2M

πZRT
∆p
L0
[1− (wmin

wmax
)

2−d f +dt ]

(23)

According to the general Darcy’s law, we can get the apparent gas permeability
expression for gas flow through tight reservoir rocks composed of micro/nano-fractures
as follows:

kas =
µmtotal

ρA∆p/L0

=
(1−ε)3β3d f w3+dt

max

12Ldt−1
0 (3−d f +dt)A

[1− (wmin
wmax

)
3−d f +dt ]

+
8µβ2(1−ε)2d f w2+dt

max

3πpLdt−1
0 A(2−d f +dt)

√
2ZRT
πM [1− (wmin

wmax
)

2−d f +dt ]

(24)

It is noted that the area A in Equation (24) represents the total cross-sectional area
of a unit cell which contains a set of fractal fractures, instead of the selected sample area,
and the gas density ρ is expressed as ρ = pM

ZRT . Due to 1 <dt < 3, 1 <d f < 3, and
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wmin
wmax

≈ 10−2, ( wmin
wmax

)
3−d f +dt << 1 ( wmin

wmax
)

2−d f +dt << 1 in porous media, Equation (24) can
be simplified into

kas =
(1− ε)3β3d f w3+dt

max

12Ldt−1
0 (3− d f + dt)A

+
8µβ2(1− ε)2d f w2+dt

max

3πpLdt−1
0 (2− d f + dt)A

√
2ZRT
πM

(25)

Equation (25) is the fractal model for apparent gas permeability in fractured porous
media with rough micro/nano-fractures. From Equation (25), it is evident that gas apparent
permeability is expressed as a function of relative roughness, micro-structural parameters
of tight reservoir rocks, gas properties, pressure, and temperature and is free of empirical
constants. The present fractal apparent gas permeability model can reveal the physical
mechanism that affects apparent gas permeability in fractured porous media.

If the micro/nano-fracture walls are smooth, i.e., ε= 0, Equation (25) can be reduced
to be

kas =
β3d f w3+dt

max

12Ldt−1
0 (3− d f + dt)A

+
8µβ2d f w2+dt

max

3πpLdt−1
0 (2− d f + dt)A

√
2ZRT
πM

(26)

Equation (26) is exactly the apparent gas permeability model for gas transfer in
tight porous media with smooth micro/nano-fractures and coincides with the result of
Wang et al. model [13], whose model is valid only for tight porous media consisting of
smooth micro/nano-fractures and ideal gas. Therefore, our present apparent gas perme-
ability model Equation (25) can be regarded as an extension of Wang et al. model, which
is suitable for tight porous media composed of micro/nano-fractures including rough
surfaces of fractures and real gas effect.

4. The Result and Discussion

In this section, the proposed apparent gas permeability model for gas flow in tight
reservoir rocks composed of micro/nano-fractures with rough surfaces is compared with
the existing model and experimental data collected from available literature. The total
cross-sectional area A of the unit cell can be expressed as [13,38,46,47]

A =
Ap
φ =

−
∫ wmax

wmin
w·(h−2he f f )·dN

φ

=
β(1−ε)d f w2

max
2−d f

1−φ
φ

(27)

If the tight reservoir rock can be approximated as square cross section, the straight
length along gas transfer direction is given by [13,38,46,47]

L0 =
√

A (28)

Inserting Equations (27) and (28) into Equation (25), we can obtain the apparent
gas permeability

kas =
(1−ε)3β3d f w3+dt

max
12(3−d f +dt)

×
[

φ(2−d f )

β(1−ε)d f w2
max(1−φ)

] dt+1
2

+
8µβ2(1−ε)2d f w2+dt

max
3πp(2−d f +dt)

√
2ZRT
πM ×

[
φ(2−d f )

β(1−ε)d f w2
max(1−φ)

] dt+1
2

(29)

Thus, the structural parameters of the unit cell (viz. the total cross sectional area A
of a unit cell, representative length of L0) do not occur in the above apparent gas perme-
ability expression Equation (29) anymore. Therefore, the apparent gas permeability of
fractured porous media with rough micro/nano-fractures only depends on the relative
roughness, micro-structural parameters of tight reservoir rocks (β, d f , dtwmax, φ), gas prop-
erties, pressure, and temperature and is free of empirical constants. Each parameter has
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a clear physical meaning in the above apparent gas permeability expression Equation (29),
which can reflect the physical mechanism of the apparent gas permeability of fractured
porous media with rough micro/nano-fractures.

Singh et al. [8] proposed an analytical expression for apparent gas permeability of
a porous medium consisting of slits with the tortuosity of flow path and the real gas effect
included as follows:

(ka)slit =
φ

τ

µh
3
(

hZ
4µ

+
8

πpM

√
2MRT

π
) (30)

The aforementioned permeability model Equation (30) is free of any empirical coef-
ficients and depends on microstructural parameters (such as the aperture, porosity, and
tortuosity), temperature, average reservoir pressure, and gas properties. However, Singh
et al. did not consider the effect of wall roughness of slits and aperture size distribution in
his model.

The fractal dimension for d f in Equation (25) can be calculated from

d f = dE − ln φ
ln(wmin/wmax)

[31]. It is noted that the tortuosity in Singh et al. model can be

determined by τ = 1 + 0.63 ln 1
φ [48].

Figure 3 shows a comparison of existing model with the predicted values based on
fractal apparent permeability model given by Equation (25) with the parameter dt = 1.1
(the same value as that in available references [38,49]), and other parameters are illustrated
on Table 2. As we can observe from Figure 3, our apparent gas permeability model
(Equation (25)) for fractured porous media based on the fractal theory at the relative
roughness ε = 0 matches well with Singh et al. model [8]. However, Singh et al. model
works for tight porous media composed of with micro/nano-fractures with smooth surfaces
and neglects aperture size distribution. Taking a close look at Figure 3, we also observe that
the predictions from our present model by Equation (25) with smooth surfaces are slightly
higher than those by the model with rough surfaces at the relative roughness ε = 0.1 and
ε = 0.15, which is in conformity with practical situation. This is because larger relative
roughness results in smaller fracture aperture and larger flow resistance, causing the lower
apparent gas permeability. This implies that the surface roughness has a critical influence
on the apparent gas permeability.

Figure 3. A comparison of apparent gas permeability between the present model Equation (25) and
the available model [8].
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Table 2. Model structural parameters and gas properties.

Parameter Value Description

wmin 1 nm the minimum aperture of tight
reservoir rocks

wmax 100 nm [13] the maximum aperture of tight
reservoir rocks

β 0.01 [13] the proportionality coefficient
φ 0.08 the porosity
M 4 g/mol the Helium molar mass
T 300 K Temperature

Figure 4 represents a comparison between the predictions from the present fractal
apparent permeability under different rough surfaces based on Equation (25) and ex-
perimental data [50]. Letham [50] measured the permeability for helium gas through
a green-grey parallel laminated siltstone from the Horseshoe Canyon Formation over the
range of sample pressure from 1 to 8 MPa by the pressure pulse decay technique. Since
the microstructural parameters of shale sample are not available in the original work, we
can give reasonable values to match experimental data well. In addition, the maximum
width and the minimum one are assumed reasonably to be 500 and 5nm, respectively. The
porosity of shale sample is lower than 0.1, so the value of porosity of shale sample is set
as 0.04. As shown in Figure 4, a fair agreement between the predictions from the present
apparent gas permeability model at ε= 0.15 and the experimental data is obtained. The
validity of fractal apparent permeability model for real gas flow in fractured porous media
with roughened surfaces is tested.

Figure 4. A comparison on gas apparent permeability of tight reservoir rocks between our fractal
analytical model and existing experimental data [50].

Figure 5 plots helium gas apparent permeability, kas, versus the porosity at different
relative roughness at the given mean pressure p = 2 MPa and temperature T = 300 K. As
illustrated in Figure 5, the apparent gas permeability increases monotonously with the
increase of the porosity. This can explain that larger porosity corresponds to larger fracture
space, leading to more easy gas transport in tight porous media and higher apparent
gas permeability. It can also be seen from Figure 5 that relative roughness has an impact
on apparent gas permeability, i.e., the larger relative roughness, the lower apparent gas
permeability. As we mentioned previously, the larger relative roughness means the smaller
fracture aperture, resulting in a lower apparent gas permeability. Similar phenomena can
be also observed in Figures 3–8.
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Figure 5. Effect of the porosity on the apparent permeability at different relative roughness.

Figure 6 demonstrates the variation of apparent gas permeability for helium gas
in fractured porous media against the tortuosity fractal dimension. It is found that the
apparent gas permeability decreases markedly with the increase of the tortuosity fractal
dimension. This may be attributed to the fact that the larger tortuosity fractal dimension,
the higher flow resistance, leading to a lower apparent gas permeability.

Figure 6. The impact of tortuosity fractal dimension on the apparent gas permeability at different
relative roughness.

Figure 7 depicts the effect of area fractal dimension, df, on the apparent gas permeabil-
ity. It can be seen that the apparent gas permeability increases significantly with the increas-
ing fractal dimension. This can be interpreted as that the larger the area fractal dimension
means the larger porosity based on the correlation df = dE − lnφ/ln(wmin/wmax) [31], which
results in larger pore space for gas flow in fractured porous media and lower flow resistance,
leading to higher apparent gas permeability for gas transport in fractured porous media.
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Figure 7. Plot of apparent gas permeability against the area fractal dimension at different
relative roughness.

Figure 8 shows the impact of the temperature on the apparent gas permeability at
the different relative roughness. It can be observed that the gas apparent permeability
increases significantly with the increase of the temperature at the fixed relative roughness.
This is because the higher temperature, the larger Knudsen number, leading the more
remarkable Knudsen diffusion and higher apparent permeability from Knudsen diffusion.
Therefore, the apparent gas permeability is increased with the increase of temperature
based on Equation (25).

Figure 8. Plot of apparent permeability against temperature at different relative roughness.

5. Conclusions

A novel apparent gas permeability model has been developed in fractured porous
media consisting of micro/nano-fractures with rough rectangular cross-sections, which is
based on fractal theory and technology and the assumption of the linear superposition of
convection transfer and Knudsen diffusive transfer. The proposed apparent gas permeabil-
ity model is in terms of relative roughness, micro-structural parameters of fractured porous
media, gas properties, pressure, temperature, which contains no empirical constants. Each
parameter has a clear physical meaning in our present apparent gas permeability model,
which can reflect the physical mechanism of the apparent gas permeability of fractured
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porous media with rough micro/nano-fractures. The present gas permeability model
is confirmed by comparing its predictions with the existing experimental data and the
available model in the literature. Results indicate that our present model agrees well with
the existing experimental data and the available model, which verifies the reasonability
of our present model. In this paper, we mainly focus on the fluid flow characteristics in
fractures with roughened surfaces and neglect the seepage flow characteristics of porous
matrix. In reality, real fracture networks in nature are extremely complex, and some of
them may be connected and overlap one another. For this case, a more comprehensive and
complicated permeability model for fractured porous media is required to be developed.
This paper just carries through the preliminary research, and there is much extended work
to do. In addition, it is also a challenging task to numerically simulate a real 3-D fracture
networks, due to the limitations of computer memory and computation time. The proposed
model can provide better understanding of transport mechanisms of gas flow in fractured
porous media. However, many other factors, such as the type of fracture, stress sensitivity,
and surface diffusion, may affect apparent gas permeability. A more realistic model than
the present one may need to be developed in our future work.
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