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ABSTRACT

Despite its prominence, the mechanisms through
which the tumor suppressor p53 regulates most
genes remain unclear. Recently, the regulatory fac-
tor X 7 (RFX7) emerged as a suppressor of lymphoid
neoplasms, but its regulation and target genes medi-
ating tumor suppression remain unknown. Here, we
identify a novel p53-RFX7 signaling axis. Integrative
analysis of the RFX7 DNA binding landscape and the
RFX7-regulated transcriptome in three distinct cell
systems reveals that RFX7 directly controls multiple
established tumor suppressors, including PDCD4,
PIK3IP1, MXD4, and PNRC1, across cell types and is
the missing link for their activation in response to p53
and stress. RFX7 target gene expression correlates
with cell differentiation and better prognosis in nu-
merous cancer types. Interestingly, we find that RFX7
sensitizes cells to Doxorubicin by promoting apop-
tosis. Together, our work establishes RFX7’s role as
a ubiquitous regulator of cell growth and fate deter-
mination and a key node in the p53 transcriptional
program.

GRAPHICAL ABSTRACT

INTRODUCTION

RFX7 belongs to a family of eight transcription factors
that share a highly conserved DNA-binding domain (DBD)
through which they can bind to cis-regulatory X-box motifs
(1–3). While RFX transcription factors were first uncovered
in mammals (4), they have been identified throughout meta-
zoan life and beyond (1,5). RFX5 is the closest sibling of
RFX7, and while the expression of most RFX genes is re-
stricted to specific cell types, RFX1, RFX5, and RFX7 dis-
play ubiquitous expression (3,6). Whole-genome sequenc-
ing efforts led us and others to discover RFX7 mutations in
13–15% of Epstein-Barr Virus-negative Burkitt lymphoma
patients (7,8). Additionally, genome-wide association stud-
ies linked RFX7 to chronic lymphocytic leukemia (9–11).
RFX7 alterations have also been identified in diffuse large
B cell lymphoma (12), acute myeloid leukemia (13), as well
as in mouse models of lymphoma (12,14) and leukemia (15).
In addition to hematopoietic neoplasms, RFX7 has been as-
sociated with body fat distribution (16), Alzheimer’s disease
(17), and autism spectrum disorder (18), suggesting that
RFX7 may function in various cell types and tissues. While
human RFX7 is functionally uncharacterized, first insights
from animal models identified Rfx7 to play a role in anuran
neural development (19) and maturation and metabolism in
murine lymphoid cells (20). Importantly, the regulation of
RFX7 and its target genes mediating tumor suppression are
unknown.

In response to stress conditions, p53 transcriptionally
regulates a plethora of target genes to suppress tumori-
genesis (21,22). Thereby, p53 influences diverse cellular
processes, including apoptosis, cell cycle progression, and
metabolism. Using integrative omics approaches, we started
to disentangle the p53 gene regulatory network (GRN) into
subnetworks of genes controlled directly by p53 or indi-
rectly through downstream transcription factors (23,24).
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For example, p53 regulates the largest subset of genes in-
directly through its direct target gene CDKN1A, encod-
ing cyclin-dependent kinase inhibitor p21 and reactivat-
ing DREAM and RB:E2F trans-repressor complexes to
down-regulate cell cycle genes (23–27). Intriguingly, indirect
down-regulation of cell cycle genes by p53 is well conserved,
while direct p53 targets diverged substantially during evo-
lution (28,29). Yet, complex cross-talks between signaling
pathways impede the identification of indirect regulations.
Uncovering the molecular mechanisms through which p53
indirectly controls most p53-regulated genes, therefore, re-
mains a longstanding challenge (22).

Our findings place the understudied transcription factor
RFX7 immediately downstream of p53 and provide com-
pelling evidence for RFX7’s ubiquitous role in governing
growth regulatory pathways. We reveal that RFX7 orches-
trates multiple established tumor suppressor genes in re-
sponse to cellular stress. Thus, RFX7 emerges as a crucial
regulatory arm of the p53 tumor suppressor. In the context
of cancer biology, the general importance of this new sig-
naling axis is exemplified by the better prognosis of patients
with a medium to high expression of RFX7 targets across
the TCGA pan-cancer cohort, which indicates recurrent de-
regulation of RFX7 signaling in cancer.

MATERIALS AND METHODS

Cell culture, drug treatment and transfection

U2OS and HCT116 cells (ATCC, Manassas, VA, USA)
were grown in high glucose Dulbecco’s modified Eagle’s
media (DMEM) with pyruvate (Thermo Fisher Scien-
tific, Darmstadt, Germany). RPE-1 hTERT cells (ATCC)
were cultured in DMEM:F12 media (Thermo Fisher Sci-
entific). Culture media were supplemented with 10% fe-
tal bovine serum (FBS; Thermo Fisher Scientific) and
penicillin/streptomycin (Thermo Fisher Scientific). Cell
lines were tested at least twice a year for Mycoplasma con-
tamination using the LookOut Detection Kit (Sigma), and
all tests were negative.

Cells were treated with DMSO (0.15%; Carl Roth, Karl-
sruhe, Germany), Nutlin-3a (10 �M; Sigma Aldrich, Darm-
stadt, Germany), Actinomycin D (5 nM; Cayman Chemi-
cals, Ann Arbor, MI, USA), or Doxorubicin (1 �M or as
indicated; Cayman Chemicals) for 24 h. For knockdown
experiments, cells were seeded in six-well plates or 6 cm
dishes and reverse transfected with 5 nM Silencer Select siR-
NAs (Thermo Fisher Scientific) using RNAiMAX (Thermo
Fisher Scientific) and Opti-MEM (Thermo Fisher Scien-
tific) following the manufacturer protocol.

Images of cells were taken using an Evos M5000 micro-
scope (Thermo Fisher Scientific) or a ChemiDoc MP doc-
umentation system (Bio-Rad, Feldkirchen, Germany).

Cycloheximide chase assay

U2OS were seeded in 5-cm dishes (200 000 cells per dish).
The following day, the cells were treated with DMSO or
Nutlin-3a for 24 h. Next, cells were recovered in media
containing 150 �M cycloheximide (Cayman Chemicals) or
DMSO. Finally, proteins were extracted at 0, 0.5, 1, 2, 3, and
4 h time points and assessed by western blot analyses.

Phosphatase treatment

Whole cell lysates were extracted from HCT116 cells treated
with Nutlin-3a or DMSO using RIPA buffer (Thermo
Fisher Scientific) without protease or phosphatase in-
hibitors. Lysates were exposed to PNGase F and Shrimp Al-
kaline Phosphatase (New England Biolabs) enzymes. Sam-
ples were preincubated with 1× Glycoprotein denaturing
buffer (New England Biolabs) for 10 min at 100◦C. Next,
1× GlycoBuffer, 1% NP-40 and 1× Cut Smart Buffer (New
England Biolabs) were added to the lysate and incubated for
1 h at 37◦C. 10 �g of whole cell lysates were incubated for
1 h at 37◦C as control. 4× LDS buffer was added to all sam-
ples to a final concentration of 1×. All samples were boiled
at 100◦C for 5 min. Finally, proteins were separated using a
precast 3–8% Criterion Tris-Acetate protein gel (Bio Rad)
and a Criterion Cell (Bio Rad) in Tris-acetate buffer.

Chromatin immunoprecipitation, RNA extraction and re-
verse transcription semi-quantitative real-time PCR (RT-
qPCR)

ChIP was performed with the SimpleChIP Kit (Cell Signal-
ing Technology, Canvers, MA, USA) following the manu-
facturer instructions. 3 �g of p53 (kind gift from Dr Bern-
hard Schlott (30)) or RFX7 (#A303-062A Bethyl Labora-
tories, Montgomery, TX, USA) antibody were used per IP.
Sonication was performed on a Bioruptor Plus (Diagen-
ode, Seraing, Belgium). ChIP-qPCR was performed with
a Quantstudio 5 (Thermo Fisher Scientific) using Power
SYBR Green MasterMix (Thermo Fisher Scientific) follow-
ing the manufacturer protocol.

Total cellular RNA was extracted using the RNeasy Plus
Mini Kit (Qiagen, Hilden, Germany) following the manu-
facturer protocol. One-step reverse transcription and real-
time PCR was performed with a Quantstudio 5 using Power
SYBR Green RNA-to-CT 1-Step Kit (Thermo Fisher Sci-
entific) following the manufacturer protocol. We identified
ACTR10 as a suitable control gene that is not regulated
by p53 but expressed across 20 gene expression profiling
datasets (23). Generally, two or three biological replicates
with three technical replicates each were used. Given the na-
ture of the technical setup, a few individual data points were
erroneous and, thus, excluded.

Primer sequences are listed in Supplementary Table S5.

Western blot analysis

Cells were lysed in RIPA buffer (Thermo Fisher Scien-
tific) containing protease and phosphatase inhibitor cock-
tail (Roche, Grenzach-Wyhlen, Germany or Thermo Fisher
Scientific). Protein lysates were scraped against Eppendorf
rack for 20 times and centrifuged with 15 000 rpm for 15 min
at 4◦C. The protein concentration of supernatant lysates
was determined using the Pierce 660 nm Protein Assay
Kit (Thermo Fisher Scientific) and a NanoDrop1000 Spec-
trophotometer (Thermo Fisher Scientific). Proteins were
separated in a Mini-Protean TGX Stain-Free Precast 4–
15% Gel (Bio-Rad) using Tris/Glycine/SDS running buffer
(Bio-Rad). Proteins were transferred to a 0.2 �m polyvinyli-
dene difluoride (PVDF) transfer membrane either using a
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Trans-Blot Turbo Mini Transfer Pack (Bio-Rad) in a Trans-
Blot Turbo (Bio-Rad) or using a Mini Trans-Blot Cell (Bio-
Rad) in a Mini-Protean Tetra Cell (Bio-Rad). Following an-
tibody incubation, membranes were developed using Clar-
ity Max ECL (Bio-Rad) and a ChemiDoc MP imaging sys-
tem (Bio-Rad).

Antibodies and their working concentrations are listed in
Supplementary Table S5.

Pre-processing of Illumina sequencing data

Quantification and quality check of libraries were per-
formed using the Agilent Bioanalyzer 2100 in combina-
tion with the DNA 7500 Kit. Libraries were pooled and se-
quenced on a NextSeq 500 (75 bp, single-end), HiSeq 2500
(50 bp, single-end), and NovaSeq 6000 (S1 or SP, 100 cy-
cles). Sequence information was extracted in FastQ format
using Illumina’s bcl2FastQ v2.19.1.403 or v2.20.0.422.

We utilized Trimmomatic (31) v0.39 (5nt sliding window
approach, mean quality cutoff 22) for read quality trim-
ming according to inspections made from FastQC (https:
//www.bioinformatics.babraham.ac.uk/projects/fastqc/)
v0.11.9 reports. Illumina universal adapter as well as
mono- and di-nucleotide content was clipped using Cu-
tadapt v2.10 (32). Potential sequencing errors were detected
and corrected using Rcorrector v1.0.3.1 (33). Ribosomal
RNA (rRNA) transcripts were artificially depleted by
read alignment against rRNA databases through Sort-
MeRNA v2.1 (34). The preprocessed data was aligned to
the reference genome hg38, retrieved along with its gene
annotation from Ensembl v.92 (35), using the mapping
software segemehl (36,37) v0.3.4 with adjusted accuracy
(95%) and split-read option enabled (RNA-seq) or disabled
(ChIP-seq). Mappings were filtered by Samtools v1.10
(38) for uniqueness and properly aligned mate pairs. We
removed duplicated reads with Picard MarkDuplicates
v2.23.4.

ChIP-seq and analysis

ChIP was performed as described above in biological du-
plicates for RFX7 ChIP and input DNA from Nutlin-3a
and DMSO control treated U2OS, HCT116, and RPE-1
cells. Libraries were constructed using the NEBNext Ul-
tra II DNA Library Preparation Kit (New England Bio-
labs, Frankfurt am Main, Germany) following the manu-
facturer’s description. Following pre-processing of the se-
quencing data (see above), biological replicates of each in-
put and IP were pooled prior to peak calling with MACS2
v2.2.7.1 (39) with q-value cutoff 0.05. MACS2 was exe-
cuted in both available modes utilizing either the learned
or a customized shifting model parameterized according
to the assumed mean fragment length of 150 bp as ex-
tension size. The resulting peak sets were merged by over-
lap with BEDTools v2.29.2 (40). Per interval, the strongest
enrichment signal under the associated peak summits as
well as the lowest P-value and q-value was kept. Peaks
with an enrichment <2.5 fold and ENCODE blacklist re-
gions (41) were filtered out. Unique and shared overlap-
ping peak sets were identified using BEDTools ‘multiinter’.
De novo motif discovery was performed using ‘findMotif-
sGenome’ of HOMER v4.10 (42) with options -size given -S

15. The top X-box motif recovered from the de novo anal-
ysis of the 120 overlap peaks with relaxed log odds detec-
tion threshold of 7 was used to discover X-boxes across
hg38 using HOMER’s ‘scanMotifGenomeWide’. Conser-
vation plots displaying the average vertebrate PhastCons
score (43) were generated using the Conservation Plot tool
in Cistrome (44). The Cis-regulatory Element Annotation
System (CEAS) tool in Cistrome (44) was used to identify
the enrichment of binding sites at genome features. Genes
associated with RFX7 peaks were identified using BETA-
minus in Cistrome (44) with a threshold of 5 kb from the
TSS. To identify whether RFX7 functions as an activator or
repressor of gene transcription, we employed BETA anal-
ysis (45) in Cistrome (44). CistromeDB toolkit (46) was
used to identify TFs that display ChIP-seq peak sets (top
10k peaks) that are significantly similar to the set of 120
common RFX7 peaks. Bigwig tracks were generated us-
ing deeptools ‘bamCoverage’ with options –binSize 1 and
–extendReads 150 (47).

Publicly available p53 ChIP-seq data from Nutlin-3a-
treated U2OS (48) and HCT116 (49) cells was obtained
from CistromeDB (46). Ten publicly available RFX5 ChIP-
seq datasets from A549, GM12878, HepG2, hESC, IMR90,
K562, MCF-7, HeLa, and SK-N-SH cells were obtained
from CistromeDB and joined using BEDTools ‘multiinter’
followed by ‘merge’. RFX5 peaks supported by at least 5
out of the 10 datasets were kept for further analyses.

RNA-seq and analysis

Cellular RNA was obtained as described above in biologi-
cal triplicates or quadruplets. Quality check and quantifica-
tion of total RNA were performed using the Agilent Bioan-
alyzer 2100 in combination with the RNA 6000 Nano Kit
(Agilent Technologies). Libraries were constructed from 1
�g of total RNA using Illumina’s TruSeq stranded mRNA
Library Preparation Kit or from 500 ng total RNA using
NEBNext Ultra II RNA–polyA+ (mRNA) Library Prepa-
ration Kit (New England Biolabs) following the manufac-
turer’s description.

Following pre-processing of the data (see above), read
quantification was performed on exon level using feature-
Counts v1.6.5 (50), parametrized according to the strand
specificity inferred through RSeQC v3.0.0 (51). Differen-
tial gene expression and its statistical significance was iden-
tified using DESeq2 v1.20.0 (52). Given that all RNA-
seq data was derived from PolyA-enriched samples, we
only included Ensembl transcript types ‘protein coding’,
‘antisense’, ‘lncRNA’, and ‘TEC’ in our analysis. Com-
mon thresholds for |log2(fold-change)| ≥ 0.25 and adj. P-
value < 0.01 were applied to detect significant differen-
tial expression. Publicly available RNA-seq data from hu-
man p53-negative HL-60 promyelocytes differentiating into
macrophages or neutrophils was obtained from GEO ac-
cession number GSE79044 (53). Publicly available RNA-
seq data from of human umbilical cord blood-derived un-
restricted somatic stem cells (USSC) differentiating into
neuronal-like cells was obtained from GEO accession num-
ber GSE96642 (54). Publicly available RNA-seq data from
human pluripotent stem cells differentiating into lung
alveolar cells was obtained from GEO accession number

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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GSE96642 (55). RNA-seq data from human cells were pro-
cessed as described above. Publicly available RNA-seq data
from conditional Rfx7 knock-out mice was obtained from
GEO accession number GSE113267 (20). The mouse RNA-
seq data was processed as described above, but aligned to
the mouse reference genome mm10. Given the naturally
larger variation in tissue samples, thresholds for |log2(fold-
change)| ≥ 0.25 and adj. P-value ≤0.05 were applied to de-
tect significant differential expression.

p53 Expression Score

The p53 Expression Score has been published in a pre-
vious meta-analysis (23) and reflects a summary of p53-
dependent gene expression from 20 genome-wide p53-
dependent gene expression profiling datasets. In each
dataset a gene was identified either as significantly down-
regulated (score −1), significantly up-regulated (score +1),
or not significantly regulated (score 0) by p53. The p53 Ex-
pression Score displays for each gene the sum of the scores
from all 20 datasets in the meta-analysis.

Transcription factor binding and motif enrichment analysis

We used iRegulon (56) to identify transcription factors and
motifs that are enriched within 500 bp upstream of the TSS
or within 10 kb around the TSS of selected genes.

Cell viability data from the Cancer Dependency Map
(DepMap) project

The DepMap project pursued a systematic knockdown of
genes in a large panel of cancer cell lines to identify genes
that are essential for cancer cell viability (57). RFX7 data
was available for 343 cell lines in which RFX7 was depleted
by RNAi (depmap.org). The DEMETER2 score is a depen-
dency score that reflects the effect of a given knockdown
on cell viability (58). Negative dependency scores reflect de-
creased cell viability upon loss of the target gene, while pos-
itive scores indicate increased cell viability.

Cell proliferation and viability assay

U2OS and HCT116 were transfected with 5 nM of respec-
tive siRNAs using RNAiMAX. The next day, cells were
seeded in 96-well plates (9000 cells per well). After 24 h
of transfection, cells were treated with Doxorubicin, 5-FU,
Nutlin-3a, or DMSO control for 24 h. Subsequently, the
cells recovered for 6 days in fresh drug-free media. WST-
1 reagent (Sigma Aldrich) was added for 2 h following
the manufacturer protocol before absorbance was mea-
sured at 440 nm on a M1000pro microplate reader (Tecan,
Männedorf, Switzerland).

Clonogenic assay

HCT116 cells were transfected with 5 nM of respective siR-
NAs using RNAiMAX. The next day, the transfected cells
were seeded six-well plates (50 000 cells per well) contain-
ing 2 ml of culture media. After 24 h transfection, cells were
challenged with either DMSO or treated with different con-
centrations of Doxorubicin (0.05, 0.075, 0.1, 0.15, 0.2, 0.4,

0.8 and 1.6 �M) or 5-FU (3.1, 6.2, 12.5, 25 and 50 �M)
for 24 h. All plates were then recovered in drug-free media
and growth continued for another 7 days. After 7 days of re-
covery, cells were stained with crystal violet containing glu-
taraldehyde solution and briefly rinsed with plain water.

Annexin V assay

HCT116 cells were transfected with 5 nM of respective siR-
NAs using RNAiMAX. The next day, the transfected cells
were seeded six-well plates (50 000 cells per well) contain-
ing 2 ml of culture media. After 24 h transfection, cells were
challenged with either DMSO or treated with different Dox-
orubicin concentrations (0.05, 0.075, 0.1, 0.15 and 0.2 �M)
for 24 h. All plates were then recovered in drug-free media
and growth continued for another 6 days. Cells were stained
with Annexin V and PI using the Annexin V Apoptosis De-
tection Kit I (BD Biosciences, San Jose, CA, USA) follow-
ing the manufacturer instructions. Cell staining was quan-
tified through flow cytometry on a BD FACSAria Fusion
(BD Biosciences) and flow cytometry data was analyzed us-
ing FACSDiva 9.0.1 (BD Biosciences).

Survival analysis

Survival analyses for Cancer Genome Atlas (TCGA) cases
were based on the expression of a set of 19 direct RFX7
targets. Specifically, genes in this set were required to have
been identified in all three cell line models (Figure 4D) and
to have a p53 Expression Score >5 to avoid the inclusion
of cell cycle genes and to filter for a reproducibly strong
p53-RFX7 signaling response. This 19-gene-set comprises
TP53INP1, PNRC1, MXD4, PIK3IP1, TOB1, PIK3R3,
SESN3, YPEL2, PLCXD2, SLC43A2, CCND1, IP6K2,
TSPYL2, RFX5, PDCD4, CCNG2, ABAT, TSPYL1, and
JUNB. We retrieved clinical data and FPKM normalized
gene expression values from TCGA using the R pack-
age TCGAbiolinks v2.18.0 (59). For the whole pan-cancer
set and for each of the 33 cancer types we calculated
single-sample expression scores for the 19-gene-set from
FPKM transformed quantification data using the official
GenePattern codebase v10.0.3 for single sample gene set
enrichment analysis (ssGSEA; https://github.com/GSEA-
MSigDB/ssGSEA-gpmodule) (60). A single-sample expres-
sion score measures the degree of coordinated up or down-
regulation of genes in the given set. Subsequently, we subdi-
vided the expression scores into three equally sized catego-
rial groups (high, medium, low). Kaplan-Meier plots and
multivariate Cox regression analysis based on the expres-
sion groups were performed on clinical time to event and
event occurrence information using the R survival package
v3.2–3. The Cox proportional hazards (PH) model was used
to investigate the relation of patient survival and categorical
expression levels. To control for confounding factors, gen-
der and age were included into all models. In case of the
pan-cancer cohort, we further included cancer type into the
regression analysis. The rates of occurrence of events over
time were compared between the groups using the fitted
PH model. Additionally, the distribution of gender, age, and
cancer type were visualized for each categorial group.

https://github.com/GSEA-MSigDB/ssGSEA-gpmodule
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Statistics

ChIP and RT-qPCR data was analyzed using a two-sided
unpaired t-test. Cell viability data from WST-1 assays were
analyzed using a Sidak-corrected two-way ANOVA test.
Mean Z-scores were compared using a two-sided paired t-
test. Violin plots display the median. Bar graphs display
mean and standard deviation. *, **, ***, and n.s. indicate
P-values <0.05, <0.01, <0.001, and >0.05, respectively.
The number of replicates is indicated in each Figure leg-
end. FDR from RNA-seq data were obtained from DESeq2
analysis (‘padj’ values). P-values from ChIP-seq data were
obtained from MACS2 analysis. The experiments were not
randomized and investigators were not blinded to alloca-
tion during experiments.

Code availability

Code used to analyze ChIP-seq and RNA-seq data and to
perform the survival analyses is available upon request.

RESULTS

p53-activated RFX7 mediates gene up-regulation and
markedly differs from RFX5

To identify novel nodes in the p53 GRN, we performed
an enrichment analysis for transcription factor binding to
genes frequently up-regulated by p53 activation but not
directly bound by p53. We focused on proximal promot-
ers, as these are more likely to confer robust gene regu-
lation across cell types. An analysis of publicly available
ChIP-seq datasets revealed multiple hits indicating enriched
RFX5 binding to the genes’ proximal promoters (Figure
1A). Given that the RFX family shares a conserved DBD
and ChIP-seq data is publicly available for only RFX1 and
RFX5, we initially included all RFX family members in
our investigation. To elucidate the potential role of RFX
transcription factors in the p53 GRN, we analyzed pub-
lished p53-dependent gene expression data (23). We identi-
fied RFX5 and RFX7, but no other RFX family member,
as being frequently up-regulated by p53 (Figure 1B). In-
vestigation of published p53 DNA binding data revealed
that RFX7 contains two p53 binding sites in the first in-
tron (intron1), while other family members, such as RFX5
and RFX1, did not display p53 binding (Figure 1C and
Supplementary Figure S1A). Moreover, a massively paral-
lel reporter assay showed that both enhancer regions confer
significant p53-dependent activation of luciferase reporters,
namely ∼18-fold (RFX7 5′) and ∼10-fold (RFX7 3′) (63).
These data indicate that RFX7 may be a direct p53 target
gene, while its sibling RFX5 is up-regulated indirectly. Con-
sequently, we considered RFX7 to be the strongest candi-
date out of the RFX family for mediating gene regulation
downstream of p53. To test whether RFX7, its phylogenet-
ically closest and p53-induced sibling RFX5, or the third
ubiquitously expressed RFX family member RFX1 affect
p53-dependent up-regulation of genes, we selected candi-
dates out of the 1081 genes potentially up-regulated indi-
rectly by p53 that were frequently identified to bind RFX5
(Figure 1A). We selected PDCD4, PIK3IP1, MXD4, and
PNRC1 that are frequently up-regulated by p53 and that

were identified in all six RFX5 ChIP-seq tracks (Figure
1A). Notably, PDCD4, PIK3IP1, MXD4, and PNRC1 en-
code established tumor suppressors, which have not yet
been established as p53-responsive genes (64–67). To this
end, we employed the osteosarcoma cell line U2OS, which
possesses intact p53 and is frequently used to study p53
and its signaling pathway (23). To specifically activate p53,
we pharmacologically inhibited MDM2, the central gate-
keeper of p53 activity, using the small molecule Nutlin-3a
(68). Given that indirect pathways naturally are delayed in
their response, we selected a 24 h treatment time to en-
sure proper pathway activation as well as RNA and pro-
tein accumulation. RT-qPCR data confirmed that PDCD4,
PIK3IP1, MXD4, and PNRC1 are up-regulated in re-
sponse to Nutlin-3a treatment. Importantly, the Nutlin-3a-
induced up-regulation of PDCD4, PIK3IP1, MXD4, and
PNRC1 was abrogated upon knockdown of p53 and RFX7
(Figure 1D). In contrast to RFX7, depletion of RFX1
and RFX5 did not affect the p53-dependent induction of
PDCD4, PIK3IP1, MXD4, and PNRC1. Significantly, p53-
dependent up-regulation of CDKN1A was not affected by
RFX7 depletion, providing further evidence that RFX7
functions downstream of p53. Intriguingly, RFX5 also ap-
peared to be up-regulated by this novel p53-RFX7 signal-
ing axis, as its p53-dependent activation upon Nutlin-3a
treatment is lost when RFX7 is missing (Figure 1D). De-
pletion of RFX5 led to an induction of PDCD4, PIK3IP1,
MXD4, PNRC1, and CDKN1A in DMSO control-treated
cells, but did essentially not affect their expression in Nutlin-
3a-treated cells. These results indicate that RFX5 restricts
the expression of several genes independently of p53 ac-
tivity. Thus, despite its similarity to RFX5, RFX7 plays a
clearly distinct and strikingly consequential role in regulat-
ing PDCD4, PIK3IP1, MXD4, and PNRC1. Immunoblot
analyses indicate a p53-dependent induction of RFX7
protein levels upon Nutlin-3a treatment. In particular, a
lower migrating form of RFX7 was induced in response
to p53 activation (Figure 1E). Moreover, protein levels of
PDCD4 and PIK3IP1 followed the p53-RFX7-dependent
up-regulation of their mRNAs (Figure 1E). Further, ChIP-
qPCR data revealed that RFX7 occupies the promoter re-
gions of PDCD4, PIK3IP1, MXD4, PNRC1, and RFX5.
Upon Nutlin-3a treatment, RFX7 occupancy increased,
and this increase required p53 (Figure 1F). RFX7 binding
to the RFX5 promoter validates RFX5 as a direct target
gene of RFX7, explaining the p53-RFX7-dependent reg-
ulation of RFX5 (Figure 1D). In contrast to RFX7, p53
did not occupy these regions (Figure 1G). These results es-
tablish p53 as the first activator of RFX7, which extends
p53-dependent gene activation to potent tumor suppressor
genes, revealing a novel p53-RFX7 signaling axis.

p53-RFX7 signaling is ubiquitous and associated with a lower
migrating RFX7

To elucidate the kinetics of p53-RFX7 signaling, we treated
U2OS cells with Nutlin-3a for 6, 12 and 24 h. RT-qPCR
analysis showed that the direct p53 target CDKN1A is
strongly induced already after 6h of Nutlin-3a treatment.
In contrast to the rapid induction of CDKN1A, the up-
regulation of the RFX7 target genes PDCD4, PIK3IP1,
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Figure 1. The p53 target RFX7 mediates p53-dependent gene activation. (A) Our previous meta-analysis identified 1392 genes as frequently up-regulated
by p53 (p53 Expression Score ≥ 5). Out of these genes, 311 displayed frequent p53 binding within 2.5 kb of their TSS and represent high-probability direct
p53 targets (23). Transcription factors enriched for binding within 500 bp upstream from the TSS of the remaining 1081 genes were identified using publicly
available ChIP-seq data. ChIP-seq datasets with a normalized enrichment score (NES) > 2.5 are displayed. (B) The p53-dependent regulation of RFX
family encoding genes across 20 datasets from a meta-analysis (23). Genes were identified as significantly up-regulated (green; +1), down-regulated (red;
−1), or not significantly differentially regulated (white; 0). The p53 Expression Score represents the summary across all 20 datasets. (C) Genome browser
snapshot displaying publicly available p53 binding signals from Nutlin-3a-treated U2OS and HCT116 cells at the RFX7 gene locus. Red arrows indicate
two p53 binding signals in RFX7 intron1, one located 5′ (RFX7 5′) and one 3′ (RFX7 3′). (D) RT-qPCR data of selected direct RFX7 targets in U2OS cells.
Normalized to siControl#1 DMSO. ACTR10 served as negative control. TP53, RFX1, RFX5, and RFX7 are shown as knockdown controls. CDKN1A is a
positive control for p53 induction by Nutlin-3a. Mean and standard deviation is displayed. Statistical significance obtained through a two-sided unpaired
t-test, n = 9 replicates (three biological with three technical each). (E) Western blot analysis of RFX7, p53, PDCD4, PIK3IP1, and actin (loading control)
levels in U2OS cells transfected with siControl, siRFX7, or siTP53 and treated with Nutlin-3a or dimethyl sulfoxide (DMSO) solvent control. (F) RFX7
and (G) p53 ChIP-qPCR of selected RFX7 targets in Nutlin-3a and DMSO control-treated U2OS cells transfected with siControl (siCtrl) or siTP53.
GAPDH served as negative control. MDM2 served as positive control for p53 binding. Mean and standard deviation is displayed. Statistical significance
obtained through a two-sided unpaired t-test, n = 3 technical replicates.
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MXD4, PNRC1, and RFX5 was delayed. Only PNRC1 dis-
played a minor but significant up-regulation following 6 h
Nutlin-3a treatment, while PDCD4, PIK3IP1, MXD4, and
RFX5 started to display significant up-regulation after 12 h
treatment (Figure 2A). Immunoblot analyses indicate a
rapid and accumulating induction of p53. Similarly, the
lower migrating form of RFX7 is detectable after 6 h treat-
ment time already, and gradually becomes the predomi-
nant form of RFX7 upon 12 and 24 h Nutlin-3a treatment.
PIK3IP1 protein levels increased after 12 and 24 h treat-
ment, while PDCD4 protein displayed substantial increase
only after 24h Nutlin-3a treatment (Figure 2B). The delayed
up-regulation of RFX7 targets underscores the indirect reg-
ulation by p53.

Given the strong association of RFX7’s lower migrating
form with RFX7 activity, we performed a cycloheximide
chase assay to assess the effect of translation and protein
turnover. The rapid turnover of p53 (69) served as a posi-
tive control. In DMSO control-treated cells, the higher mi-
grating form of RFX7 was predominant and its levels de-
clined with a half-life of approximately 1.5 h. In cells pre-
treated with Nutlin-3a, the lower migrating form of RFX7
was predominant. Surprisingly, the lower migrating form
vanished rapidly with a half-life of less than 1 h. However,
it was not degraded but shifted back to the higher migrat-
ing form, which was stable for at least 4 h of translation
inhibition by cycloheximide (Figure 2C). These results in-
dicate that the lower migrating form of RFX7 is rapidly in-
duced by p53 and strongly associated with RFX7 activity
(Figure 2A and B). Importantly, it appears not to be gen-
erated through translation, and is reversible in the absence
of translation (Figure 2C). Thus, it may stem from a tightly
regulated post-translational modification.

To test whether the p53-dependent function of RFX7 is
cell type-specific or represents a more ubiquitous mecha-
nism, we employed the colorectal cancer cell line HCT116
and the hTERT-immortalized non-cancerous retina pig-
mented epithelium cell line RPE-1, both of which possess
wild-type p53. ChIP-qPCR analysis confirmed that p53
binds to two sites in RFX7 intron1 in U2OS, HCT116,
and RPE-1 cells (Figure 2D), and the binding is specific as
shown by its dependence on p53 availability (Figure 2E).
Notably, we identified high-confidence p53 responsive el-
ements (p53RE) that underlie the two p53 binding sites
(70), and data from the GeneHancer collection (71) indi-
cate that both p53 binding sites in RFX7 intron1 overlap
with enhancer regions that are associated with RFX7 ex-
pression (Supplementary Figure S1B). Similar to our results
from U2OS cells (Figure 1D and E), PDCD4, PIK3IP1,
MXD4, and PNRC1 were induced upon Nutlin-3a treat-
ment in HCT116 and RPE-1 cells in a p53 and RFX7-
dependent manner, while CDKN1A was not affected by
RFX7 depletion (Figure 2F). Protein levels of PDCD4 and
PIK3IP1 largely followed the p53-RFX7-dependent regula-
tion of their mRNAs (Figure 2G).

In HCT116 cells, the migration pattern of the higher and
lower migrating RFX7 differed the most among all three
cell lines tested. Given that the lower migrating form of
RFX7 may result from post-translational modification, we
tested whether it is affected by phosphorylation. Therefore,
we treated whole cell lysates from HCT116 cells treated with

Nutlin-3a and DMSO control with phosphatase. However,
the differently migrating forms of RFX7 were unaffected by
phosphatase treatment, while the phospho-signal at thre-
onine 172 of the AMPK� subunit vanished (Figure 2H).
These results indicate that the migration pattern of RFX7
is not affected by differential phosphorylation.

Given the diversity of the investigated cell lines, our data
suggest that the novel p53-RFX7 signaling axis influences
numerous cell types. Together, our findings establish RFX7
as an important means for p53 to expand its GRN to potent
tumor suppressor genes in numerous cell types.

The RFX7 DNA binding landscape enriches proximal pro-
moter regions

The identification of p53 as an upstream regulator of RFX7
enabled us to induce RFX7 levels and activity pharmaco-
logically. Although RFX7 emerged as a potent suppressor
of lymphoid cancers and putative cancer driver in Burkitt
lymphoma (7,8,12,72), the mechanisms underlying its tu-
mor suppressor function remain elusive. Given that RFX7
is a transcription factor, it seems natural that its tumor sup-
pressor function is mediated through its target genes. To
identify RFX7 target genes genome-wide, we performed
ChIP-seq in Nutlin-3a and DMSO control-treated U2OS,
HCT116 and RPE-1 cells (Figure 3A, Supplementary Ta-
ble S1). Substantially more RFX7 binding sites were iden-
tified in Nutlin-3a compared to DMSO control-treated
cells (Supplementary Table S1), underlining the importance
of inducing RFX7 levels and activity to identify RFX7-
dependent genome regulation. We focused further investi-
gations on sites occupied by RFX7 across all three cell types
upon Nutlin-3a treatment (Figure 3A). RFX7 binding sites
are phylogenetically conserved (Figure 3B) and predomi-
nantly located near transcriptional start sites (TSSs) (Figure
3C). De novo search for motifs underlying RFX7 binding
sites revealed an X-box that is commonly recognized by the
RFX family (2) and a CCAAT-box known to recruit NF-
Y (73) (Figure 3D). Corroborating the ChIP-qPCR results
(Figure 1F), Nutlin-3a treatment led to increased RFX7
DNA occupancy genome-wide (Figure 3E). For example,
the p53-RFX7-regulated genes PNRC1 and MXD4 (Figure
1D and E) display RFX7 binding near their TSSs, which in-
creased upon Nutlin-3a treatment (Figure 3F). Enrichment
analysis identified RFX5 and its co-factor CIITA, FOS,
NF-Y, CREB1, EP300, and STAT3, among others, to share
a significant number of binding sites with RFX7 (Figure
3G), which indicates that RFX5 and RFX7 bind to simi-
lar sites and that RFX7, similar to RFX5 (74), may cooper-
ate with the CCAAT-box binding NF-Y. Given that RFX5
but not RFX1 was identified to share binding sites with
RFX7 (Figure 3G), we compared the RFX7 X-box motif
(Figure 3D) with known X-box motifs of the RFX family to
identify potential differences. RFX7 shares the X-box motif
with other RFX family members, but it shows a clear dis-
tinction. While RFX1-3 bind to a palindromic X-box com-
prising two half-sites (2), RFX7 - similar to RFX5 - binds
to an X-box with only one half-site (Figure 3H). Although
the RFX family shares a conserved DBD, there are differ-
ences in their motif recognition, which offers an explanation
for sites that are exclusively bound by RFX7 and RFX5.
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Figure 2. p53-activated RFX7 functions in numerous cell types. (A) RT-qPCR data of PDCD4, PIK3IP1, MXD4, PNRC1, and RFX5 in U2OS cells
treated with DMSO solvent control or Nutlin-3a (N3A) for 6, 12 or 24 h. Normalized to ACTR10 negative control and siControl DMSO sample. Mean
and standard deviation is displayed. Statistical significance obtained through a two-sided unpaired t-test, n = 6 replicates (two biological with three
technical each). RFX7 is shown as knockdown control. CDKN1A is a positive control for p53 induction by Nutlin-3a. (B) Immunoblot analysis of RFX7,
p53, PDCD4, PIK3IP1 and actin (loading control) levels in U2OS cells treated with DMSO solvent control or Nutlin-3a for 6, 12 or 24 h. (C) Immunoblot
analysis of RFX7, p53 and actin (loading control) levels in U2OS cells following a cycloheximide chase assay. U2OS cells were pre-treated 24 h with
Nutlin-3a or DMSO control (first treatment). Then, cells were treated with cycloheximide or DMSO control (second treatment). (D) ChIP-qPCR of p53
binding to GAPDH (negative control), MDM2 (positive control), and the 5′ (RFX7 5′) and 3′ (RFX7 3′) sites in RFX7 intron1 from U2OS, HCT116
and RPE-1 cells treated with Nutlin-3a or DMSO solvent control. Statistical significance obtained through a two-sided unpaired t-test, n = 3 technical
replicates. (E) ChIP-qPCR of p53 binding to GAPDH (negative control), MDM2 (positive control), and the 5′ (RFX7 5′) and 3′ (RFX7 3′) sites in RFX7
intron1 from HCT116 cells transfected with siControl or siTP53 and treated with Nutlin-3a or DMSO solvent control. Statistical significance obtained
through a two-sided unpaired t-test, n = 3 technical replicates. (F) RT-qPCR data of PDCD4, PIK3IP1, MXD4 and PNRC1 in HCT116 and RPE-1 cells.
Normalized to ACTR10 negative control and siControl DMSO sample. Mean and standard deviation is displayed. Statistical significance obtained through
a two-sided unpaired t-test, n = 6 replicates (two biological with three technical each). TP53 and RFX7 are shown as knockdown controls. CDKN1A is a
positive control for p53 induction by Nutlin-3a. (G) Western blot analysis of RFX7, p53, PDCD4, PIK3IP1 and actin (loading control) levels in HCT116
and RPE-1 cells transfected with siControl, siRFX7, or siTP53 and treated with Nutlin-3a or DMSO solvent control. (H) Immunoblot analysis of RFX7,
pThr172-AMPK� (positive control for phosphatase treatment), and actin (loading control) in lysates from HCT116 cells treated with Nutlin-3a or DMSO
control for 24 h. Whole cell lysates (input) were treated with phosphatase and incubated for 30 min at 37◦C (phosphatase). Incubation of cell lysates for
30 min at 37◦C without phosphatase served as control (37◦C control).
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Figure 3. The DNA binding landscape of RFX7. (A) Number of RFX7 ChIP-seq peaks identified in Nutlin-3a-treated U2OS, HCT116 and RPE-1 cells.
(B) Average vertebrate PhastCons conservation score at the 120 common RFX7 binding sites. (C) CEAS Enrichment on annotation analysis (44) for the
120 common RFX7 peaks compared to the human genome hg38. (D) Top motifs identified by de novo motif analysis using HOMER under the 120 peaks
commonly identified in all three cell lines. (E) Mean RFX7 occupancy (ChIP-seq read counts) at the 120 common RFX7 binding sites. (F) Genome browser
images displaying RFX7 ChIP-seq signals and predicted X-boxes at the PNRC1 and MXD4 gene loci. (G) Transcription factor ChIP-seq peak sets from
CistromeDB that overlap significantly with the 120 common RFX7 binding sites. (H) Comparison of known X-box motifs from RFX family members
with the X-box we identified for RFX7. Known motifs were obtained from the HOMER motif database. (I) The overlap of the 120 common RFX7 binding
sites with 7877 RFX5 binding sites supported by at least 5 out of 10 ChIP-seq datasets.
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However, comparing the binding site repertoire of RFX5
and RFX7 revealed a substantial difference as RFX7 occu-
pies only a small subset of RFX5 binding sites (Figure 3I).
Together, these findings show that RFX7 differs markedly
from all other members of the RFX transcription factor
family, including its phylogenetically closest sibling RFX5.

RFX7 functions as a trans-activator to alter the transcrip-
tome

To complement the RFX7 DNA binding landscape,
we identified the RFX7-regulated transcriptome through
RNA-seq analyses of U2OS, HCT116 and RPE-1 cells
treated with Nutlin-3a or DMSO control. While RT-qPCR
with its high technical variance showed significant up-
regulation of RFX7 only in U2OS (Figure 1D) and HCT116
but not in RPE-1 cells (Figure 2F), RNA-seq data con-
firmed significant Nutlin-3a-induced up-regulation of both
RFX5 and RFX7. At the same time, RFX1 was not in-
duced (Figure 4A). Notably, RNA-seq data did not indi-
cate alternative splicing or alternative transcription initia-
tion upon Nutlin-3a treatment (Supplementary Figure S1B)
strongly suggesting that the lower migrating form of RFX7
is not associated with a specific transcript isoform. De-
pletion of RFX7 caused up and down-regulation of sev-
eral hundred genes (Figure 4B, Supplementary Table S2).
While RFX7-dependent regulation was observed to be cell
line-specific at large, we identified multiple genes affected
by RFX7 depletion across cell lines. Genes down-regulated
upon RFX7 knockdown enriched for RFX5 binding and
NF-Y motifs. In contrast, up-regulated genes enriched for
AP-1 (JUN/FOS) binding and motifs (Figure 4C). The
fact that RFX7 occupies similar sites as RFX5 and NF-
Y (Figure 3G) already indicates that RFX7 may predom-
inantly trans-activate its target genes. Indeed, integration
of ChIP-seq and transcriptome data corroborates RFX7’s
trans-activator function (Supplementary Figure S1B). In
turn, the set of genes directly activated by RFX7 might in-
directly convey repressive effects on the highly cell-type spe-
cific AP-1 signaling.

The RFX7 target gene network comprises multiple tumor
suppressors and responds to stress

We integrated the RFX7 DNA binding landscape and
the RFX7-regulated transcriptome to infer potential direct
RFX7 target genes genome-wide. We identified 51, 87 and
73 potential direct RFX7 targets in U2OS, HCT116 and
RPE-1 cells, respectively, and these direct RFX7 targets in-
clude PDCD4, PIK3IP1, MXD4, and PNRC1 (Figure 4D).
Most strikingly, target genes up-regulated through the p53-
RFX7 axis comprise additional tumor suppressor genes,
such as ABAT (75), CCNG2 (76), IP6K2 (77), OTUD5 (78),
REV3L (79), RPS6KA5 (also known as MSK1) (80), TOB1
(81), TSC22D1 (82), and TSPYL2 (83). Most direct RFX7
targets were up-regulated in response to Nutlin-3a treat-
ment in siControl-transfected cells, and the up-regulation
was impaired or abrogated when RFX7 was depleted (Fig-
ure 4D). Notably, 15, 19 and 16 (20–30%) of direct RFX7
target genes identified in U2OS, HCT116 and RPE-1 cell,
respectively, displayed conserved Rfx7-dependent expres-
sion in mouse spleen or bone marrow (Supplementary Table

S3) (20). Direct RFX7 target genes down-regulated upon
Nutlin-3a treatment comprise cell cycle genes, including
DOLPP1, XRCC1, CDK4, CKAP2, FAM111A, and CKS2,
that become down-regulated through the trans-repressor
complex DREAM (23). These Nutlin-3a-repressed genes
display a more marked decrease in mRNA levels when
RFX7 is missing, suggesting that RFX7 partially counter-
acts and limits their p53-dependent down-regulation. Given
that RPE-1 is no established cell line model in p53 research,
we provide data showing that depletion of p53 in RPE-
1 abrogated the Nutlin-3a-induced regulation of all those
genes (Figure 4D). This includes RFX7 itself for which a
p53-dependent induction could not be observed in RPE-1
cells using RT-qPCR (Figure 2F). Direct RFX7 target genes
identified in at least two of the three cell lines comprise a set
of 57 genes (Table 1). Gene ontology enrichment analysis in-
dicated that RFX7 target genes could play a role in biolog-
ical processes such as regulation of the cell cycle, transcrip-
tion, lipid phosphorylation, DNA metabolic process, and
spinal cord development (Supplementary Table S4). In ad-
dition to regulating multiple tumor suppressors directly, our
data reveal a large p53-dependent subnetwork co-directed
by RFX7 (Supplementary Figure S2, Supplementary Table
S2), further highlighting the impact of the novel p53-RFX7
signaling axis.

Integration of our meta-analysis data (23) showed that
most direct RFX7 targets become up-regulated by p53
in various cell types and in response to multiple stimuli
(Figure 5A). Consequently, we tested whether RFX7 af-
fected their regulation in response to cellular stress. To
this end, we employed Doxorubicin and Actinomycin D,
which are well-established to induce the p53 program (23).
Doxorubicin is a topoisomerase II inhibitor that causes
DNA double-strand breaks while Actinomycin D inhibits
rRNA transcription inducing ribosomal stress. PDCD4,
PIK3IP1, MXD4, and PNRC1 were up-regulated in re-
sponse to Nutlin-3a, Actinomycin D, and Doxorubicin
treatment. The up-regulation was attenuated when p53 or
RFX7 were depleted. The direct p53 target CDKN1A was
up-regulated p53-dependent and RFX7-independent (Fig-
ure 5B). These results identify RFX7 as a missing link to
up-regulate numerous tumor suppressor genes in response
to stress.

High RFX7 target gene expression is associated with better
prognosis in cancer patients and cell differentiation

We and others identified RFX7 as a putative cancer driver
in Burkitt Lymphoma (7,8), and mouse data confirmed its
tumor suppressor function in lymphoma development (12).
Here, we identified RFX7 to induce well-established tu-
mor suppressor genes in numerous cell types (Figure 4D).
To assess whether RFX7 may affect cell growth and tu-
mor development also in cell types outside the lymphoid
lineage, we resorted to publicly available cell viability data
from the DepMap project (57). Intriguingly, RFX7 knock-
down increased the viability of the majority of 343 cell lines
tested, while the viability of lymphoma cell lines increased
the most (Figure 6A). Given that RFX7 appears to restrict
cell growth across a wide range of cell types, we sought to as-
sess the potential role of RFX7 signaling in numerous can-
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Figure 4. The RFX7-regulated transcriptome. (A) TPM (Transcripts Per Kilobase Million) expression values of RFX1, RFX5 and RFX7 obtained from
RNA-seq analysis from U2OS, HCT116 and RPE-1 cells treated with Nutlin-3a or DMSO solvent control. Statistical significance data from DESeq2
analysis. (B) Number of genes significantly (FDR < 0.01) up (log2FC ≥ 0.25; red venn diagrams) or down-regulated (log2FC ≤ 0.25; green venn diagrams)
following siRFX7 treatment in DMSO (bottom venn diagrams) and Nutlin-3a-treated (upper venn diagrams) U2OS, HCT116 and RPE-1 cells. (C) Top
5 transcription factors and binding motifs enriched among genes significantly up or down-regulated following RFX7 depletion in at least two Nutlin-3a-
treated cell lines. (D) Heatmap of RNA-seq data for direct RFX7 target genes that bind RFX7 within 5 kb from their TSS according to ChIP-seq data
and are significantly (FDR < 0.01) down-regulated (log2FC ≤ –0.25) following RFX7 depletion in Nutlin-3a treated U2OS, HCT116 and RPE-1 cells.
Significant (FDR < 0.01) p53-dependent regulation is indicated at the left. Asterisks (*) indicate conserved Rfx7-dependent expression in mouse spleen
or bone marrow (20) (Supplementary Table S3). Violin plots correspond to the heatmaps and display the mean Z-score of all these genes for the different
treatment conditions. The median is indicated by a black line. Statistical significance obtained using a two-sided paired t-test.
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Table 1. Direct RFX7 target genes. Set of 57 direct RFX7 target genes
identified as bound by RFX7 and down-regulated upon RFX7 knockdown
in at least two of the three cell lines (Figure 4D). Genes within the 19-gene-
set used for survival analyses are marked bold

ABAT DIP2A KLF9 PTMS TOB2
ARL15 DOLPP1 MAF RAB40B TOP2B
ATRX DSE MXD4 RAP2A TP53INP1
CABIN1 EMC9 NRSN2-AS1 REV3L TSC22D1
CAT FAM111A OTUD5 RFX5 TSPYL1
CCND1 FAM214A PDCD4 RMND5A TSPYL2
CCNG2 HNRNPUL2 PI4K2A RPS6KA5 UBE2H
CDK4 INTS3 PIK3IP1 SESN3 XRCC1
CIC IP6K2 PIK3R3 SLC43A2 YPEL2
CKAP2 JUNB PLCXD2 SOX12
CKS2 KDM4A PNRC1 SOX4
DDIT4 KDM6B PRKCZ TOB1

cer types. Therefore, we resorted to the cancer genome atlas
(TCGA) that comprises patient data from 33 cancer types
(84), and we tested whether RFX7 target gene expression is
associated with patient survival. To avoid confounding ef-
fects from cell cycle genes, which are well-established to be
associated with worse prognosis across cancer types (85), we
used a subset of 19 direct RFX7 target genes that are fre-
quently up-regulated by p53. Strikingly, higher expression
of these direct RFX7 targets correlates significantly with
better prognosis across the whole TCGA pan-cancer cohort
(Figure 6B and Supplementary Figure S3). Survival analy-
ses using data from the 33 individual cancer types revealed
that in 11 out of the 33 individual cancer types higher ex-
pression of the RFX7 targets correlates significantly with
better prognosis (Figure 7). These findings indicate that
RFX7 signaling is frequently de-regulated in cancer. To-
gether, these data indicate a ubiquitous role of RFX7 in re-
stricting cell growth and potential clinical implications of
this new signaling axis in numerous cancer types.

Cell differentiation represents an anti-proliferative mech-
anism that is typically circumvented by cancer (86). More
differentiated cancer cells are characterized as low grade
and are often associated with a favorable prognosis. No-
tably, RFX7 orthologs have been shown to play a role in
the development of murine natural killer cells (20) and
in the neural development of frogs (19). Given that sev-
eral direct RFX7 targets have been associated with cell
differentiation, such as the MYC antagonist MXD4 (also
known as MAD4) (87), we tested whether RFX7 could
play a more general role during differentiation. Therefore,
we assessed the expression of RFX7 target genes when
human p53-negative HL-60 promyelocytes differentiated
into macrophages or neutrophils. Interestingly, RFX7 tar-
get gene expression correlated significantly positively with
macrophage and neutrophil differentiation (Figure 6C), in-
dicating a potential role for RFX7 in hematopoietic dif-
ferentiation that is independent of p53. Further, RFX7
target gene expression correlated positively with the dif-
ferentiation of human umbilical cord blood-derived unre-
stricted somatic stem cells into neuronal-like cells (Figure
6C), which is in agreement with the reported role of RFX7
in the neural development of frogs (19) and its association
with neurological diseases (17,18). Intriguingly, the expres-
sion of RFX7 target genes correlates significantly positively

also with the differentiation of human pluripotent stem cells
into lung alveolar cells (Figure 6C). Together, these results
indicate a potentially widespread role of RFX7 in promot-
ing cell differentiation.

RFX7 sensitizes cells to Doxorubicin and promotes apoptosis

Given the potentially widespread role of RFX7 in cancer
(Figures 6B and 7), we sought to identify potential benefits
that could be conferred by the loss of RFX7 irrespective of
p53. The activation of RFX7 in response to cellular stress
(Figure 5) prompted us to investigate the role of RFX7 in
the stress response. To this end, we challenged U2OS os-
teosarcoma and HCT116 colorectal cancer cells with dif-
ferent concentrations of Doxorubicin. Intriguingly, WST-1
assays showed that RFX7 depletion significantly increased
the viability of U2OS and HCT116 cells challenged with
low concentrations of Doxorubicin, with HCT116 showing
the highest benefit (Figure 8A). Confirming previous results
(88,89), depletion of p53 did not increase the viability. We
further assessed the response in HCT116 cells, and, in addi-
tion to Doxorubicin, we employed the pyrimidine analog 5-
Fluorouracil (5-FU), to test whether RFX7 sensitizes cells
to a broad range of p53-inducing stresses. Notably, 5-FU
largely induces ribosomal stress to activate p53, a mecha-
nism similar to that of actinomycin D (90). Confirming pre-
vious results (88), depletion of p53 led to increased survival
of HCT116 cells challenged with 5-FU. Depletion of RFX7,
however, did not lead to an increased viability (Figure 8B).
Similar to cells challenged with 5-FU, also cells challenged
with Nutlin-3a were de-sensitized by p53 depletion but not
following depletion of RFX7 (Figure 8C). These findings in-
dicate that RFX7 is neither required for p53-mediated cell
killing nor does it sensitize cells to ribosomal stress.

A clonogenic assay validated that p53 but not RFX7 sen-
sitized cells to 5-FU treatment (Figure 8D). Moreover, both
clonogenic and Annexin V assays corroborated that RFX7
sensitizes cells to low concentrations of Doxorubicin (Fig-
ure 8E and F). Importantly, Annexin V assays revealed that
the increased cell viability upon RFX7 depletion was asso-
ciated with significantly reduced apoptosis (Figure 8G). The
beneficial effect of RFX7 depletion was attenuated when
cells were treated with high concentrations of Doxorubicin.
Thus, RFX7 appears to sensitize cells to low concentrations
of Doxorubicin through promoting apoptosis, indicating a
role of RFX7 in cell fate determination in response to spe-
cific types of stress induced by Doxorubicin.

DISCUSSION

p53 is the best-known tumor suppressor, but it remains un-
clear how it regulates large parts of its GRN. Our findings
place the understudied transcription factor RFX7 immedi-
ately downstream of p53 in regulating multiple genes. RFX7
emerged recently as an essential regulator of lymphoid cell
maturation (20) and a putative cancer driver mutated in
hematopoietic neoplasms (72). While these observations are
in agreement with the maximal expression of RFX7 in lym-
phoid tissue (6,20), our results using human osteosarcoma,
colorectal cancer, and non-cancerous retinal pigment ep-
ithelial cells establish a ubiquitous role of RFX7 in regu-
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Figure 5. RFX7 up-regulates its target genes in response to stress. (A) The p53-dependent regulation of direct RFX7 target genes (Table 1) across 20 datasets
from a meta-analysis (23). Genes were identified as significantly up-regulated (green; +1), down-regulated (red; −1), or not significantly differentially
regulated (white; 0). The p53 Expression Score represents the summary across all 20 datasets. No meta-analysis data was available for NRSN2-AS1 and
HNRNPUL2. (B) RT-qPCR data from U2OS cells depleted for RFX7 or p53 and treated with DMSO control, Nutlin-3a (N3A), Actinomycin D (AD) and
Doxorubicin (Dox). RT-qPCR data normalized to ACTR10 and siControl DMSO levels. Mean and standard deviation is displayed. Statistical significance
of RT-qPCR data obtained through a two-sided unpaired t-test, n = 6 replicates (two biological with three technical each).
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Figure 6. RFX7 limits cell viability, and RFX7 target gene expression correlates with good prognosis in cancer and cell differentiation. (A) Cell viability
data from depmap.org (57). DEMETER2 dependency scores (58) are based on RNAi mediated knockdown of RFX7 in 343 cell lines. Top panel displays
data for all 343 cell lines and bottom panel displays groups of cell lines that show DEMETER2 scores significantly different to all other cell lines. Groups
are based on tissue origin. Negative dependency scores reflect decreased cell viability upon loss of the target gene, while positive scores indicate increased
cell viability. (B) Kaplan–Meier plot of patients from the TCGA pan-cancer cohort. Patients were grouped into low, medium, and high based on the rank
expression of 19 direct RFX7 target genes that display a p53 Expression Score > 5 (23). Statistical significance obtained through the Cox proportional
hazards (PH) model (Cox likelihood ratio test variable). To correct for major confounding factors, cancer type, gender and age were included into the
multivariate regression analysis. Statistical significance of the rates of occurrence of events over time between the groups was obtained using the fitted
Cox PH model (Cox likelihood ratio test groups). Complementary data displayed in Supplementary Figure S3. (C) Gene set enrichment analysis (GSEA)
of 57 direct RFX7 target genes in human p53-negative HL-60 promyelocytes differentiated into macrophages or neutrophils (upper panels) (53), human
umbilical cord blood-derived unrestricted somatic stem cells (USSC) differentiated into neuronal-like cells (54) and human pluripotent stem cells (PSC)
differentiated into lung alveolar cells (bottom panels) (55).

lating known tumor suppressors and in serving as a cru-
cial regulatory arm of the p53 tumor suppressor. We estab-
lish p53 as the first regulator of the novel tumor suppres-
sor RFX7 and exploit this regulatory connection to chart
RFX7’s target gene network in three distinct cell systems.
Most importantly, the RFX7 network comprises multiple
established tumor suppressors offering an explanation for
RFX7’s tumor suppressor role. For example, similar to the
lymphoma-promoting loss of Rfx7 in a mouse model (12),
mice carrying a knockout of the RFX7 targets PDCD4 and
REV3L displayed spontaneous lymphomagenesis (64,79).
Similar to the transcription factor p53, RFX7 appears to
orchestrate its tumor suppressive function through multiple
target genes.

The general importance of RFX7 signaling in cancer
biology is exemplified by the better prognosis of patients
with medium to high expression of RFX7 targets across the
pan-cancer cohort (Figure 6B). While frequent mutations

in RFX7 so far have been identified only in Burkitt lym-
phoma (7,8,72), the altered expression of direct RFX7 tar-
get genes across numerous cancer types (Figures 6B and 7)
indicates that RFX7 signaling is recurrently de-regulated in
cancer. Notably, recent studies that identified RFX7 as fre-
quently mutated in Burkitt lymphoma used whole-genome-
sequencing (7,8), while earlier studies using whole-exome-
sequencing did not detect frequent RFX7 mutations (91).
While speculative at this point, it cannot be ruled out that
systematic biases of earlier whole-exome-sequencing ap-
proaches, e.g. because of insufficient enrichment and cov-
erage (92), have led to an underestimation of RFX7 muta-
tions also in other cancers. High expression of RFX7 tar-
get genes during differentiation (Figure 6C) and RFX7’s
apoptosis-promoting function in response to stress (Figure
8) indicate a widespread role of RFX7 in cell fate determi-
nation and may at least in part account for the better prog-
nosis observed in cancer patients with higher RFX7 tar-
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Figure 7. RFX7 target gene expression correlates significantly positive with good prognosis in 11 cancer types. Kaplan-Meier plots of patients from TCGA
cohorts. Patients were grouped into low, medium, and high based on the rank expression of 19 direct RFX7 target genes that display a p53 Expression
Score > 5 (23). 11 out of 33 cancer types are displayed that show a significantly (Cox likelihood ratio test variable <0.05 and Cox likelihood ratio test group
low versus high < 0.1) better prognosis when the expression of the RFX7 targets is higher. Only one cancer type (TCGA-COAD) showed a significantly
poorer prognosis. Statistical significance obtained through the Cox proportional hazards (PH) model (Cox test variable). To correct for major confounding
factors, gender and age were included into the multivariate regression analysis. Statistical significance of the rates of occurrence of events over time between
the groups was obtained using the fitted Cox PH model (Cox test groups).

get gene expression. Most recently and in agreement with
our findings, it was shown that loss of RFX7 can confer re-
sistance of diffuse large B-cell lymphoma cell lines to the
cereblon E3 ligase modulator CC-122 by reducing CC-122-
induced apoptosis (93). Our target gene analysis suggests
that RFX7’s ability to promote apoptosis may be linked to
its target IP6K2, an established inducer of apoptosis (77).

Intriguingly, RFX7 sensitizes cells to low concentrations
of Doxorubicin but not to 5-FU or Nutlin-3a (Figure 8).
These findings indicate that RFX7 may be not required for
p53-mediated restrictions in cell viability, including those
elicited by ribosomal stress. Instead, RFX7 specifically sen-
sitizes cells to low concentrations of Doxorubicin through

promoting apoptosis (Figure 8G). Thus, loss of RFX7, as
observed in various hematopoietic neoplasms (72), and de-
regulation of RFX7 signaling, as observed in multiple can-
cer types (Figures 6A and 7), may confer a resistance to the
treatment with Doxorubicin and chemotherapeutics with
similar modes of action.

Our list of direct RFX7 target genes inferred from RFX7
ChIP-seq data and RFX7-dependent transcriptome profil-
ing (Table 1) provides a rich resource helpful to unravel
the mechanisms through which RFX7 carries out its func-
tions in the future. The direct RFX7 target genes RPS6KA5
(MSK1) and ARL15 (Figure 4D) may explain the link be-
tween RFX7 alteration and increased waist-hip-ratio (16),
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Figure 8. RFX7 sensitizes to Doxorubicin through promoting apoptosis. (A) WST-1 assay of U2OS and HCT116 cells 6 days post-recovery from a treatment
with different concentrations of Doxorubicin for 24 h. Mean and standard deviation is displayed. Statistical significance between siControl and siRFX7
obtained through a Sidak-corrected two-way ANOVA test, n = 11 (U2OS) or 9 (HCT116) biological replicates. (B) WST-1 assay of HCT116 cells 6 days
post-recovery from a treatment with different concentrations of 5-FU for 24 h. Mean and standard deviation is displayed. Statistical significance between
siControl and siTP53 obtained through a Sidak-corrected two-way ANOVA test, n = 12 biological replicates. (C) WST-1 assay of HCT116 cells 6 days
post-recovery from a treatment with 10 �M Nutlin-3a for 24 h. Mean and standard deviation is displayed. Statistical significance obtained through a
Sidak-corrected two-way ANOVA test, n = 12 biological replicates. (D) Clonogenic assay of HCT116 cells 6 days post-recovery from a treatment with
different concentrations of 5-FU for 24 h. (E) Clonogenic assay of HCT116 cells 6 days post-recovery from a treatment with different concentrations of
Doxorubicin for 24 h, and (F) complementary brightfield images. (G) Annexin V assay of HCT116 cells transfected with siControl, siTP53, or siRFX7 and
treated with indicated concentrations of Doxorubicin for 24 h. Viable cells (negative for Annexin V and PI), apoptotic cells (positive for Annexin V), early
apoptotic cells (positive for Annexin V, negative for PI), and late apoptotic cells (positive for Annexin V and PI) were quantified through flow cytometry.
Relative numbers of 50 000 cells from n = 4 biological replicates are displayed. Mean and standard deviation is displayed. Statistical significance between
siControl and siRFX7 obtained through a two-sided paired t-test.

as both genes have been associated with obesity and high
waist-hip-ratio (94). Furthermore, RFX7 directly regulates
multiple transcription factors, including JUNB, KLF9,
MAF, MXD4, RFX5, SOX4, SOX12, and TSC22D1, as
well as chromatin modifiers, which may affect many RFX7-
regulated genes that are not bound by RFX7 itself (Figure
4D, Supplementary Figure S2). At the same time, SOX4 and

SOX12 are members of the SoxC transcription factor fam-
ily with important roles in neurodevelopment (95) and, sim-
ilarly, MAF (also known as c-Maf) has been shown to play a
role in neuron differentiation (96). Thus, MAF, SOX4, and
SOX12 may represent particularly promising links between
RFX7 and its potential role in neuronal development and
diseases (17–19) (Figure 6C).
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Taking the p53-dependent regulation of RFX7 into ac-
count, public data and our results indicate that p53 up-
regulates RFX7 mRNA levels to a significant but minor
extent (Figures 1B, D, 2D and 4A). This regulation may
be conferred by direct p53 binding to RFX7 intron1 (Fig-
ures 1C, 2C, and Supplementary Figure S1B). More impor-
tantly, our data provide evidence that a specific lower mi-
grating form of RFX7 protein is induced by p53 (Figure 1E,
2B and F) leading to increased DNA occupancy and tran-
scription factor activity of RFX7 (Figure 3E, F and 4D).
While RFX7 mRNA appears to be directly induced by p53
(Figure 1C, 2A, and 4A), the importance of the rather minor
increase in RFX7 mRNA levels remains unclear. Instead,
the reversible change in RFX7’s migration pattern appears
to be largely decoupled from RFX7 translation (Figure 2C).
But how are the differently migrating forms of RFX7 regu-
lated? Given that it is reversible and uncoupled from RFX7
translation (Figure 2C), it appears to result from a post-
translational modification. While we are able to rule out
phosphorylation (Figure 2H) and proteolysis (reversibility),
the potentially activating modification and its regulation is
subject to future research.

When we set out to identify novel transcription factors
mediating p53-dependent gene regulation downstream of
p53, our initial enrichment analysis pointed strongly to-
wards RFX5 (Figure 1A). Somewhat surprisingly, we un-
covered that RFX7 instead of RFX5 is an important novel
node in the p53 GRN. RFX5, however, scored high in the
enrichment analyses because it binds to essentially all tar-
gets also bound by RFX7 (Figure 3I). As no ChIP-seq data
on RFX7 was available in public databases, it was conse-
quently hidden from the enrichment analysis. Notably, we
found that RFX5 is a direct target of RFX7, explaining
the p53-dependent induction of RFX5 (Figures 1D, F and
4D). These findings underscore both the opportunity and
the importance to investigate siblings of transcription fac-
tors identified in similar enrichment analyses. However, the
fact that RFX5 can bind to essentially all RFX7 target loci
raises the question how RFX5 and RFX7 coordinate bind-
ing to these loci. Our RT-qPCR data indicate that RFX5
restricts the expression of RFX7 targets in control condi-
tions when p53 levels are low. This effect, however, was not
limited to RFX7 targets but also affected CDKN1A (Figure
1D). It remains to be determined in future studies whether
RFX5 and RFX7 collaborate or antagonize each other at
the DNA.

In summary, our findings suggest that the RFX7 signal-
ing pathway represents a novel growth regulatory mecha-
nism that is activated in response to stress and p53. Given
the importance of the discovered regulatory connection, we
expect our data to be essential in triggering further research
into RFX7’s regulatory network, potentially leading to new
diagnostic and therapeutic approaches.
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