
IET Systems Biology

Research Article

Network-based computational approach to
identify genetic links between
cardiomyopathy and its risk factors

ISSN 1751-8849
Received on 11th July 2019
Revised 23rd September 2019
Accepted on 21st October 2019
E-First on 26th November 2019
doi: 10.1049/iet-syb.2019.0074
www.ietdl.org

Md. Nasim Haidar1, M. Babul Islam1, Utpala Nanda Chowdhury2, Md. Rezanur Rahman3, Fazlul Huq4,
Julian M.W. Quinn5, Mohammad Ali Moni4,5 
1Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
2Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
3Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University, Sirajgonj 6751, Bangladesh
4School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
5Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia

 E-mail: mohammad.moni@sydney.edu.au

Abstract: Cardiomyopathy (CMP) is a group of myocardial diseases that progressively impair cardiac function. The
mechanisms underlying CMP development are poorly understood, but lifestyle factors are clearly implicated as risk factors. This
study aimed to identify molecular biomarkers involved in inflammatory CMP development and progression using a systems
biology approach. The authors analysed microarray gene expression datasets from CMP and tissues affected by risk factors
including smoking, ageing factors, high body fat, clinical depression status, insulin resistance, high dietary red meat intake,
chronic alcohol consumption, obesity, high-calorie diet and high-fat diet. The authors identified differentially expressed genes
(DEGs) from each dataset and compared those from CMP and risk factor datasets to identify common DEGs. Gene set
enrichment analyses identified metabolic and signalling pathways, including MAPK, RAS signalling and cardiomyopathy
pathways. Protein–protein interaction (PPI) network analysis identified protein subnetworks and ten hub proteins (CDK2, ATM,
CDT1, NCOR2, HIST1H4A, HIST1H4B, HIST1H4C, HIST1H4D, HIST1H4E and HIST1H4L). Five transcription factors (FOXC1,
GATA2, FOXL1, YY1, CREB1) and five miRNAs were also identified in CMP. Thus the authors’ approach reveals candidate
biomarkers that may enhance understanding of mechanisms underlying CMP and their link to risk factors. Such biomarkers may
also be useful to develop new therapeutics for CMP.

1 Introduction
Cardiomyopathy (CMP) is a group of diseases affecting the
structure and functioning of the heart, and includes conditions
where the heart is affected by ventricular hypertrophy, dilation or
fibrotic dysplasia that cause mechanical and electrical dysfunction.
CMP may be either cardiac-specific or a part of generalised
systemic disorders, but many of these conditions result in
cardiovascular damage or progressive heart failure [1]. CMP is the
third most prevalent cause of heart failure in the USA [1]. In 2015,
about 2.6 million people worldwide were affected by
cardiomyopathy and myocarditis [2]. Currently, the most
commonly occurring form of CMP is dilated CMP which affects
five in 100,000 adults and 0.57 in 100,000 children [3].

The etiology of the cardiomyopathy involves genetic,
infectious, metabolic and environmental factors [1]. Lifestyle risk
factors include severe obesity, alcohol consumption (AC), long-
term high blood pressure, coronary heart disease, and sarcoidosis,
but the molecular mechanisms behind the development of CMP
and how these risk factors contribute to the progression of the CMP
is not well understood. However, we can use our knowledge of
CMP risk factors to identify key factors in CMP development by
determining the altered gene expression patterns the risk induces
that are also seen CMP-affected heart tissues. Using an integrative
gene-network-based approach we can then identify candidate
causative pathways that can be further examined [4, 5].

Integrative network-based gene or multi-omics analyses are an
increasingly common approach used to identify disease-associated
biomarkers and therapeutic targets [6]. Such an approach is now
commonly used for elucidating molecular mechanisms in different
disease such as Alzheimer's disease [7–12], Parkinson's disease
[13–15], multiple sclerosis [16], respiratory system diseases [17],
colorectal cancer [18] and Thyroid cancers [19–21]. Therefore, in
this study, a system biology-based approach was used to identify

molecular biomarker transcripts (i.e. mRNAs), and proteins (hub
proteins) and pathways in CMP using CMP-associated risk factors
to clarify the genes that may be causative factors for the
progression of CMP (Fig. 1). For this purpose, we first identified
DEGs, genes whose expression is altered in CMP affected tissues
and in risk-factor exposed tissues; these DEGs that were common
between CMP and particular CMP-associated risk factors were
then identified. These common DEGs, were then studied for their
involvement in human biomolecular networks such as protein–
protein interaction (PPI) networks to identify central signalling
molecules (hub proteins) and molecular pathways. This resulted in
the identification of candidate genes that could mediate influences
of the CMP risk factors, and these were then cross-validated using
gold benchmarking datasets OMIM and dbGaP gene-disease
association databases to identify those candidates with known
pathological involvement.

2 Materials and methods
2.1 High-throughput microarray gene expression datasets

We analysed gene expression microarray datasets to identify the
molecular association of different factors with CMP at the
molecular level. All the datasets used in this study were collected
from the National Center for Biotechnology Information (NCBI)
Gene Expression Omnibus [22], and employed Affymetrix Human
DNA arrays unless otherwise stated. The utilised gene expression
datasets with accession numbers GSE4172, GSE1144, GSE4806,
GSE12654, GSE20950, GSE25220, GSE44456, GSE48964,
GSE56960 and GSE68231 were analysed in this study. The CMP
dataset (GSE4172) was obtained by gene expression profiling of
human inflammatory CMP [23]. The ageing (AG) dataset
(GSE1144) was obtained by analysing gene expression in skeletal
muscle tissue characterised by loss of metabolic and contractile
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competence [24]. The smoking (SM) dataset (GSE4806) was
obtained from gene expression profiles of T-lymphocytes from
smokers and non-smokers [25]. The depression (DEP) dataset
(GSE12654) was attained by gene expression from the human
prefrontal cortex (BA10) [26]. The dataset (GSE20950) for insulin
resistance (IR) was obtained by gene expression data from human
adipose tissue using an IR patient cohort [27]. The red meat (RM)
dietary intervention dataset (GSE25220) was generated using an
Agilent-014850 whole human genome microarray data from
human colon biopsies before and after participating in a high RM
dietary intervention [28]. The AC dataset (GSE44456) was
obtained by examining gene expression in post-mortem
hippocampus tissues from 20 alcoholics and 19 controls [29]. The
obesity (OB) dataset (GSE48964) was obtained by expression data
from adipose stem cells (ASCs) from morbidly obese and non-
obese individuals [30]. The high-calorie diet (HCD) dataset
(GSE56960) was obtained by expression profiling of array of blood
cell transcriptome of two different population groups after the
ingestion of different caloric doses [31]. The high-fat diet (HFD)
dataset (GSE68231) is Affymetrix Human Genome data obtained
from human skeleton muscle of five subjects in each group
selected before and after three days of an HFD [32].

2.2 Identification of differentially expressed genes

We performed a differential gene expression analysis of the CMP
with nine risk factors from transcriptomics datasets. Firstly, we
transformed each gene expression data for each disease using the
Z-score (or zero mean) normalisation method for both disease and
control states. This might resolve the problems regarding mRNA
data comparisons using different platforms and experimental set-
ups [33]. Each sample of the gene expression matrix was
normalised using mean and standard deviation. The expression
value of the gene i in sample j represented by gi j was transformed
into Zi j by computing

Zi j =
gi j − mean(gi)

SD(gi)
(1)

where SD is the standard deviation. Comparing values of gene
expression for various samples and diseases are made possible by
this transformation.

The gene expression datasets were normalised by log2

transformation and unpaired student t-test was used. Finally, genes
were filtered by setting threshold values with adjusted p-value
<0.05 and absolute log fold change (log FC) >1.0 to designate
statistically significant DEGs.

2.3 Gene set enrichment analysis to identify gene ontology
and pathways

To clarify the biological significance of the identified DEGs, gene-
set enrichment analysis and pathways analysis were performed to
identify the significant gene ontology terms and KEGG pathways

enriched by DEGs via EnrichR [34, 35]. For statistical
significance, the adjusted p-value < 0.05 was considered for the
significance assessment of enrichment results.

2.4 Identification of transcriptional and/or post-transcription
regulators of the DEGs

To identify regulatory transcription factors (TFs) that regulate the
DEGs at the transcriptional level, TF-target gene interactions were
obtained from the JASPAR database to identify TFs based on
topological parameters [36]. The regulatory miRNAs which
regulate DEGs at the post-transcriptional level were identified from
miRNAs-target gene interactions were obtained from TarBase and
miRTarBase based on topological parameters [37–39].

2.5 PPI analysis to identify hub proteins

We reconstructed a PPI network around the proteins encoded by
the DEGs using protein interactome database STRING [40]. The
PPI network was analysed by Cytoscape (v3.5.1) [41, 42]. An
undirected graph representation was used for the PPI network,
where the nodes indicate proteins and the edges symbolised the
interactions between the proteins. We performed a topological
analysis using Cyto-Hubba plugin [43, 44] in Cytoscape to identify
highly connected proteins (i.e. hub proteins) in the network and the
degree metrics were employed [45, 46].

2.6 Protein–drug interactions analysis

The protein–drug interactions were analysed using the DrugBank
database (Version 5.0) to identify potential small molecules that
can affect pathways we identified as important in CMP and which
may point to therapeutic approaches for CMP [47].

3 Results
3.1 Identification of differentially expressed genes from
microarray gene expression datasets

The gene expression datasets of CMP were analysed and a total of
1764 DEGs were identified in CMP patients compared to control
samples where 919 genes were up-regulated and 845 genes were
down-regulated.

For the investigation of the relationship of the CMP with nine
risk factors, we performed several steps of statistical analysis for
mRNA microarray data of each risk factor. Thus, we selected the
most significant over and under-regulated genes for each risk
factor. Our analysis identified a large number of dysregulated
genes. The 1122, 400, 72, 356, 482, 25, 157, 255, 739 DEGs were
identified in AG, SM, DEP, IR, RM, AC, OB, HCD, HFD datasets.
Then, a cross-comparative analysis revealed the common over and
under-expressed genes between CMP and above-mentioned risk
factors. The CMP shared 48, 32, 3, 28, 29, 2, 6, 7 and 81
significant DEGs with AG, SM, DEP, IR, RM, AC, OB, HCD and
HFD, respectively.

Fig. 1  Overview of the quantitative network-based approach employed in this study. The microarray gene expression datasets of CMP (GSE4172), ageing
(GSE1144), smoking (GSE4806), depression (GSE12654), high RM consumption (GSE25220), IR (GSE20950), chronically high AC (GSE44456), morbid
obesity (GSE48964), HCD (GSE56960) and HFD datasets (GSE68231) have been obtained from NCBI-GEO
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The diseasome association networks centred on the CMP were
built to identify statistically significant associations among these
risk factors (Figs. 2 and 3 and Table 1). Notably, FAM208B was
commonly dysregulated for CMP, AG, HFD and IR. CMP shared
18 DEGs (ESCO2, HIST1H4A, HIST1H4B, HIST1H4C,
HIST1H4D, HIST1H4E, HIST1H4F, HIST1H4H, HIST1H4I,
HIST1H4J, HIST1H4K, HIST1H4L, HIST2H4A, HIST2H4B,
HIST4H4, ITGB1, PIEZO2, SCN8A) with HFD. Three DEGs
FGFR2, GHRHR and SPTBN1 were common among CMP, AG.
CMP shared GABRB1 and HMGA2 dysregulated genes with HFD
and RM. Moreover, CMP and HFD shared CCNF, TNPO2 and
PPP2R1B dysregulated genes with AG, DEP and SM, respectively.

3.2 Molecular pathway and functional analysis

To clarify the biological roles of the identified common DEGs
between CMP and other risk factors, we performed gene ontology
analysis to identify the biological process, cellular component and
molecular functions enriched by the DEGs (Table 2). There was a
total of 741 significant gene ontology groups including leukocyte
adhesion to vascular endothelial cell (GO:0061756), cellular
response to reactive nitrogen species (GO:1902170), mesoderm
formation (GO:0001707), cAMP-mediated signalling
(GO:0019933), morphogenesis of an epithelium (GO:0002009),
negative regulation of response to biotic stimulus (GO:0002832),
leukocyte tethering or rolling (GO:0050901), establishment of
epithelial cell apical/basal polarity (GO:0045198), regulation of
osteoblast proliferation (GO:0033688), mesodermal cell
differentiation (GO:0048333) were identified.

The significantly altered molecular pathways were identified in
CMP and other risk factors. A total of 61 pathways were found to
be over-represented among several groups out of which some
significant pathways are shown in Table 2. The amino acid
metabolism pathway such as alanine metabolism pathways,
different signalling pathways such as MAPK and RAS signalling
pathways, ECM pathways, and alcoholism came into prominence
as signalling pathways.

3.3 Identification of regulatory biomolecules

We studied the regulators of the common DEGS utilising DEGs–
TFs and DEG–miRNAs interaction analyses, presented in Table 3. 
We identified DEG–TFs interactions (Fig. 4) and DEGs–miRNAs
interactions (Fig. 5) and detected central regulatory biomolecules
(TFs and miRNAs) using topological parameters. As shown in
Table 3, five TFs (FOXC1, GATA2, FOXL1, YY1, and CREB1)
and five miRNAs (mir-335-5p, mir-26b-5p, mir-34a-5p,
mir-92a-3p, and mir-17-5p) were detected from the DEGs–TFs and
DEGs–miRNAs interaction networks, respectively. These
biomolecules regulate genes at transcriptional and post-
transcriptional levels.

The FOXC1 is a TF that plays a critical role in early
cardiomyogenesis [48]. It is also required for the morphogenesis
process of cardiac outflow tract [58]. The TF GATA2 expression is
high in the thoracic aorta and GATA2 variants are associated with
early-onset familial coronary artery disease [49]. FOXL1 is a TF
whose elevated expression is associated with good outcomes in
human pancreatic ductal adenocarcinoma [50] but does not have a
known association with cardiac diseases. The activity of YY1 TF is
increased in human heart failure [51]. CREB over-expression is
associated with cardiac failure suggesting it plays a significant role
in cardiac pathologies [52].

microRNAs (miRNAs) are short single-stranded RNA
molecules (∼22 nucleotides long) that regulate the expression of
genes at post-transcriptional stage. miRNAs are being considered
as potential sources of biomarkers for complex disease including
neurodegenerative disease and cancers. Therefore, we have
identified those miRNAs controlling the DEGs to provide insights
into the regulatory biomolecules. Among the miRNAs, mir-335-5p
was identified as upregulated in experimental heart failure by
experimental animals [53]. Sun et al. [59] also predicted
mir-335-5p is implicated in hypertrophic CMP pathway by
microarray analysis. Jia et al. [54] showed mir-26b-5p was
associated with suppression of proliferation and enhance the

apoptosis in multiple myeloma cells. It has been proposed the
mir-34a-5p could prevent autophagic cell deaths in ischemic hearts
and in this way can improve the myocardial injury [55, 60]. The
inhibition of mir-92a-3p leads to increase blood vessel growth and
recovery of damaged tissues in myocardial infarction mice models,
which suggest it may be an important therapeutic target in
ischaemic heart disease [56]. The mir-17-5p has been suggested as
important prognostic biomarkers in cancer, including
hepatocellular carcinoma [57].

3.4 PPI network analysis

The PPI network was constructed using all the distinct 236
differentially expressed genes that were common between the CMP
and the risk factors (Figs. 6 and 7). The topological analysis using
degree matrices was used to identify highly connected proteins
clusters. Each node in the network represents a protein and an edge
indicates the interaction between two proteins. We detected ten hub
proteins (CDK2, ATM, CDF1, NCOR2, HIST1H4A, HIST1H4B,
HIST1H4C, HIST1H4D, HIST1H4E and HIST1H4L) in PPI
analysis. These hub proteins may be potential drug targets.

3.5 Identification of candidate drugs

A protein–drug interaction network was analysed and we found
GABRB1, GRIA3, SLC6A2, GAD2, GAD2, CACNB1, NTRK2,
and GRM5 proteins had interaction with 5 drugs/compounds
(Ethanol, Amoxapine, L-Glutamic Acid, Amitriptyline,
Acamprosate) as shown in Fig. 8. 

4 Discussion
In this study, the molecular mechanisms that may link CMP and
associated risk factors were investigated. We performed an analysis
of gene expression data from CMP tissue analysis and from the risk
factors in order to identify the common DEGs shared by CMP and
the risk factors. This identified CMP affected tissues shared with
81 genes with tissues and cells affected by HFD exposure;
similarly there were shared DEGs seen for AG (48 genes) and SM
(32 genes), the conditions that shared most DEGs with CMP. To
clarify the biological relevance of the identified DEGs, GO and
molecular pathways analysis was performed which revealed
pathways with significantly altered activity. Among such pathways,
MAPK signalling cascades have been reported to be prominent in
the pathogenesis of cardiac and vascular disease [61–63]. Another
pathway, RAS signalling, plays a critical role in cardiac
hypertrophy, which suggests complexity in developing meaningful
therapy for individuals with these RASopathies [64]. Clinical and
genetic studies have also revealed close relationships between cell
adhesion proteins and the occurrence of various CMPs [65], thus
indicating the important role of focal adhesion pathways in CMP.
Related to this, extracellular matrix alterations may be a significant
factor in the pathogenesis of dilative CMP [66]. Moreover,
molecular pathways hypertrophic CMP, arrhythmogenic right
ventricular CMP, dilated CMP pathways were notably and
consistently seen to be enriched in CMP.

Analysis of PPIs can provide some detailed insights into the
central mechanism behind the diseases [9, 11, 12]. Therefore, we
reconstructed the PPI networks around the protein encoded by the
DEGs. Based on our topological analysis, we detected ten hub
proteins (CDK2, ATM, CDT1, NCOR2, HIST1H4A, HIST1H4B,
HIST1H4C, HIST1H4D, HIST1H4E and HIST1H4L) involved in
the CMP. A brief description of hub proteins, their gene ontology
and features are presented in Table 4. Among the hubs, CDK2
involved in the regulation of myocardial ischaemia and reperfusion
injury [67, 74]. The hub protein apical transverse motion (ATM) is
associated with electromechanical dyssynchrony in adult dilated
CMP [68]. The ATM protein involved in CMP associated with
obesity and IR [75]. The hub protein CDT1 is associated with
genotoxic stress, which results in aberrant cell proliferation leading
to cancer formation [69], but its association with the CMP is not
known. Another hub protein, NCOR2 has been reported to be
associated with non-alcoholic fatty liver disease [70], which is one
of the prominent risk factors for cardiovascular disease. Yin et al.
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[72] have reported the dysregulation of HIST1H4B in rat
cardiomyocytes. The other hub proteins, HIST1H4A, HIST1H4D,
HIST1H4E and HIST1H4L were not reported to CMP yet. These
identified hubs proteins might be considered as candidate
biomarkers or, if their biological role is confirmed, as potential
drug targets.

Based on the network-based approach, our analyses revealed
novel relationships between CMP and other susceptibility/
causative factors. This study identified potential biomarkers, which
may be candidates for the development of prognostic strategies and
treatments. Since the common pathways may indicate ways by the
risk factors influence CMP, such pathways and their hub genes
identified in this study may have important pathogenic roles in
CMP. To examine this and so to validate the results of this systems
biology approach, we also analysed the DEGs associated with
CMP and each of the risk factors with OMIM databases and
dbGAP databases using the valid gold benchmark the disease-gene
associations (Table 5). The DEGs of nine risk factors were
identified as showing suggestive links that may promote CMP

development and progression. This analysis furnishes new
hypotheses that may point the way to establishing mechanistic
links between the CMP and the various risk factors that we
examined.

5 Conclusion
In this study, the genetic association of CMP with various
diseasome was identified from comprehensive transcriptomics
analyses incorporated with human biomolecular networks to reveal
candidate biomarkers at RNA level (transcripts and miRNAs) and
protein levels (hub proteins); identified as potential key signalling
and regulatory biomolecules in CMP; we also identified possible
molecular pathways with CMP involvement. Protein–drug
interaction studies revealed eight gene products that had detectable
in silico interaction with four compounds including, Amoxapine,
L-Glutamic Acid, Amitriptyline and Acamprosate, which are all
compounds already available for therapeutic use apart from
glutamate, with is a nutrient and neurotransmitter. Thus, new gene-
based recommendations for disease diagnosis and possible

Fig. 2  Network for up-regulated genes of CMP with ageing (AG), smoking (SM), AC, HCD, HFD, IR, obesity (OB), depression (DEP) and high RM intake.
The red coloured octagon-shaped node at the centre represents the target CMP and the hexagon-shaped nine nodes represent the risk factors and the other
nodes represent the genes that are in common between CMP with the examined risk factors

 

Fig. 3  Network for down-regulated genes of CMP with ageing (AG), smoking (SM), AC, HCD, HFD, IR, obesity (OB), depression (DEP) and high RM intake.
The red coloured octagon-shaped node at the centre represents the target CMP and the hexagon-shaped nine nodes represent the risk factors and the other
nodes represent the genes that are common to CMP and the risk factors
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treatment were demonstrated in this study. The molecular
signatures and repurposing of the drugs presented in this study may
thus deserve attention for use in further experimental studies of
CMP.

Table 1 Significant Gene Ontology terms related to CMP and risk factors such as smoking, IR, AC, high caloric diet, high RM
intake, depression, HFD, obesity and ageing
Category GO ID Term/pathway Genes Risk factors P-value
gene ontology biological
process

GO:2000146 negative regulation of cell motility NF1, SRGAP2C, SRGAP2, NF2,
RECK, SRGAP2B

DEP, SM 4.62×10−7

GO:0070828 heterochromatin organisation MTHFR, HMGA2 HFD, RM 9.07×10−5

GO:2000257 regulation of protein activation
cascade

IGHG3, IGHG4, IGHG1, IGHG2,
C4BPA

AG, HCD 1.35×10−4

GO:0030334 regulation of cell migration NF1, SRGAP2C, SRGAP2, NF2,
RECK, SRGAP2B

DEP, SM 1.37×10−4

GO:0030449 regulation of complement activation IGHG3, IGHG4, IGHG1, IGHG2,
C4BPA

AG, HCD 1.40×10−4

GO:0002920 regulation of humoral immune
response

IGHG3, IGHG4, IGHG1,
IGHG2,C4BPA

AG, HCD 1.61×10−4

GO:0002697 regulation of immune effector
process

IGHG3, IGHG4, IGHG1, IGHG2,
C4BPA

AG, HCD 1.66×10−4

GO:0002673 regulation of acute inflammatory
response

IGHG3, IGHG4, IGHG1, IGHG2,
C4BPA

AG, HCD 2.08×10−4

GO:0070613 regulation of protein processing IGHG3, IGHG4, IGHG1, IGHG2,
C4BPA

AG, HCD 2.58×10−4

GO:1902531 regulation of intracellular signal
transduction

CDC42, PAK1, F2RL1, ATM,
HIPK2, CDK2, NF2, SRGAP2,

PML, ARHGAP35

AG, SM 5.20×10−4

gene ontology GO:0005887 integral components of plasma
membrane

SLC14A1, KCNJ15, TSPAN5,
PTGFR

HCD, OB 1.10×10−2

GO:0030424 axon NTRK2, PAK1, NF1, AG, DEP, RM 1.79×10−2

cellular component KCNB1, KCNC2
GO:0071437 invadopodium PAK1, EZR AG, IR 1.81×10−2

GO:0030425 dendrite KCNB1, KCNC2, NF1 DEP, RM 3.21×10−2

GO:0005856 cytoskeleton CDC42, TPM3, RARA, AG, OB 3.60×10−2

SPTBN1, LRRFIP1
gene ontology molecular
function

GO:0005096 GTPase activator activity SRGAP2C, SRGAP2, NF1,
ARHGAP35, SRGAP2B

SM, DEP 6.51×10−4

GO:0030695 GTPase regulator activity SRGAP2C, SRGAP2, NF1,
ARHGAP35, SRGAP2B,

SM, DEP 9.41×10−4

GO:0015204 urea transmembrane transporter
activity

SLC14A1, SLC14A2 DEP, HCD, SM 1.05×10−3

GO:0042887 amide transmembrane transporter
activity

SLC14A1, SLC14A2 DEP, HCD, SM 1.35×10−3

GO:0004955 prostaglandin receptor activity PTGFR, PTGER3 OB, AG 3.30×10−3

GO:0015467 G-protein activated inward rectifier
potassium channel activity

KCNJ15, KCNJ4 HCD, SM 3.84×10−3

GO:0022838 substrate-specific channel activity SLC14A1 DEP, HCD 4.19×10−3

GO:0005249 voltage-gated potassium channel
activity

KCNB1, KCNC2, KCNJ15 RM, HCD 6.88×10−3

GO:0005242 inward rectifier potassium channel
activity

KCNJ15, KCNJ4 HCD, SM 7.68×10−3

GO:0003680 AT DNA binding HMGA2 RM, HFD 1.15×10−2
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Table 2 Some significant KEGG pathways those are common among inflammatory CMP and other risk factors such as SM
(smoking), IR, AC, HCD (high caloric diet), RM (high red meat intake), depression, HFD (high fat diet), obesity and ageing
KEGG ID Pathway Genes in pathway Risk factors
hsa00410 beta-Alanine metabolism CNDP1, GAD2 AC, RM
hsa04010 MAPK signalling pathway CACNB1, CDC42, NTRK2, PAK1, FGFR2, NF1 AG, DEP
hsa04014 RAS signalling pathway CDC42, PAK1, FGFR2, NF1 AG, DEP
hsa04510 focal adhesion CDC42, PAK1, ITGB7, LAMA4, ARHGAP35 AG, SM
hsa05032 morphine addiction PDE1A, GABRB1, GNB5 OB, RM
hsa05200 pathways in cancer CDC42, TPM3, PTGER3, RARA, FGFR2, KITLG, LAMA4, CDK2,

PML
AG, SM

hsa05202 transcriptional misregulation in cancer RARA, ATM, ITGB7, HMGA2, GRIA3 AG, RM
hsa05410 hypertrophic cardiomyopathy (HCM) CACNB1, TPM3, ITGB7, ITGB1, ITGA4, SLC8A1 AG, HFD
hsa05412 arrhythmogenic right ventricular cardiomyopathy

(ARVC)
CACNB1, ITGB7, ITGB1, ITGA4, SLC8A1 AG, HFD

hsa05414 dilated cardiomyopathy CACNB1, TPM3, ITGB7, ITGB1, ITGA4, SLC8A1 AG, HFD
 

Table 3 Summary of transcriptional and/or post-transcriptional regulators (TFs and microRNAs) of the deferentially expressed
genes

Symbol Description Feature
TFs FOXC1 Forkhead Box C1 play critical role in early cardiomyogenesis [48]

GATA2 GATA Binding Protein 2 afflicted with early onset familial coronary artery disease [49]
FOXL1 Forkhead Box L1 associated with good outcome in human pancreatic ductal adenocarcinoma [50]

YY1 YY1 TF increased in human heart failure [51]
CREB1 CAMP Responsive Element

Binding Protein 1
cardiac failure is afflicted with CREB [52]

microRNAs mir-335-5p MicroRNA 335 upregulated in heart failure; involved in hypertrophic cardiomyopathy pathway [53]
mir-26b-5p MicroRNA 26 associated with suppression of proliferation and enhance the apoptosis in multiple

myeloma cells [54]
mir-34a-5p MicroRNA 34 could prevent autophagic cell deaths in ischaemic hearts and in this way can improve

the myocardial injury [55]
mir-92a-3p MicroRNA 92 increase blood vessel growth and recovery of damaged tissues in myocardial infarction

[56]
mir-17-5p MicroRNA 17 prognostic markers of hepatocellular carcinoma [57]

 

Fig. 4  Differentially expressed genes and TF interactions were analysed to identify the TFs that regulate the differentially expressed genes in CMP
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Fig. 5  Differentially expressed genes and microRNAs interactions were analysed to identify the microRNAs that regulate the differentially expressed genes in
CMP

 

Fig. 6  PPI network of differentially expressed genes that were common between CMP and other risk factors
 

Fig. 7  Simplified PPI network of the common differentially expressed genes between CMP and the risk factors. Ten significant hub proteins are marked as
red, orange and yellow, respectively
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