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Stem cell therapy has garnered much attention and application in the past decades for
the treatment of diseases and injuries. Mesenchymal stem cells (MSCs) are studied most
extensively for their therapeutic roles, which appear to be derived from their paracrine
activity. Recent studies suggest a critical therapeutic role for extracellular vesicles (EV)
secreted by MSCs. EV are nano-sized membrane-bound vesicles that shuttle important
biomolecules between cells to maintain physiological homeostasis. Studies show that
EV from MSCs (MSC-EV) have regenerative and anti-inflammatory properties. The use of
MSC-EV, as an alternative to MSCs, confers several advantages, such as higher safety
profile, lower immunogenicity, and the ability to cross biological barriers, and avoids
complications that arise from stem cell-induced ectopic tumor formation, entrapment in
lung microvasculature, and immune rejection. These advantages and the growing body
of evidence suggesting that MSC-EV display therapeutic roles contribute to the strong
rationale for developing EV as an alternative therapeutic option. Despite the success in
preclinical studies, use of MSC-EV in clinical settings will require careful consideration;
specifically, several critical issues such as (i) production methods, (ii) quantification and
characterization, (iii) pharmacokinetics, targeting and transfer to the target sites, and
(iv) safety profile assessments need to be resolved. Keeping these issues in mind, the
aim of this mini-review is to shed light on the challenges faced in MSC-EV research in
translating successful preclinical studies to clinical platforms.
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INTRODUCTION

Stem cell therapy has garnered much attention and application in the past decades for the treatment
of diseases and injuries. Among the different stem cell types, mesenchymal stem cells (MSCs) are
studied most extensively, particularly for their application in regenerative medicine and tissue
engineering (Brooke et al., 2007). MSCs are being widely researched for their therapeutic roles.
MSCs are multipotent stromal cells that can differentiate into a variety of cell types (Ullah et al.,
2015) and can be obtained from four common sources: adipose tissue, peripheral blood, bone
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marrow, and umbilical cord/blood (Gimble and Guilak, 2003;
Timmins et al., 2012; Roura et al., 2015). Initially, the therapeutic
efficiency of MSCs was attributed to their ability to migrate
and engraft in target tissues; however, studies show that
systemically administered MSCs rarely reach the target in great
numbers (Gao et al., 2001), suggesting that the biological effects
observed due to stem cell administration are likely due to
their secreted factors. These secreted factors are attributed to
several beneficial effects, such as neuroprotection, neurogenesis,
myocardial protection, inflammation, etc (Lai et al., 2010; Yagi
et al., 2010; Hsieh et al., 2013).

Recent studies on extracellular vesicles (EV) and their function
have shed light on their crucial role in mediating cell-to-
cell communication (Yáñez-Mó et al., 2015). EV are nano-
sized membrane-bound vesicles (size range 30–1000 nm) that
shuttle important biomolecules between cells (Valadi et al., 2007;
Mittelbrunn and Sanchez-Madrid, 2012; Tetta et al., 2013),
maintain physiological homeostasis (Zhang et al., 2019), and
influence pathogenesis (Vakhshiteh et al., 2019). Studies show
that EV from MSCs (MSC-EV) have regenerative and anti-
inflammatory properties in animal models of stroke (Doeppner
et al., 2015; Bang and Kim, 2019; Dabrowska et al., 2019),
traumatic brain injury (Kim et al., 2016; Das et al., 2019; Ni
et al., 2019), wound healing (Zhang et al., 2015), and perinatal
brain injury (Thomi et al., 2019). Recent studies demonstrated
that MSC-EV exert biological effects comparable to those of the
parent cells (Bruno et al., 2009; Lai et al., 2010; Nawaz et al., 2016;
Shao et al., 2017; Baek et al., 2019) and mediate the paracrine
effects of the MSCs (Camussi et al., 2013; Xin et al., 2013a).
While there are only a few studies that directly compare MSC-
EV treatments to MSCs treatments, the overlapping effects seem
to indicate that MSCs are merely the vehicle and that MSC-EV
have a greater likelihood of impacting damaged areas (Moon
et al., 2019). The use of MSC-EV, as an alternative to MSCs,
confers several advantages such as higher safety profile (Yeo
et al., 2013), lower immunogenicity (Natasha et al., 2014), and
the ability to cross biological barriers (Zhuang et al., 2011).
Additionally, use of MSC-EV avoids complications that arise
from stem cell-induced ectopic tumor formation, entrapment
in lung microvasculature, and immune rejection (Badillo et al.,
2007; Jeong et al., 2011; Wang et al., 2015; Fennema et al., 2018).
These advantages and the growing evidence of MSC-EV having
therapeutic roles contribute to the strong rationale, if not the
necessity, for developing EV as therapeutic treatment options.

PRECLINICAL STUDIES OF MSC-EV

The therapeutic efficiency of human MSC-EV has been tested
in preclinical animal models and across many diseases and
injuries. Li et al. (2013) showed that human umbilical cord
MSC (hUCMSC)-derived exosomes (that are extracellular
vesicles of 30–150 nm range) could ameliorate the carbon
tetrachloride-induced liver fibrosis by providing hepatic
protection and inhibiting the detrimental epithelial-to-
mesenchymal transition. Further, hUCMSC-derived EV are
shown to ameliorate experimental autoimmune uveoretinitis

by inhibiting inflammatory cell migration (Bai et al., 2017).
Exosomes from hUCMSCs are also suggested as therapeutic
tools for cisplatin-induced nephrotoxicity (Zhou et al., 2013).
Bian et al. (2014) demonstrated that hUCMSC-derived EV
protect cardiac tissue from ischemic injury, partly by promoting
angiogenesis, in a rat model of myocardial infarction. In
atopic dermatitis mouse models, intravenous administration
of EV from human adipose tissue-derived MSCs (hAMSCs)
has shown anti-atopic effects (Cho et al., 2018). EV from
hAMSCs are also shown to possess therapeutic potential in
neurodegenerative disorders, such as Alzheimer’s disease (AD),
and Huntington’s disease. In an in vitro AD mouse model,
hAMSC-derived EV are shown to ameliorate the progression
of beta-amyloid-induced neuronal death (Lee et al., 2018).
Investigation of the therapeutic effects of hAMSC-derived
exosomes in in vitro Huntington’s model revealed their
neuroprotective effects; the Huntington’s disease phenotype was
ameliorated via modulation of mutant Huntington aggregates’
mitochondrial and apoptotic functions (Lee et al., 2016).
Interestingly, this neuroprotective property seems to influence
the neurodevelopment of the fetal brain; it has been shown that
application of human bone marrow (hBMMSC)-derived EV is
capable of protecting the development of fetal brains afflicted
with hypoxia (Ophelders et al., 2016). As highlighted in Figure 1,
several preclinical studies showed success in applying MSC-EV;
however, generating success in the lab is not enough to generate
conclusive clinical results.

CLINICAL USE OF MSC-EV

There are few published studies demonstrating the clinical
effectiveness of MSC-EV. In one study, hBMMSC-EV were
tested in patients suffering from steroid refractory graft-versus-
host disease (Kordelas et al., 2014). Outcomes of the study
revealed significant improvements in graft-versus-host disease
symptoms. In another study, administration of hUCMSC-EV
resulted in overall improvement in kidney function in grade
III-IV chronic kidney disease patients (Nassar et al., 2016).
Nassar et al. (2016) conducted a clinical trial to assess the effects
of hUCMSC-EV on pancreatic islet beta cell mass in Type-1
diabetic patients (trial NCT02138331). Results of this clinical
trial are not yet published. However, a supporting preclinical
study suggested that intravenous administration of hUCMSC led
to reduced blood sugar level as the main paracrine approach
of MSCs and partially reversed insulin resistance in Type 2
diabetes mellitus indirectly to accelerate glucose metabolism
(Yaoxiang et al., 2018). Also, with other MSC, it was shown
that hBMMSCs led to the suppression of autoimmunity and the
regeneration of islet beta cells, therefore preventing the onset
of Type-1 diabetes (Ezquer et al., 2012; Zhao et al., 2012).
Moreover, there are other ongoing trials conducted to determine
the safety and efficacy of human MSC-EV – one led by Zhang
et al. (NCT03437759) using hUCMSCs to promote healing of
large and refractory macular holes and another by Zali et al.
(NCT03384433) using miR-124-loaded exosomes in patients with
acute ischemic stroke. While many clinical studies are in the
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FIGURE 1 | Therapeutic roles of human MSC-derived EV in various diseases. MSC-EV from different sources (hUCMSCs, hBMSCs, hATMSCs) are shown to
ameliorate disease conditions such as Alzheimer’s (AD), Parkinson’s (PD), and cirrhosis. It also effects cell and organ injuries such as microbial ischemic brain injury,
calcification of Smooth Muscle (SM) cells, Skeletal Muscle (SK) degeneration, chronic and acute renal injury, Pancreatic degeneration, and Acute respiratory
distress/injury. The mechanism of affect is shown by positive regulation in the blue arrow and negative regulation in the red line.

recruitment and active phases, much of these terminate without
producing a significant publication.

CHALLENGES IN CLINICAL
APPLICATIONS

Despite the therapeutic success of MSC-EV in preclinical studies,
use of these EV in clinical settings will require resolution
of several critical issues such as (i) large-scale production
and isolation methods, (ii) methods for rapid and accurate
quantification and characterization of EV, (iii) precise content
characterization of the cargo, (iv) pharmacokinetics, targeting
and transfer mechanisms of EV to the target sites, and (v) safety
profiles to determine the optimal clinical dosage and possible
toxicities upon repeated administration.

Large-Scale Production of MSC-EV
Traditional methods for maintenance and expansion of cells rely
on a two-dimensional culture technique. Long-term passaging
to produce sustainable quantities of EV may cause the cells to
lose clonal and differentiation capacity (McKee and Chaudhry,
2017). Therefore, there is an urgent need for development of
methods for reliable expansion of MSCs to mass produce EV for
clinical use. Current methods of expansion of MSCs are labor-
intensive and involve several procedures. The methods available
for MSCs culture expansions are: (i) traditional tissue culture
techniques in flasks (Nekanti et al., 2010; Oliver-Vila et al., 2016)
or (ii) use of three-dimensional culturing bioreactors made up
of polysulphone hollow fibers with semi-permeable membranes

that greatly increase the surface area, as described by Mennan
et al. (2019) and (McKee and Chaudhry, 2017). Unfortunately,
the existing methods for EV production have low yields and are
not scalable, impeding the progress of preclinical and clinical use
of EV as therapeutics (Whitford and Guterstam, 2019). Large-
scale EV production employs the use of large or multi-layer
culture flasks, fixed-bed bioreactors, in-stirred tank bioreactors,
or continuous production in perfusion reactors (Colao et al.,
2018). Most of these methods aim to increase the EV production
through maximizing the culture surface area as compared to the
conventional planar cell culture in flasks (Whitford et al., 2015).
Supporting this notion, a recent study showed that cultivation
of hUCMSCs in scalable microcarrier-based three-dimensional
cultures resulted in twenty-fold greater yield of EV than two-
dimensional cultures (Haraszti et al., 2018).

Several technical factors when using cell culture supernatants
for EV extraction need to be standardized to ensure batch-to-
batch reproducibility and lot-consistent EV-production (Witwer
et al., 2013). Many factors can affect the quality and quantity of
the EV produced from the MSCs, such as cellular confluence,
early versus later passage of cells, oxygen concentration,
cytokines, heparin, and serum content of the medium (Lener
et al., 2015). For instance, studies show that fetal bovine serum
(FBS), a nutrient for growing cells in culture, has RNA-containing
EV that can affect the cell culture behavior, highlighting the
importance of developing a protocol where EV are generated
without such interferences (Shelke et al., 2014). Also, serum-
free cultures are shown to alter EV quantity and protein
composition (Li et al., 2015). Addressing this issue, Pachler et al.
(2017) developed a Good Manufacturing Practice (GMP)-grade
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standard protocol where they showed that hBMMSCs cultured in
EV-depleted medium with reduced pooled human platelet lysate
(a serum-free medium) (i) retained their morphology, phenotype,
viability and differential potential, (ii) strongly affected hBMMSC
proliferation and differentiation capacities, (iii) were enriched
in hBMMSC-EV, and (iv) showed unchanged EV-RNA profiles
that originated from hBMMSCs (Pachler et al., 2017). This
study offers an option for GMP-compliant large-scale production
of MSCs and MSC-EV. Apart from manipulating the culture
conditions, manipulating the EV-biogenesis biology may also
improve the yield of EV (Phan et al., 2018).

Effective and Scalable EV Isolation
Methods From MSCs Culture Medium
Besides large-scale manufacturing of EV, scalable EV isolation
techniques are lacking, making clinical translation of EV
therapeutics difficult. Currently, there are various methods
available for EV isolation (Lotvall et al., 2014; Li et al., 2019);
however, there is no state-of-the-art technology to isolate EV
in large quantities for clinical use. In research, there are
five major isolation methods: (i) differential centrifugation,
(ii) density gradient ultracentrifugation, (iii) size-exclusion
chromatography (SEC), (iv) precipitation, and (v) immune-
based capture method (Colao et al., 2018). Interestingly, many
research groups (Nordin et al., 2015; Benedikter et al., 2017;
Mol et al., 2017) have demonstrated that EV isolated from stem
cell culture by ultrafiltration followed by SEC results in higher
yield while preserving EV biophysical and functional properties
(Monguio-Tortajada et al., 2019).

The popularity of SEC in both therapeutics and biomarker
discovery for disease diagnosis was explored by Stranska et al.
(2018) to demonstrate the superiority of SEC qEV (Izon Science)
over affinity-based EV isolation method (using exoEasy kit,
Qiagen) from human plasma. Intriguingly, SEC alone is unable
to separate plasma EV from lipoproteins unless combined with
density gradient isolation (Karimi et al., 2018).

Biodistribution and Targeting of MSC-EV
to Target Tissues
To investigate MSC-EV as a therapeutic tool, it is critical to
consider their biodistribution and targeting mechanisms in vivo.
One method of studying different tissue targets in living animals
is optical imaging (OI). This non-invasive method can visualize
labeled cells in vivo using near-infrared (NIR) dyes that maximize
depth of tissue penetration and reduce background (Rao et al.,
2007; Boddington et al., 2008; Tögel et al., 2008; Grange et al.,
2014; Wen et al., 2019). In a mouse model of acute kidney injury
(AKI), Grange et al. (2014) used two methods for the labeling of
MSC-EV: direct labeling of purified EV and generation of labeled
EV from MSCs pre-incubated with NIR dye. They found that
EV were detectable in whole-body images and dissected kidneys
using OI, and EV that were directly labeled with NIR dye showed
higher and brighter fluorescence compared to the labeled EV
produced by MSCs. They also found that MSC-EV accumulated
in the kidneys of their AKI mice but not in controls. MSCs are
recruited to sites of injury via receptor-mediated interactions

(Herrera et al., 2007), therefore MSC-EV, which have the same
membrane receptors of MSCs, may be recruited to the site of
injury via the same mechanism (Grange et al., 2014).

Researchers have used different dyes to track the
biodistribution of EV after their administration. Wen et al.
(2019) used DiD lipid dye-labeled MSC-EV to assess their
distribution in mice under various conditions. The DiD-labeled
MSC-EV distributed maximally in the liver and spleen, lesser
in the bone marrow of the spine, femur, and tibia, and were
undetectable in the lung, heart, and kidney (Wen et al., 2019).
PKH-26A, a lipophilic dye that integrates into cell membranes,
is commonly used to label MSC-EV (Bucan et al., 2019; Karaoz
et al., 2019; Kuang et al., 2019). Bucan et al. (2019) evaluated
the effects of rat adipose-derived MSC-EV (rAMSC-EV) on
sciatic nerve regeneration and neurite growth. rAMSC-EV
enhanced the regeneration of the sciatic nerve in vivo after
injury and neurite growth in vitro. They also characterized
neural growth factor transcripts in rAMSC-EV (Bucan et al.,
2019). Another study from Wang et al. (2019) used DIO to
label MSC-EV in a rat carotid artery balloon injury model. They
found that MSC-EV can transfer miR−125b to vascular smooth
muscle cells, which can attenuate neointimal formation and
could be a therapeutic target of vascular diseases (Wang et al.,
2019). There are also several reports of labeling MSC-EV with
different labeling agents such as DiI (1,1′-Dioctadecyl-3,3,3′,3′-
Tetramethylindocarbocyanine Perchlorate), Alexa fluor 488, and
gadolinium for locating the biodistribution of EV (Abello et al.,
2019; Chew et al., 2019; Cui et al., 2019).

Furthermore, a study from Moon et al. (2019) investigated
the biodistribution, therapeutic efficacy, and mode of action of
MSC-EV in a preclinical rat model of stroke. This study used
PKH26 or 5-(and-6)-carboxyfluorescein diacetate succinimidyl
ester (CFSE) to label EV for in vivo tracking. EV were identified
and counted using flow cytometry, and Nanosight nanoparticle
tracking analysis was used to measure size and morphology
(Moon et al., 2019). They found that MSC-EV migrated to the
infarcted brain. While MSC-EV accumulated in the infarcted
brain in a dose-dependent manner, injected MSCs aggregated in
the lung and liver with increasing doses, again highlighting that
MSCs rarely make it to target tissues (Gao et al., 2001).

The mechanism of therapeutic action of EV is still unclear.
EV-cargo can include membrane proteins, cytoplasmic proteins,
mRNAs, and microRNAs, which can all be delivered to
recipient cells. It is speculated that the therapeutic effect of
EV comes through the transfer of miRNAs to diseased and
injured cells (György et al., 2011). Studies have shown that
miRNAs in MSC-EV influence physiology and pathophysiology
of microenvironments (Xin et al., 2013b; Moon et al., 2019).
Additionally, miRNAs from MSC-EV have been shown to
influence cardiac regeneration and protection (Nouraee and
Mowla, 2015). Strategies for loading and modifying the EV-cargo
exist; electroporation, freeze-thaw cycles, saponin-mediated
loading, and hypotonic dialysis have all been studied for use in
exogenously loading EV (Kotmakçı and Çetintaş, 2015; Mendt
et al., 2018). EV cargo may also influence EV migration.
It is speculated that MSC-EV express chemokine receptors
that facilitate targeting to injured regions (Kim et al., 2012;
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Moon et al., 2019). Decoration of the EV surface with
phosphatidylserine-binding and HER2-targeting proteins has
been shown to increase EV delivery to HER2-expressing cells
(Wang et al., 2018). Other studies demonstrate the feasibility
of this decorating method of targeting EV to specific tissues
(Alvarez-Erviti et al., 2011; Kooijmans et al., 2016; Antes et al.,
2018), so perhaps these strategies may be applied to MSC-EV
as well. Though the exact mechanism is not known, it is
speculated that MSC-EV function similarly to MSCs. MSCs exert
therapeutic effects through the secretion of factors that reduce
cellular injury and promote repair, and MSC-EV may function
as communication vehicles employed by MSCs to signal support
from the tissue microenvironment (Katsuda and Ochiya, 2015;
Yin et al., 2019).

Safety Profile
With any therapeutic treatment, a safety profile must be
established. While EV-based treatment is in its clinical infancy
we know that many of the harmful effects of cell therapies
are absent in EV-based treatments. The main apprehension for
using stem cell therapy is the differentiation of the transplanted
MSCs and the potential of MSCs to suppress anti-tumor immune
responses and act as a progenitor for blood vessels, which
potentially promote tumor growth and metastasis (Burrello et al.,
2016). Further, MSCs are hindered by their tumorigenicity,
immunogenicity, and genomic mutability (Heng et al., 2004;
Klyushnenkova et al., 2005; Zhang et al., 2012). Fortunately,
MSC-EV are not affected by the above-mentioned limitations.
A few clinical trials have been performed utilizing EV (not
derived from MSCs) and these studies have established good
safety profiles for treatments with ascite- and dendrite-derived
EV (Pitt et al., 2016). EV inherently lack the features to cause
the above-mentioned issues which, for many researchers, mark
them as attractive candidates for use as therapeutic agents. Future
clinical research will likely see a huge upswing in the utilization
of stem cell-derived EV in place of its progenitor cell sources.

CONCLUSION

The future of MSCs has long been anticipated, and there
is no doubt with the discoveries coming forth and the
exponentially increasing amount of clinical trials that they will
provide therapies for a myriad of heretofore untreated maladies.
However, it is possible that the future of MSCs will be dominated
by MSC-EV. The EV’s ability to operate similarly to MSCs
while not possessing many of the drawbacks extant in cell-based
therapies provide them a unique niche in therapeutics.

The future of MSC-EV is dependent on the large-scale
culturing of MSCs. This key step in manufacturing will open
the door for them to be considered a successful therapeutic
option. Standardizing treated culturing of MSCs will be a
necessary future development; these EV will be treated in
hypoxic conditions and likely treated with miRNA applications.
Both of these conditions will significantly increase MSC
growth while also increasing release of EV. Additionally,
increasing the proliferation of EV isolation is another issue.
For therapeutic purposes, many isolation methods can be
ignored for either damage, interference, or low yield of EV.
There are increasing developments being made in the field
of EV isolation and characterization. SEC, with its ability
to provide unaltered and selective EV, has replaced standard
methodologies like immunoprecipitation and density-gradient
centrifugation. Despite EV being touted for the lack of a
toxic profile, the ability to include a range of specifically
sized EV is an important focus in the field of EV research,
especially in therapeutics. SEC allows for the more precise
extraction of EV, which can ensure specific and more efficient
treatments.

The biodistribution and targeting of MSC-EV is a simpler
matter, despite being poorly understood. These EV act as
key messengers between MSCs and damaged tissues. While
MSCs might aggregate in unintended organs and tissues,
their secreted EV target damaged tissues. To increase our
understanding of potentially confounding effects of MSC-EV,
a greater understanding of their targeting and biodistribution
is necessary. Presently, clinical and preclinical trials have not
reported unintended targeted effects. With few complications and
a range of benefits, MSC-EV are increasingly researched despite
issues with large-scale production.
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