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ARTICLE

Analysis of MRI-derived spleen
iron in the UK Biobank identifies genetic
variation linked to iron homeostasis and hemolysis

Elena P. Sorokin,1,3,* Nicolas Basty,2,3 Brandon Whitcher,2 Yi Liu,1 Jimmy D. Bell,2 Robert L. Cohen,1

Madeleine Cule,1,3 and E. Louise Thomas2,3,*
Summary
The spleen plays a key role in iron homeostasis. It is the largest filter of the blood and performs iron reuptake from old or damaged eryth-

rocytes. Despite this role, spleen iron concentration has not been measured in a large, population-based cohort. In this study, we quan-

tify spleen iron in 41,764 participants of the UK Biobank by using magnetic resonance imaging and provide a reference range for spleen

iron in an unselected population. Through genome-wide association study, we identify associations between spleen iron and regulatory

variation at two hereditary spherocytosis genes, ANK1 and SPTA1. Spherocytosis-causing codingmutations in these genes are associated

with lower reticulocyte volume and increased reticulocyte percentage, while these common alleles are associated with increased expres-

sion of ANK1 and SPTA1 in blood and with larger reticulocyte volume and reduced reticulocyte percentage. As genetic modifiers, these

common alleles may explainmild spherocytosis phenotypes that have been observed clinically. Our genetic study also identifies a signal

that co-localizes with a splicing quantitative trait locus for MS4A7, and we show this gene is abundantly expressed in the spleen and in

macrophages. The combination of deep learning and efficient image processing enables non-invasive measurement of spleen iron and,

in turn, characterization of genetic factors related to the lytic phase of the erythrocyte life cycle and iron reuptake in the spleen.
Introduction

In normal human physiology, iron is recycled much faster

than new dietary iron is absorbed, and this iron economy

is regulated by the spleen.1–3 The spleen plays a critical role

in removing senescent erythrocytes from the blood and

does so via a population of splenic macrophages as well

as by the action of the protein ferroportin, which trans-

ports iron back to the plasma.4 Given the large iron flux

through the normal spleen due to erythrocyte recycling,

measurement of spleen iron has the potential to reflect ac-

tivity of iron salvage pathways.

Spleen iron also may reflect erythrocyte biology and

dysfunction. Hereditary spherocytosis (HS [MIM: 270970

and 182900]) is a relatively common hemolytic anemia,

occurring at a prevalence of 1:1,000–2,500 in European

populations.5 Affected individuals have defects in mem-

brane and cytoskeletal genes that contribute to erythrocyte

membrane integrity and deformability, including SPTA1

(encoding the filamentous protein alpha-spectrin [MIM:

182860]) and ANK1 (encoding a protein that tethers

spectrin filaments to erythrocyte membranes [MIM:

612641]).6,7 The protein products of these genes interact

in the formation of the mature erythrocyte cytoskeleton,

a process accompanying cellular remodeling during reticu-

locytosis.8 In HS, the resulting erythrocytes are spherically

shaped and lose deformability and are ultimately trapped

and ingested by macrophages within the red pulp of the
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spleen, resulting in an enlarged spleen and anemia despite

brisk reticulocytosis. When measured directly with radi-

olabeled cells, erythrocyte turnover is dramatically acc-

elerated in individuals with severe HS.9 While laboratory

measures such as sphered cell and reticulocyte volume

can diagnose HS,10 less is understood about the pheno-

typic and genetic heterogeneity of the disease.11–13

Although spleen iron has been investigated in specific

disease groups,14–20 few studies were performed in unascer-

tained cohorts, partly because of limitations in detecting

and quantifying low levels of tissue iron in non-overloaded

populations.21–23 The UK Biobank (UKBB) is a prospective

study of half a million adults in the UK24 that has genetic

and phenotypic data including magnetic resonance imag-

ing (MRI).25 In this study, we applied computer vision

techniques to quantify spleen iron non-invasively and at

scale by repurposing the dedicated liver MRI acquisition.

Spleen iron is only moderately correlated with other

measures of iron stores in the body. Through genome-

wide association study (GWAS), we characterized asso-

ciations between spleen iron and genes involved in the

human iron economy including common regulatory vari-

ation in the ferroportin gene, SLC40A1. Our GWAS identi-

fied a signal that co-localizes with a splicing quantitative

trait locus for MS4A7, which we found to be abundantly

expressed in the spleen and in macrophages. Regulatory

variation in the genes encoding alpha-spectrin (SPTA1)

and ankyrin (ANK1) were also linked to spleen iron and
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increased mRNA expression of these genes and further-

more exhibited effects on reticulocyte and erythrocyte

parameters opposite to the effects observed in HS-affected

individuals. Non-invasive imaging coupled with genetic

analysis enabled us to develop a quantitative trait that illu-

minated aspects of iron homeostasis relevant to hemolysis

and iron recycling in the spleen.
Subjects and methods

Image analysis
We trained a convolutional neural network based on the U-net ar-

chitecture26 for 3D organ segmentation from the neck-to-knee

Dixon MRI data by using 119 manual spleen annotations. The

dice score on an out-of-sample held-out test set was 0.922. For

the quantitative MRI data, we estimated the proton density fat

fraction (PDFF) and R2* from the single-slice liver multi-echo

data by using the PRESCO (phase regularized estimation using

smoothing and constrained optimization) algorithm.27 We con-

verted R2* into iron concentration (mg/g) by using the widely

used formula proposed by Wood et al.: iron concentration ¼
0.202 þ 0.0254 3 R2*.28,29 We extracted 2D masks from the 3D

spleen segmentations at their intersection with the liver acquisi-

tion (Figure 1A).30 We applied one-pixel erosion before computing

the median value within that mask. We excluded 2D masks that

had <1% of 3D volume or <20 voxels. Additional methods,

including image acquisition details, are described in the supple-

mental information.

Epidemiological modeling of spleen iron risk factors
Associations of spleen iron with age, genetic sex, and self-reported

ethnicity were performed in R v3.6.3. with the linear and logistic

models for spleen iron as a quantitative or binary trait, respec-

tively, after adjusting for covariates including imaging center,

date, and time.

Phenome-wide association study
We generated a list of variables derived from raw data by using

PHESANT31 and removed procedural metrics (e.g., measurement

date), duplicates, and raw measures, resulting in 1,824 traits

(Table S2). We used PheWAS32 to combine ICD10 codes (Field

41270) into distinct phenotype codes or phecodes (Table S3). In

addition, we included 11 quantitative traits defined in our previ-

ous study.33 We performed linear (quantitative traits) or logistic

regression (binary traits) on spleen iron, adjusting for imaging cen-

ter, date, scan time, age, sex, BMI, height, and ethnicity.

GWAS
We performed a GWAS in n ¼ 35,324 participants as described34

by using UKBB-imputed genotypes24 version 3 for our GWAS,

excluding single-nucleotide polymorphisms (SNPs) with minor

allele frequency < 1% or imputation quality (INFO score)

< 0.9. We included participants identified as White British by us-

ing UK Biobank Field 22006, which is based on self-reported

ancestry and genetic ancestry based on principal-component

analysis.24 We excluded participants exhibiting sex chromosome

aneuploidy, participants with a discrepancy between genetic and

self-reported sex, heterozygosity and missingness outliers, and

genotype call rate outliers.24 9,911,384 SNPs passed quality con-

trol (QC). We used BOLT-LMM35 v2.3.2 to conduct the genetic
The America
association study. We included age at imaging, age2, sex, imaging

center, scan date and time, and genotyping batch as fixed-effect

covariates and genetic relatedness derived from genotyped SNPs

as a random effect to control for population structure and relat-

edness. We normalized the outcome variable by using inverse-

rank normalization. In the genetic association study, we found

no evidence for global inflation of test statistics (lgc ¼ 1.035;

linkage disequilibrium [LD] score regression intercept 1.027 [SE

0.0072]).

Replication analysis
We replicated blood trait findings by using the non-European

meta-analyses from the Blood Cell Consortium Phase 2, which

investigated the genetic basis of 15 blood cell traits in cohorts of

diverse ancestries, including African ancestry (n ¼ 15,171), East

Asian (n ¼ 151,807), Hispanic/Latino (n ¼ 9,368), and South

Asian participants (n ¼ 8,180) in addition to European ancestry

(n ¼ 563,946).36,37 To avoid overlap with UK Biobank Euro-

peans, we focused on summary statistics from the non-European

cohorts. We downloaded summary statistics for mean corpusc-

ular hemoglobin concentration (MCHC), mean corpuscular vol-

ume (MCV), and monocyte count from http://www.mhi-human

genetics.org/en/resources/ on November 14, 2021, and harmo-

nized them by using dbSNP build 151 (GRCh37). We tested for

replication of MCHC and MCV at rs4737010[A] (ANK1) and

rs2479868[T] (SPTA1) and replication of monocyte count at

rs950802[A] (MS4A7).

Conditional analysis and fine-mapping
We performed conditional analysis by using GCTA,38 considering

variants within 500 kb of an index variant. We constructed a refer-

ence LD panel of 5,000 randomly selected, unrelated European

UKBB participants.24 We excluded the major histocompatibility

complex region because of the complexity of LD structure at this

locus (GRCh37:6: 28,477,797–33,448,354; see https://www.ncbi.

nlm.nih.gov/grc/human/regions/MHC). For each locus, we con-

sidered variants with locus-wide evidence of association

(pjoint < 10�6) to be conditionally independent. We followed an

iterative procedure to determine credible sets of causal variants

with 95% coverage.34

Colocalization studies
For gene expression studies, we used summary statistics from

GTEx v8.39 For disease and quantitative trait studies, we used

UKBB summary statistics of phecodes,40 normalized quantita-

tive traits (http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-

thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank).

We selected phenotypes with p< 53 10�8 within 500 kb of the in-

dex variant. We performed colocalization analysis by using coloc41

with default priors and considered variants within 500 kb of the in-

dex variant. We considered two genetic signals to have strong evi-

dence of colocalization if PP3 þ PP4 R 0.99 and PP4/PP3 R 5.42

Heritability estimates
We estimated the heritability of each trait by using the restricted

maximum likelihood method,43 as implemented in BOLT-LMM.

Genetic correlation
We computed genetic correlation by using bivariate LD score

regression (LDSC).44 We computed the genetic correlation be-

tween spleen iron and 288 complex traits with a heritability of
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http://www.mhi-humangenetics.org/en/resources/
http://www.mhi-humangenetics.org/en/resources/
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank
http://www.nealelab.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-for-337000-samples-in-the-uk-biobank


A

C D

B Figure 1. Image-based spleen iron quan-
tification in the UK Biobank
(A) Example neck-to-knee abdominal MRI
acquisition; the liver acquisition is shown
as a red plane and deep-learning-derived
spleen segmentation is shown in green.
(B) Axial view of iron concentration
(mg/g) obtained through deep learning
and image processing; the liver is shown
at left and the spleen is shown at right.
(C) Distribution of spleen and liver iron.
The middle 95% of the distribution is
labeled.
(D) Spleen iron increases with age for both
males and females. Standardized residuals
are shown, adjusted for study center, scan
date, and scan time.
at least 5% from the Neale Lab http://www.nealelab.is/uk-

biobank/, plus organ iron measurements and volumes,33 and

blood iron biomarkers.45 Following the recommendations of the

developers, we (1) removed variants with imputation quality

(INFO) < 0.9 because the INFO value is correlated with the LD

score and could introduce bias, (2) excluded the major histocom-

patibility complex (MHC) region because of the complexity

of LD structure at this locus (GRCh37:6: 28,477,797–33,448,

354; see https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC),

and (3) restricted to HapMap3 SNPs.46 We used a Bonferroni-cor-

rected p value of 1.7e�4 as the significance threshold to identify

traits with a significant genetic correlation.

Exome sequence quality control
We performed quality control of n ¼ 200,643 whole exomes from

the UKBB. Raw genotype calls were filtered genotype-level quality

metrics to identify quality outliers for a given site and remove

poor-quality individual-level genotypes. Similarly to the function-

ally equivalent (FE) pipeline,47 we removed genotypes below a

minimum read depth (for SNPs: 7 and for indels: 10) and geno-

types below a minimum Phred-scaled genotype quality of 20.

We removed genotypes where minor allele allelic balance < 0.15

for SNPs and 0.2 for indels. Supplementing FE filters with addi-

tional filters, we performed per-SNP QC, requiring the average ge-

notype quality to be at least 30 and per-SNP depth of coverage to

be at least 15, to filter out badly captured sites. Additionally, we

removed variants with genotype missingness > 10% or that devi-

ated meaningfully from Hardy-Weinberg equilibrium in a Euro-

pean ancestry cohort (HWE p < 1e�10). Of 17,981,897 total vari-

ants, 13,907,865 variants passed QC in the European exome

cohort with MRI data (n ¼ 18,240).
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Exome variant annotation
We performed annotation by using

VEPv100, LOFTEE,48 CADD,49 and Cli-

nVar (https://www.ncbi.nlm.nih.gov/clin

var/, downloaded on September 27,

2020) with a custom pipeline to select var-

iants meeting high-confidence loss-of-

function criteria, filtered for rare variants

(defined as cohort-specific minor allele

frequency < 0.001). Of variants passing

quality control, we subset 286,456 high-

confidence, rare loss-of-function variants,
2,919,962 rare missense variants (CADD score R 20), and

13,705 rare clinical pathogenic variants in 19,992 European

ancestry samples for further analysis.

Rare variant association study
We performed rare variant burden and SKAT testing in SAIGE-

GENE by using a mixed-effects model.50 A kinship matrix was

built in SAIGE from a filtered set of 354,878 genotyped variants

(r2 < 0.2, minor allele frequency > 0.05, Hardy-Weinberg

p value > 1e�10, excluding known regions of long-range LD).

The linear mixed model regression equation was as follows:

yi ¼ aþXbþGibþ bi þ εi:

In the model, yi is inverse-rank normalized spleen iron, and X

represents fixed-effect covariates: age at imaging visit, age2, chro-

mosomally determined sex expressed as a binary indicator vari-

able, study center, standardized scan date, standardized scan

time, and the first five principal components of European genetic

ancestry. Gi represents allele counts (0, 1, 2) for q variants in each

gene to test. We then performed SKAT and burden tests in SAIGE-

GENE and reported the p value from SKAT-O.50 To inform direc-

tionality of effect, we reported the betas from the burden test. To

avoid unstable results at low sample size, we calculated cumulative

minor allele count and thresholded at R5 minor alleles per gene,

including singletons and doubletons.

Genetic identification of hereditary spherocytosis alleles
From the exome cohort filtered for European ancestry (n ¼
167,246), we annotated variants by clinical assertion as patho-

genic according to ClinVar, downloaded from https://ftp.ncbi.

nlm.nih.gov/pub/clinvar/ on September 27, 2020, and called

http://www.nealelab.is/uk-biobank/
http://www.nealelab.is/uk-biobank/
https://www.ncbi.nlm.nih.gov/grc/human/regions/MHC
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Table 1. Summary of the UKBB cohort at recruitment, image acquisition, and quantification of liver iron and spleen iron

UK Biobank cohort
(at time of baseline visit)

Imaging cohort
(at time of imaging visit)

Identified in combined liver slices

Liver Spleen

N 502,520 44,265 44,265 41,764

% female 54.4 [54.2–54.5] 51.8 [51.2–52.1] 51.8 [51.3–52.3] 52.1 [51.6–52.6]

Age 56.5 (8.1) 64.2 (7.73) 63.7 (7.56) 64.1 (7.71)

BMI (kg/m2) 27.4 (4.8) 26.5 (4.37) 26.5 (4.39) 26.4 (4.32)

Height (cm) 168 (9.28) 169 (9.27) 169 (9.29) 169 (9.26)

% Caucasian 81.4 [81.3–81.5] 84.8 [84.4–85.1] 85.2 [84.4–85.5] 84.7 [84.4–85.0]

Iron concentration (mg/g) 1.24 (0.29) [0.203–6.96] 0.915 (0.318) [0.172–6.68]

Spleen iron measurements (mg/g) are provided as mean (standard deviation) and range. For other quantitative values, the mean (standard deviation) is given. For
binary values, mean [95% confidence interval] is given.
predicted loss-of-function alleles by using LOFTEE.48 HS alleles

were defined as clinical pathogenic variants or high-confidence

putative loss-of-function alleles in one of six genes (SPTA1, SPTB,

SLC4A1, ANK1, EPB41, or EPB42).

Ethics statement
The UK Biobank has approval from the North West Multi-centre

Research Ethics Committee (MREC) to obtain and disseminate

data and samples from the participants (http://www.ukbiobank.

ac.uk/ethics/), and these ethical regulations cover the work in

this study. Written informed consent was obtained from all

participants.
Results

Characterization of spleen iron in a large, population-

based cohort

We quantified spleen iron concentration (spleen iron

hereafter) in 41,764 UKBB participants with both the 3D

neck-to-knee and the quantitative liver single-slice MRI se-

quences available. We opportunistically measured spleen

iron concentration by segmenting the spleen from the

neck-to-knee image33 (Figure 1A) and subsequently ex-

tracting a 2D mask where the spleen volume intersects

with the quantitative 2D liver slice (Figure 11B).30 The

average spleen iron was 0.92 5 0.32 mg/g, significantly

lower than liver iron of 1.24 5 0.29 mg/g (Table 1,

Figure 1C; paired t test p < 2.2e�16). While there is no

accepted normal range of spleen iron, 1.98 mg/g has

been suggested as an upper cut-off, and 2.74 mg/g is re-

ported to be pathological.51 Using 1.98 mg/g as the

threshold, 1.04% (n ¼ 435) of this cohort had elevated

spleen iron, while 0.32% (n ¼ 137) had spleen iron above

the 2.74 mg/g threshold. 95% of the population fell into

the range of 0.54 to 1.69 mg/g, and we propose this as a

possible reference range in an unselected population

(Table S2).

Spleen iron differed by age and sex. Men had higher

spleen iron than women (men: 0.965 0.34 mg/g, women:

0.87 5 0.29 mg/g) (p ¼ 6.3e�219; Tables S2 and S3).

Increasing spleen iron was associated with age (0.0044
The America
mg/g/year or 0.012 SD/year) (Figure 1D). In women,meno-

pause was associated with 0.12 mg/g higher spleen iron

[95% CI 0.08–0.16].

In a phenome-wide association study with over 3,200

quantitative traits and disease outcomes, spleen iron was

correlated with erythrocyte parameters: reticulocyte per-

centage (beta ¼ 0.091; p ¼ 3.7e�66), reticulocyte count

(beta ¼ 0.087; p ¼ 6.6e�64), and high light scatter

reticulocyte count (beta ¼ 0.089; p ¼ 5.8e�64). Spleen

iron was also associated with lifestyle factors, including

consumption of lamb (beta ¼ 0.150; p ¼ 2.1e�44) and

beef (beta ¼ 0.143; p ¼ 1.3e�43), and negatively ass-

ociated with alcohol consumption (beta ¼ �0.087;

p ¼ 1.7e�18). Spleen iron correlated with liver iron

(beta ¼ 0.409, p < 1e�300), brain iron content, spe-

cifically with T2* (inversely proportional to iron) in

the caudate (beta ¼ �0.063; p ¼ 4.3e�16) and putamen

(beta ¼ �0.061, p ¼ 4.1e�15).52 Spleen iron was ass-

ociated with myeloid leukemia (beta ¼ 0.386; p ¼
9.6e�10), chronic dermatitis (beta ¼ 0.328; p ¼
4.1e�07), hypokalemia (beta ¼ 0.286, p ¼ 5.8e�6), and

glaucoma (beta ¼ 0.186, p ¼ 1.0e�6) (Figure 2,

Tables S4 and S5). Spleen iron was negatively correlated

with iron-deficiency anemia, but this did not achieve

Bonferroni significance (beta ¼ �0.134, p ¼ 0.002),

although this diagnosis may not have been fully captured

by medical billing codes (n ¼ 580 affected individuals,

n ¼ 35,316 control individuals).
GWAS of spleen iron identifies DNA polymorphisms

linked to global iron homeostasis

In a common variant GWAS of spleen iron, seven loci

reached genome-wide significance (p < 5e�8; Figure 3,

Table 2). Conditional analysis yielded no secondary sig-

nals. We estimated the narrow-sense heritability of spleen

iron to be 16.7% (SE 1.64%). Spleen iron was moderately

genetically correlated with ferritin (rg ¼ 0.56) and MCHC

(rg ¼ 0.42), but the genetic correlations with other iron

measures, including liver iron, were not significant

(Tables S6 and S7).
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Figure 2. Phenome-wide association between spleen iron and complex traits in the UK Biobank
(A–F) Traits are organized by category: (A) biological samples, (B) lifestyle and history, (C) physical measures, (D) online follow up,
(E) medical history, and (F) disease diagnosis. Bonferroni significance threshold is shown by horizontal dashed line. The top three asso-
ciations in each category are annotated. ML, myeloid leukemia; HLS reticulocyte, high light scatter reticulocyte.
We observed a signal on chromosome 2 at SLC40A1,

which encodes the iron transporter ferroportin (lead

variant: rs13008848[G], beta ¼ �0.057, p ¼ 2.9e�10,

Figure 4A). To test whether the spleen signal was shared

across other body iron traits, we re-analyzed previous ge-

netic studies of serum ferritin, serum iron, and liver

iron33,45 and observed evidence of co-localization at

SLC40A1 (posterior probability R 0.99) (Table S8). Since

the lead variant lies upstream of the SLC40A1 open reading

frame, we tested for a shared effect between spleen iron and

SLC40A1 expression. Across 54 human tissues of the GTEx

Consortium,53 we observed evidence for regional co-locali-

zation with a quantitative trait locus for SLC40A1mRNA in

many tissues, including whole blood (posterior probability
1096 The American Journal of Human Genetics 109, 1092–1104, Jun
R 0.99) (Figure 4D; Table S9). As expected, spleen iron was

associated with SLC40A1, and furthermore, we showed that

this locus most likely influences tissue iron levels through

SLC40A1 mRNA abundance.

The GWAS of spleen iron identified other loci relevant to

iron homeostasis, including a locus on chromosome 9

(Figure S5B). The lead SNP rs41276777[A] (beta ¼ 0.17,

p ¼ 2.1e�9) occurred in the 50 untranslated region of

PRPF4 and CDC26 (Figure S5A) and was associated with a

regulatory locus affecting expression of both PRPF4 and

CDC26 mRNA in whole blood and the spleen (Table S9),

suggesting bi-directional regulation of gene expression.

This region colocalized with signals for serum ferritin,

serum iron, and other blood iron traits (Table S8),
e 2, 2022



Figure 3. GWAS of spleen iron
Genome-wide significant signals are anno-
tated with the variant at each locus. Dotted
horizontal line marks genome-wide signifi-
cance (p ¼ 5e�8).
suggesting roles not only in spleen iron but body ironmore

broadly.

Elevated spleen iron colocalizes with a splicing

quantitative trait locus for MS4A7 and monocyte traits

Our GWAS with spleen iron found a significant association

at theMS4A7 locus (lead variant: rs950802[A], beta¼ 0.086,

p ¼ 7.7e�26; Table 2, Figure 5A). rs950802[A] causes a syn-

onymous mutation at Leu57 in the third exon of MS4A7

and is also a variant in the first intron of MS4A14. This

signal colocalized with a signal of serum ferritin45 (posterior

probabilityR 0.99). Using splicing quantitative trait data,53

we identified an alternative splicing event inMS4A7, which

colocalized with spleen iron (Figure 5B). Based on an anal-

ysis of the open reading frame of MS4A7, this alternative

splicing event was predicted to increase skipping of the sec-

ond exon and therefore interrupt a conserved CD20-like

transmembrane domain in MS4A7 (Figure 5C). We thus

identified an association between MS4A7 and spleen iron

and found a plausible molecular mechanism by which

this variant disrupts MS4A7 function.

To explore the functional consequences of regulatory

variation in MS4A7, we examined its association with he-

matological parameters in the UKBB and observed a signif-

icant association with monocyte count and percentage as

well as platelet count and crit (Figure 5D). Usingmeta-anal-

ysis in non-European populations from the Blood Cell

Consortium, a large study of blood cell traits in diverse co-

horts,36,37 we replicated associations and directions of ef-

fect between this locus and monocyte count in an East

Asian cohort (n ¼ 151,807) at Bonferroni significance

(p< 0.017) and observed the same direction of effect in Af-

rican ancestry (n ¼ 15,171) and Hispanic (n ¼ 9,367) co-

horts (Table S11). Further, we found enrichment of

MS4A7 mRNA in monocytes compared to sixteen other

hematopoietic cell types55 (Figure 5E) and also higher

expression of MS4A7 mRNA in the spleen relative to other

tissues53 (Figure 5F). A common allele at MS4A7 was thus
The American Journal of Human G
associated with elevated spleen iron

and monocyte traits. MS4A7 mRNA

was enriched in the spleen and in

monocytes, suggesting a role for this

gene in iron recycling in the spleen.

GWAS of spleen iron identifies

common alleles in SPTA1 and ANK1

linked to increased gene expression

and erythrocyte function

In addition to signals linked to iron

homeostasis, the GWAS of spleen iron
revealed associations in SPTA1 and ANK1, encoding struc-

tural components of erythrocytes (Table 2, Figure S6). The

lead variant rs2479868[T] (beta¼�0.083, p¼ 2.5e�22) on

chromosome 1 was located in the 30 untranslated region of

SPTA1, and the lead SNP rs4737010[A] (beta ¼�0.077, p¼
1.0e�17) on chromosome 8 was the first intron of ANK1

(Figures 4B and 4C). We tested for a shared signal with

mRNA expression levels of SPTA1 and ANK1 and observed

co-localization with cis-regulatory variation for ANK1 in

multiple tissues (Figures 4E and 4F).

Variation at each locus was associated with increased

mRNA expression and mean reticulocyte volume and

decreased MCHC, reticulocyte percentage, and spleen vol-

ume (Figure 6). The magnitude and directionality for the

changes in red cell parameters associated with the lead

SNPs at SPTA1 and ANK1 were similar, but a regression

model testing for interaction between these two loci found

that the effects are independent (beta ¼ 0.016, p ¼ 0.28).

These signals did not co-localize with iron traits in other

tissues such as serum or liver, suggesting specific effects

to the spleen (Table S7).

Using non-European meta-analyses from the Blood Cell

Consortium as independent cohorts,36,37 we replicated the

associations and directions of effect between SPTA1 and

ANK1 lead variants and bothMCHC andmean corpuscular

volume in an East Asian cohort at Bonferroni significance

(p < 0.0042). In a cohort of African ancestry and in a

cohort of Hispanic ancestry, we replicated directions of ef-

fect (Table S11).

Common alleles in SPTA1 and ANK1 show effects on

erythrocytes opposite to effects observed with rare

deleterious alleles and in hereditary spherocytosis

Given theknownassociationsofboth SPTA1 andANK1gene

defects with hereditary spherocytosis (HS), we analyzed rare

variation (minor allele frequency<0.001) predicted to cause

loss of function. Starting with 167,246 exomes of European

ancestry, we conducted rare variant association studies for
enetics 109, 1092–1104, June 2, 2022 1097



Table 2. Fine-mapped lead SNPs from GWAS of spleen iron

Lead SNP Locus Lead SNP consequence Effect allele Other allele Beta p Minor allele frequency

rs950802 MS4A7/MS4A14 synonymous variant A G 0.086 7.7e�26 0.307

rs2479868 SPTA1 intron variant T C �0.083 2.5e�22 0.266

rs4737010 ANK1 intron variant A G �0.077 1.0e�17 0.228

rs13008848 SLC40A1 5ʹ UTR variant G C �0.057 2.9e�10 0.226

rs41276777 PRPF4 5ʹ UTR variant A G 0.175 2.1e�09 0.019

rs115697725 KLHL29 intron variant G C 0.059 4.9e�08 0.146

Genome-wide significant associations (p< 5e�8) are shown by locus and lead SNP after fine-mapping. A seventh association at the major histocompatibility locus
(MHC) could not be fine-mapped.
reticulocyte percentage and volume and identified one sig-

nificant gene, SPTA1, in both studies (pSKAT-O < 1e�24;

Figure S7). Performing a scan of the same loss-of-function

rare variation in SPTA1 across a hematology panel, we reca-

pitulated clinical hallmarks of spherocytosis: SPTA1 loss of

function was significantly associated with increased reticu-

locyte percentage and increasedMCHC, increased bilirubin,

decreased mean spherical cell volume, and decreased mean

reticulocyte volume (Figure S7).We did not observe a signif-

icant association with spleen iron in the imaging subcohort

for either putative loss of function or deleterious missense

variation, perhaps as a result of reduced statistical power of

the imaging subcohort (n¼ 18,420) compared to the exome

cohort (n ¼ 167,246) (Figure S8).

Finally, we genetically identified HS in the UKBB exome

cohort by using clinical assertions of pathogenicity and pre-

dictedhighconfidence lossof function inoneof sixHSgenes

and estimated prevalence to be 1:389 [95%CI 1:427–1:354].

We asked whether the common alleles found via GWAS

could modify the effects of rare deleterious alleles for hema-

tology parameters relevant for HS, including mean reticulo-

cyte volume.We estimated that carrying either of the SPTA1

orANK1 leadGWASSNPs skewed erythrocyte parameters to-

ward beneficial effects in deleterious allele carriers and non-

carriers, suggesting that the common GWAS alleles could

modify the effects of the rare deleterious alleles (Figure S10).
Discussion

Most studies of spleen iron have not included healthy vol-

unteers or methods that reliably assess organ iron15,56–58 or

only provided qualitative histological grading58,54 (Table

S11).14,17–19 In this study, we combined deep-learning al-

gorithms and efficient image processing to quantify spleen

iron in 41,764 participants of the UKBB. This enabled us to

estimate a reference range for spleen iron in a large, unse-

lected population.

Spleen iron was higher in men, and our analysis of pre-

and post-menopausal women is consistent with prior re-

ports of iron stores in other tissues.59 Spleen iron increased

with age, is associated with red meat intake, and is

inversely associated with alcohol consumption, extending
1098 The American Journal of Human Genetics 109, 1092–1104, Jun
prior observations in the liver.28,60,61 Further, spleen iron

was only modestly associated with measures of iron in

other tissues. Un-like other iron-rich organs such as the

liver, we discovered that spleen iron was associated with

indicators of reticulocytosis and reticulocyte turnover.

Our GWAS of spleen iron identifies regulatory loci in

SPTA1 and ANK1, which when combined with other evi-

dence, suggests a model of low splenic turnover due to

relatively large, long-lived erythrocytes. These alleles are

associated with decreased spleen iron and increased mRNA

expression of their respective cis gene, as well as larger retic-

ulocyte volume and reduced measures of reticulocytosis

(Figure 6). Since the spleen is the major route of erythrocyte

clearance and iron salvage, lower levels of reticulocytosis

would be expected to result in lower spleen iron at steady

state. Neither variant is associated with anemia, suggesting

that they are not pathogenic. This reduced turnover model

also predicts that iron levels in other organs not involved

in erythrocyte clearance (such as the pancreas) would be un-

affected by these two loci, consistent with the data.

As genetic modifiers, these alleles in SPTA1 and ANK1,

which segregate frequently across global populations, may

explain the variable penetrance and expressivity observed

in HS. In a recent study of affected individuals with identi-

fied HS mutations, 64% involved SPTA1 or ANK1, and the

investigators observed multiple HS families with broad

phenotypic variability, including a compelling example of

dizygotic twins sharing the same pathogenic ANK1 muta-

tion presenting withmild disease in one affected individual

and severe disease requiring splenectomy in the other.11

The variation could not be explained, leading to specula-

tion that yet-unknown genetic factors may be contributing.

We were able to identify the hallmarks of HS through rare

loss-of-function variation in SPTA1, even within a cohort

not ascertained for hemolytic anemias. Our analysis sug-

gested that common genetic variants may modify the ef-

fects of rare deleterious alleles. The expression-increasing

variants identified heremay help to explain the heterogene-

ity that has been observed in HS patients.

In addition to genes specific to red cell turnover in the

spleen, our genetic study of spleen iron also pointed to regu-

lators of the human body’s iron economy.We characterized

a spleen iron signal at MS4A7, which belongs to the CD20
e 2, 2022
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Figure 4. Common variants in SLC40A1, SPTA1, and ANK1 loci are associated with spleen iron and colocalize with cis-regulatory vari-
ation
(A) Fine-mapped locus near SLC40A1 is associated with spleen iron (lead SNP: rs13008848).
(B) Fine-mapped locus near SPTA1 is associated with spleen iron (lead SNP: rs2479868).
(C) Fine-mapped locus near ANK1 is associated with spleen iron (lead SNP: 4373010).
(D) Co-localization of cis-regulatory variation in the SLC40A1 locus and spleen iron. Co-localization at this locus was observed inmultiple
tissues (posterior probability R 0.99 for each). Blood cis-eQTL data are shown.
(E) Cis-regulatory variation in the SPTA1 locus co-localizes with spleen iron. A signal was observed in multiple tissues but did not meet
significance threshold in whole blood (posterior probability ¼ 0.72).
(F) Cis-regulatory variation at the ANK1 locus co-localizes with spleen iron. Co-localization was observed in multiple tissues (posterior
probability R 0.99). Gray dashed line indicates genome-wide significance (p ¼ 5e�8). For all eQTL signals, a threshold of FDR < 5%
was used in GTEx.54 Linkage disequilibrium was calculated with 1000 Genomes Phase 3. Gene models are shown at bottom in
GRCh38 coordinates.
family of membrane proteins, which are expressed within

the hematopoietic lineage and largely uncharacterized.62,63

Here, we linked a splicing quantitative trait locus inMS4A7

to spleen iron and macrophage abundance and even found

that this gene was enriched in the spleen and in macro-

phages. It is possible that excess circulating monocytes can

be recruited to provide an expanded reservoir in the spleen,

contributing to the body’s iron economy in addition to

splenic macrophages.64 Our findings regarding MS4A7

potentially illuminate additional details of splenic erythro-

cyte clearance mechanisms. For example, the specific func-

tional roles played by macrophages and monocytes in the

splenic red pulp remain incompletely understood.9,64

This study has limitations. First, as the only study to

quantify spleen iron in a large cohort, no replication cohort

is available, though we are able to replicate all our findings

on relevant blood cell traits in independent cohorts.36,37

Second, while we found limited evidence in the UKBiobank

that spleen iron varies by ethnicity (Figures S3 and S4), addi-

tional imaging studies are warranted to quantify spleen iron

across populations. Third, experimental studies in the he-

matopoietic lineage of a model system will be needed to

test the functional consequences of the regulatory variation
The America
observed here. Fourth, while we genetically identified HS in

the UKBB and showed that the common alleles in SPTA1

and ANK1 act as genetic modifiers of erythrocyte parame-

ters, additional clinical validation is needed to substantiate

these findings in an HS cohort.

In summary, we have quantified spleen iron by repur-

posing liver MRI acquisitions, maximizing use of the data

at no extra cost to scanning or participant time. Our find-

ings suggest that steady-state levels of spleen iron are sen-

sitive to alterations in erythrocyte structure affecting cell

turnover as well as alterations in iron transport by macro-

phages. We identified common regulatory variation in HS

genes showing effects on erythrocytes that are opposite of

the effects observed in HS-affected individuals. Imaging-

derived spleen iron is thus a quantitative biomarker reflect-

ing hemolysis and iron reuptake by the spleen, is tractable

for genetic analysis, and has potential to contribute to

future clinical characterization of hemolytic anemias.
Data and code availability

The derived datasets generated during this study are available from

the UK Biobank (https://www.ukbiobank.ac.uk). Summary
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Figure 5. Characterization of the MS4A7 locus
(A) TheMS4A7 locus on chromosome 11 is associated with an increase in spleen iron. Purple triangle displays the lead SNP rs950802[G].
(B) This locus co-localizes with splicing quantitative trait locus of MS4A7 in whole blood (posterior probability R 0.99).
(C) This splicing quantitative trait locus is associated with exon skipping in the MS4A7 locus. Corresponding betas and p value are
shown. The MS4A7 gene model is displayed with the conserved CD20-like domain shown in green.
(D) Genetic associations with a panel of blood cell traits show associations with monocyte count, monocyte percentage, and mean
platelet volume and negative associations with platelet count and platelet crit.
(E) Expression of MS4A7 was enriched in monocytes, including non-classical, intermediate, and classical forms.
(F) Expression of MS4A7 in human tissues displayed enrichment for lymphoid tissue, notably spleen and lymph nodes. DC, dendritic
cell; MCHC, mean corpuscular hemoglobin concentration.
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Figure 6. Associations between molecular, cellular, organ, and tissue traits and lead SNPs
Associations of molecular, cellular, organ, and tissue traits with lead SNPs at SPTA1 and ANK1 loci indicate protective effects on red blood
cell function. Both SPTA1 and ANK1 loci were associated with increased mRNA expression, beneficial effects on red blood cell parame-
ters, decreases in spleen iron and spleen volume, and no effects on other measures of body iron or anemia diagnosis. Standardized effect
sizes are shown. Error bars represent 95% confidence intervals. Lead SNP at SPTA1 locus: rs2479868; lead SNP at ANK1 locus: rs4737010.
statistics are available from the GWAS catalog (https://www.ebi.ac.

uk/gwas) at accession number GCST90101831. The code gener-

ated during this study is publicly available at https://github.

com/calico/ukbb-mri-sseg and www.github.com/recoh/pipeline.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.04.013.
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