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Abstract: The NRF transcription factors NRF1, NRF2, and NRF3, are a subset of Cap‘n’collar
transcriptional regulators which modulate the expression of genes harboring antioxidant-response
element (ARE) sequences within their genomic loci. Despite the emerging physiological importance
of NRF family members, the repertoire of their genetic targets remains incompletely defined. Here we
use RNA-sequencing-based transcriptional profiling and quantitative proteomics to delineate the
overlapping and differential genetic programs effected by the three NRF transcription factors. We then
create consensus target gene sets regulated by NRF1, NRF2, and NRF3 and define the integrity of these
gene sets for probing NRF activity in mammalian cell culture and human tissues. Together, our data
provide a quantitative assessment of how NRF family members sculpt proteomes and transcriptomes,
providing a framework to understand the critical physiological importance of NRF transcription
factors and to establish pharmacologic approaches for therapeutically activating these transcriptional
programs in disease.

Keywords: oxidative stress response; NRF transcription factors; transcriptomics; proteomics; cellular
pathway analysis

1. Introduction

The nuclear factor (erythroid 2)-like (NRF) transcription factors are a family of basic leucine zipper
(bZIP)-containing transcriptional regulators related to nuclear factor erythroid 2 (NFE2, also called
p45), that are characterized by a conserved 43 amino acid Cap‘n’collar (CNC) motif [1]. Vertebrate NRF
transcription family members consist of three closely related factors, NRF1 (NFE2L1), NRF2 (NFE2L2),
and NRF3 (NFE2L3) [1]. In the nucleus, NRF transcription factors dimerize with small MAF proteins
(small musculoaponeurotic fibrosarcoma; MAFF, MAFG, and MAFK) to modulate the transcription of
genes containing antioxidant response elements (AREs; consensus sequence = TGABNNGC) within
their genomic loci [1].

Unlike NFE2, which plays a developmental role in promoting megakaryopoiesis, the NFE2-like
NRF transcription factors inducibly respond to the presence of cellular stressors [2]. A seminal
contribution supporting this hypothesis was the early association of NRF2 to the inducible
transcriptional upregulation of genes containing ARE sites within their promoters [3]. A related effort
determined that NRF2 knockout animals while displaying no overt developmental defects, are prone
to carcinogenesis, and are critically sensitive to oxidative stress [4]. NRF2 is now appreciated as the
master regulator of oxidative stress resistance in mammalian cells. As such, small molecules that
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activate NRF2 have and continue to be developed for indications etiologically defined by oxidative
stress, such as chronic kidney disease [5,6]. Further, deregulated NRF2 activity has been associated with
various disease states such as cancer [7], neurodegeneration [8], inflammation [9], and diabetes [10].

Unlike NRF2, the functional importance of other NRF transcription factors is less well defined.
An initial focus of NRF1 research relied on the early observation that NRF1 deficient animals die late
during embryonic development due to insufficient hepatic erythropoiesis [1]. More recently, a renewed
interest in NRF1 was precipitated by seminal work by Deshaies and colleagues demonstrating that
NRF1 mediates the proteasomal transcriptional “bounce back” in response to proteasome inhibitor
treatment [11]. In contrast to NRF2, NRF1 is localized to the ER and must be actively transported across
the ER membrane, deglycosylated, and proteolytically cleaved to release a transcriptionally active and
nuclear-localized form of the transcription factor [12]. In this way, the rate of proteasome-based
degradation of newly transported NRF1 in the cytoplasm serves as an adjustable rheostat for
NRF1-driven cellular proteasomal activity. Despite the mounting evidence for an essential role
of NRF1 in physiology, the full spectrum of its transcriptional repertoire has yet to be fully defined.

The least explored of the NRF transcription factor family is NRF3, likely stemming from the
observation that knockout animals display no obvious phenotypes and do not additively contribute
to the deleterious effects of animals lacking NRF2 or p45 [1]. Recently, a number of reports have
demonstrated an essentiality for NRF3 in various cancer cell types, but the role of NRF3 in normal
physiology remains largely enigmatic [13,14].

The evolutionary emergence of three closely related NRF family members in vertebrates is thought
to have arisen from genomic duplications, as NRF1, NRF2, NRF3, and NFE2 all reside near related
homeobox genes (i.e., HOXB, HOXD, HOXA, and HOXC, respectively) [15]. In the lower invertebrates
however, only one CNC-containing transcription factor is present. For example, C. elegans possess
only the CNC-containing gene SKN-1 (Skinhead family member 1) whereas flies contain only the
CNC-containing factor CncC [16,17]. It is thought that these CNC transcription factors enact broad
stress-related transcriptional programs to combat several cellular stressors such as oxidative injury
and protein aggregation, effectively combining the known transcriptional programs of metazoan NRF1
and NRF2. While recent research has spelled out important roles for NRF1 and NRF2 in regulating
cellular physiology, the functional importance for three stress-inducible CNC-containing transcription
factors with overlapping, but distinct, transcriptional profiles in vertebrates is not completely defined.
One approach to deconvolute the diverse functional roles for these transcription factors is to define
transcriptional gene sets that can be used to define transcription factor activity both in cell culture
and mammalian tissues [18]. To date, only one recent study by Liu et al. has aimed to comparatively
delineate the transcriptional programs enacted by NRF factors [19]. Here, we build upon this work
using RNA-sequencing and quantitative proteomics to define the unique and overlapping programs
enacted by individual NRF family members, providing a framework to deconvolute the integrated
signaling of these transcription factors in the context of health and disease.

2. Materials and Methods

2.1. Cell Culture

HEK293T cells were from American Type Culture Collection (ATCC, CRL-11268). Cells were
maintained in DMEM medium (Corning, Corning, NY, USA) and supplemented with 10% FBS
(fetal bovine serum, Gibco, Waltham, MA, USA) and 1% Penicillin-Streptomycin (Gibco).

2.2. Cloning

The FLAG-NRF2 expression construct was obtained from Addgene (NC16 pCDNA3.1 FLAG NRF2,
Plasmid #36971, NM_006164.5), and a site-directed mutagenesis kit (Q5 Site-Directed Mutagenesis Kit,
NEB, Ipswich, MA, USA) was used to introduce the T80D mutation. Codon-optimized sequences encoding
truncated, FLAG-tagged transgenes of NRF1 (NM_003204.3) and NRF3 (NM_004289.7) were obtained
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from Integrated DNA Technologies as gBlock HiFi Gene Fragments and cloned into the pCDNA3.1
backbone from FLAG-NRF2 via Gibson assembly using a HiFi DNA Assembly Cloning Kit (NEB).

2.3. Immunoblotting

Plasmids were transiently transfected for transgene expression in HEK293T cells using FuGENE
(4 µL FuGENE per 1 µg of DNA) in 100 µL of Opti-MEM (Gibco) per well of a six-well plate (2 µg
DNA per well). After 24 h of expression, cells were lysed with 1× RIPA buffer (Millipore, Burlington,
MA, USA). Samples were prepared for SDS–PAGE by heating to 95 ◦C for 5 min, cooled to room
temperature, resolved on NuPAGE Novex 4–12% Bis-Tris Protein Gels (Invitrogen, Waltham, MA,
USA), and then transferred to PVDF membranes (Bio-Rad Laboratories, Hercules, CA, USA) using
a semidry transfer apparatus (Bio-Rad Laboratories). Membranes were blocked with 5% non-fat
dry milk (Bio-Rad Laboratories) in Tris-buffered saline (TBS, Corning) containing 0.1% Tween-20
(TBST, Corning) and probed with primary (overnight at 4 ◦C) and secondary (1 h at room temperature)
antibodies in blocking buffer. Primary antibodies used in this study were anti-FLAG-M2 (1:1000,
F1804, Sigma Aldrich, St. Louis, MO, USA) and TUBG1 (1:1000; 5886, Cell Signaling Technologies,
Danvers, MA, USA). A secondary HRP-conjugated rat anti-mouse antibody (Sigma Aldrich) was used
at 1:10,000 dilution in 5% milk in TBST and incubated for 1 h before washing for an additional hour.
Luminescent signal was recording using autoradiography film (Life Technologies, Waltham, MA, USA)
after incubation with SuperSignal West Dura substrate (Life Technologies).

2.4. Quantitative Reverse Transcription PCR (qRT-PCR)

After 24 h of transgene expression as above, cells were collected by trypsinization and subsequent
centrifugation at 1200× g. RNA was isolated using an RNeasy kit (Qiagen, Hilden, Germany) and RNA
concentrations measured using a NanoDrop instrument. 1 ng of RNA was then subjected to reverse
transcription reaction with oligo dT primers using a SuperScript III First-Strand Synthesis kit from Invitrogen.
Quantitative RT-PCR reactions were measured on a Viia 7 Real-Time PCR system (Thermo) using a TB
Green master mix from Takara. Primers used were HMOX1 (forward: GAGTGTAAGGACCCATCGGA,
reverse: GCCAGCAACAAAGTGCAAG) and NQO1 (forward: GCCTCCTTCATGGCATAGTT,
reverse: GGACTGCACCAGAGCCAT). Reactions were normalized to TUBG1 levels
(forward: ATCTGCCTCCCGGTCTATG, reverse: TACCTGTCGGAACATGGAGG) and relative
transcript abundance calculated using the comparative Ct method.

2.5. Luciferase Reporter Assays

5 × 103 HEK293T cells were plated per well in white 384-well plates in 40 µL of growth medium
and transfected with 50 ng of the ARE-LUC reporter plasmid and 50 ng of the indicated FLAG-NRF
construct in 10 uL of Opti-MEM using PEI (25 kDa polyethyleneimine (Polysciences, Warrington,
PA, USA); 1 µL of PEI to 1 µg of DNA). After 24 h incubation, luminescence values were recorded
on an Envision instrument (Perkin Elmer) after the addition of 30 µL of Bright Glo reagent solution
(Promega, diluted 1:3 in water).

2.6. RNA Sequencing (RNA-Seq) Experiments

Total RNA was extracted from HEK293T cells after 24 h of transient transgene expression using
an RNeasy kit (Qiagen). RNA sequencing was performed at BGI using the DNAseq Technology
platform. RNA sequencing data have been deposited in the NCBI Gene Expression Omnibus and are
accessible through GEO Series accession number GSE159230. Transcript abundance was estimated
using DNASTAR’s Lasergene Genomics Suite and the statistical significance of differentially expressed
transcripts was determined by two-sample unequal variance t-tests. Gene set enrichment analysis
(GSEA, Broad Institute) was performed using the Java application, and results replotted using R
(https://www.r-project.org/).

https://www.r-project.org/
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2.7. Mass Spectrometry-Based Quantitative Proteomics Experiments

After 24 h of transgene expression, HEK293T cells were lysed with 1 × RIPA buffer and subjected
to TMT labeling and mass spectrometry as previously described [20]. In brief, the protein was
precipitated in chloroform and methanol, then dissolved in Rapigest (Waters, Milford, MA, USA).
Disulfide bonds were reduced using TCEP (tris(2-carboxyethyl)phosphine) (Thermo Fisher, Waltham,
MA, USA) in HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (Thermo Fisher)-buffered
solution, followed by S-alkylation with chloroacetamide (Thermo Scientific). Samples were then
enzymatically digested with Porcine Trypsin (Promega, Madison, WI, USA) overnight and then
labeled using 11-plex Tandem Mass Tags (TMT) Isobaric Mass Tag labeling reagents (Thermo Fisher).
TMT labeled samples were then combined and fractionated using the Pierce High pH Reversed-Phase
Peptide Fractionation Kit (Thermo Scientific). Fractionated samples were then injected onto a C18
analytical column and subjected to MS1 and MS2 fragmentation on a Thermo Scientific Q Exactive HF
Orbitrap. Protein identification and quantification were performed using the Integrated Proteomics
Pipeline (IP2) [21,22]. Tandem mass spectra in the form of MS1 and MS2 files were searched against
the current reviewed UniProt human protein database.

3. Results

3.1. Design and Validation of an NRF Transgene Overexpression Platform

We envisioned a cellular platform in which transient overexpression of constitutively active
versions of NRF transgenes might allow for interrogation of their impact on the cellular transcriptome
and proteome. As such, we first designed overexpression constructs wherein the encoded NRF
transgenes would be minimally influenced by cellular regulatory machinery. As NRF1 and NRF3 are
anchored N-terminally within the ER lumen, we constructed expression plasmids lacking the N-terminal
ER-targeting sequence, a modification that allows for cytoplasmic translation and thus bypass of the
deglycosylation and cleavage steps required for exit from the ER [13,23]. Unique among this family,
NRF2 is cytoplasmically localized where it is continually sent for proteasomal degradation through
its interactions with the repressor and oxidative-stress sensing protein KEAP1 [24]. We introduced a
mutation (T80D) in the Neh1 domain of NRF2, which has been reported to inhibit its interactions with
KEAP1 and to promote constitutive transcriptional activation [25]. All transgenes were N-terminally
FLAG-tagged to allow for comparative evaluation of protein expression levels and to minimally
interfere with the C-terminal CNC-bZIP domain, which dimerizes with small MAFs and binds DNA
(Figure 1A). We next identified optimized transfection and expression conditions using HEK293T cells,
confirming similar levels of NRF transgenes by anti-FLAG Western blotting (Figure 1B). Consistent with
reports suggesting the antioxidant gene Heme Oxygenase 1 (HMOX1) as a promiscuous NRF target
gene, expression of NRF1, NRF2, or NRF3 induced significant expression of HMOX1 relative to
vector controls as evaluated by qRT-PCR from HEK293T cells, suggesting the designed transgenes
are transcriptionally active (Figure 1C). Further, we found that overexpression of NRF2, but not
NRF1 or NRF3, induced expression of the NRF2-selective transcriptional target NQO1 (NAD(P)H
dehydrogenase [quinone] 1) by RT-qPCR, confirming that the designed transgenes are capable of
upregulating specific target transcripts. This selectivity was further demonstrated by showing
overexpression of NRF1 and NRF2 in HEK293T cells promoted robust activation of co-transfected
luciferase reporters PSMA4-ARE-LUC and NQO1-ARE-LUC, respectively (Figure 1D). These reporter
plasmids harbor the ARE sequences from Proteasome Subunit Alpha Type-4 (PSMA4) and NQO1,
which we previously demonstrated to specifically capture pharmacological activation of NRF1 and
NRF2 activation in cells, respectively [26]. NRF3 overexpression promoted only a mild induction
of either reporter, suggesting these plasmids were largely orthogonal reporters of NRF activity and
that the NRF expression constructs in this work were sufficiently active to induce robust and distinct
transcriptional programs in cells.
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for FLAG protein content from HEK293T cells 24 h after transfection with the indicated constructs. 
(C) Transcript levels of HMOX1 and NQO1 as measured by qRT-PCR from HEK293T cells 24 h after 
transfection with the indicated constructs (n = 3; mean and s.d.). (D) Relative ARE reporter activity 
from HEK293T cells overexpressing the indicated FLAG-NRF construct (n = 8; mean and s.d.). 
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expressed transcripts and proteins in HEK293T cells overexpressing the indicated NRF transgenes. 
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testing and were then analyzed by pathway association programs such as Gene Set Enrichment 
Analysis (GSEA) [27,28] and Database for Annotation, Visualization and Integrated Discovery 
(DAVID) [29], as discussed below. 

Figure 1. An overexpression system for evaluating the activities of NRF transcription factors in
HEK293T cells. (A) Schematic depicting the FLAG-NRF constructs used in this work; numbers above
each transgene indicate the amino acid positions of the reference ORF. (B) Western blotting analysis
for FLAG protein content from HEK293T cells 24 h after transfection with the indicated constructs.
(C) Transcript levels of HMOX1 and NQO1 as measured by qRT-PCR from HEK293T cells 24 h after
transfection with the indicated constructs (n = 3; mean and s.d.). (D) Relative ARE reporter activity
from HEK293T cells overexpressing the indicated FLAG-NRF construct (n = 8; mean and s.d.).

3.2. Defining Transcriptomic and Proteomic Targets of NRF Family Members

To identify the transcripts, protein levels, and genetic programs regulated by NRF overexpression,
we coupled our overexpression platform to a data acquisition and analysis pipeline consisting of
RNA-sequencing in conjunction with mass spectrometry-based quantitative proteomics (Figure 2;
Supplemental Figures S1–S3). This approach allowed for the detection of differentially expressed
transcripts and proteins in HEK293T cells overexpressing the indicated NRF transgenes. The targets
of NRF members were verified at the transcript and protein level by statistical significance testing
and were then analyzed by pathway association programs such as Gene Set Enrichment Analysis
(GSEA) [27,28] and Database for Annotation, Visualization and Integrated Discovery (DAVID) [29],
as discussed below.
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Figure 2. Schematic depicting the strategy used in this work to define the functional targets of the NRF
transcription factors.

3.2.1. RNA Sequencing-Based Analysis of NRF Transcriptional Targets

HEK293T cells overexpressing NRF1, NRF2, or NRF3 were harvested 24 h post-transfection
for RNA-seq analysis of transcript abundance using biological triplicates for each condition.
Volcano and MA plots (Bland–Altman plot) demonstrated the robustness of our overexpression
systems at manipulating the transcriptome of target cells (Supplementary Figures S1–S3;
Supplementary Table S1), and DESeq-based analysis was used to identify differently expressed
transcripts. Of 38,020 actively transcribed genes in HEK293T cells, 3002 transcripts were collectively
upregulated and 2229 transcripts were collectively downregulated by NRF family overexpression
relative to transiently transfected empty vector controls (p < 0.05). Specifically, we found that expression
of NRF1 (1456 upregulated, 1291 downregulated) and NRF2 (2140 upregulated, 1388 downregulated)
induced robust transcriptional programs in cells, comprising 7.2% and 9.3% of the active transcriptome,
respectively. Interestingly, we observed considerably fewer transcripts were regulated by NRF3
overexpression (176 upregulated, 404 downregulated; 1.5% of active transcriptome), suggesting
that NRF3 may enact a more muted transcriptional profile than NRF1 or NRF2 in HEK293T cells.
From GO term-based analyses using DAVID, transcripts upregulated by all NRFs were found to be
involved in stress responses, proteostasis-associated biological pathways, and nucleotide-binding,
whereas downregulated transcripts were associated with RNA metabolism and development (Figure 3,
top). As expected, transcripts upregulated by NRF2 are involved in transcriptional responses to
radiation, ultraviolet exposure, endoplasmic reticulum stress, and inflammation, among other pathways
associated with oxidative stress (Figure 3). NRF1-upregulated transcripts are associated with the
processes of ubiquitination and chromatin remodeling and downregulated targets include those related
to cell adhesion and the Sonic hedgehog pathway involved in embryonic development. NRF3-regulated
transcripts are associated with the extracellular matrix, as well as an upregulation of transcripts related
to the proteasome and downregulation of transcripts related to the cellular response to organic
nitrogen. A comprehensive list of differentially regulated transcripts used for DAVID-based analysis
of differential and overlapping targets can be found in Supplementary Table S2.
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pathway analyses of the indicated regions of Venn overlap.

3.2.2. Defining a Core Set of NRF2 Target Genes

Recently a report from Liu et al. used a tetracycline-inducible system to evaluate the transcriptional
effects of NRF activation in U2OS cells [19]. As this work is the only other to comparatively profile
the three NRF family members, we sought to generate consensus gene sets for the three NRF family
members derived from our transcriptional profiling (hereafter referred to as “Ibrahim”) compared to
the work of Liu et al. (hereafter referred to as “Liu”). We first characterized NRF2, as its expression
profile has been best characterized in the literature and it induced the most robust transcriptional
profile in cells. Approximately thirty percent of the differentially expressed transcripts we identified
were corroborated by the Liu gene set (Figure 4A; Supplementary Table S3). A linear regression
analysis comparing the mean log2 fold change of the RPKM values in cells overexpressing NRF2
relative to a vector control displayed a moderate correlation (r2 = 0.53) between differentially expressed
transcripts identified by the Liu RNA-seq study and this work (Figure 4B). Among differentially
expressed transcripts shared between Liu and Ibrahim, we observed a strong correlation of the log2

fold changes at the protein and transcript level (r2 = 0.86) (Figure 4C; Supplementary Table S4).
This ultimately allowed us to generate a consensus gene set of 239 high confidence NRF2-regulated
genes, which incorporates our proteomic and transcriptional profiling (Supplementary Table S5).

We next analyzed our RNA-seq data using GSEA to determine which transcriptional programs
were most significantly modulated in response to NRF2 overexpression. For this analysis, we used a
curated list of 6960 gene sets from the Molecular Signatures Database (MSigDB), a collection that spans
many cellular pathways, treatment conditions, disease states, and cell types (Supplementary Table S6;
Supplementary Figure S4). Of these gene sets, our data indicated that MTORC1 signaling (MSigDB:
M5924), reactive oxygen species (ROS) pathways (MSigDB: M5938), NRF2 Q4 (MSigDB: M14141),
and Biocarta ARENRF2 pathway (MSigDB: M14339) were most significantly enriched in cells
overexpressing NRF2 (nominal p-value < 0.002; Figure 4D). In addition to the curated gene sets,
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we concurrently analyzed four gene sets derived from our transcriptomic and proteomic profiling.
“NRF2 consensus RNA” genesets contain significantly upregulated or downregulated transcripts
shared by Ibrahim and Liu, and the “NRF2 consensus RNA + Protein” gene set includes the NRF
consensus RNA set but is restricted to genes whose protein levels are also significantly altered relative
to vector controls. GSEA indicated these were among the most significantly up and downregulated sets
evaluated relative to 6690 other gene sets used in this work (Figure 4D). Lastly, GO term (DAVID)-based
analysis of the consensus upregulated gene sets indicated a strong association with elements of the
ROS pathway (GO = 0006979; p < 0.01; Figure 4E; Supplementary Table S7). Together, this data agrees
well with reported NRF2-controlled gene sets, suggesting our overexpression and profiling platform
was suitable to evaluate the genetic targets of the less explored transcription factors NRF1 and NRF3.
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Figure 4. A consensus set of NRF2 target genes associated with oxidative stress resistance. (A) Venn
diagram depicting the overlapping and differentially expressed transcripts induced by NRF2 activation
identified in this work (Ibrahim, p < 0.05 and absolute value log2 fold change > 0.075) in comparison to
those obtained with reported inducible U2OS-based system (Liu et al.). (B) Plot depicting the linear
relationship of differentially expressed transcripts derived from the common targets in this work and
from Liu et al. (C) Linear regression plot of log2 fold change values of protein and transcript levels of
significantly changed genes in response to NRF2 overexpression. (D) Summary of GSEA analysis of
RNA-seq profiling in response to NRF2 overexpression. (E) Heatmap depicting log2 fold change of
transcript levels associated with a response to ROS that is upregulated by NRF2 overexpression by
DAVID analysis.

3.2.3. Defining a Core Set of NRF1 Target Genes

We next analyzed the resulting transcriptomes and proteomes of HEK293T cells overexpressing
NRF1 using the analysis pipeline described above. Approximately twenty-two percent of the
differentially expressed transcripts identified by our RNA-seq analysis of cells overexpressing NRF1
were corroborated by the Liu set (Figure 5A). Linear regression analysis comparing the mean log2 fold
change of the RPKM values in cells overexpressing NRF1 relative to vector controls demonstrated a
moderate correlation (r2 = 0.49) between the Liu study and ours (Figure 5B). Likewise, these differentially
controlled transcripts common to the Liu study, and this work was found to be correlated with the log2

fold changes at the protein level (r2 = 0.49) (Figure 5C). These analyses suggest a high confidence set of
248 genetic targets regulated by NRF1.
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Figure 5. A consensus set of NRF1 target genes associated with proteostasis. (A) Venn diagram depicting
the overlapping and differentially expressed transcripts induced by NRF1 activation identified in this
work (Ibrahim, p < 0.05 and absolute value of log2 fold change > 0.075) in comparison to those obtained
with reported inducible U2OS-based system (Liu et al.). (B) Plot depicting the linear relationship of
differentially expressed transcripts derived from the common NRF1 targets in this work and from
Liu et al. (C) Linear regression plot of log2 fold change values of protein and transcript levels of
significantly altered genes in response to NRF1 overexpression. (D) Summary of GSEA analysis
of RNA-seq profiling in response to NRF1 overexpression (E) Heatmap depicting log2 fold change
of transcript levels associated with proteostasis that are upregulated by NRF2 overexpression by
DAVID analysis.

GSEA of our RNA-sequencing dataset indicated that the most significantly upregulated gene
sets associated with NRF1 overexpression corresponded to mRNA splicing (MSigDB: M14033,
ES = 0.6), IL12 Signaling (MSigDB: M27894, ES = 0.6) and MYC targets (MSigDB: M5928, ES = 0.6;
Supplementary Figure S5). Unlike NRF2, there are only two potential NRF1-related genesets
in the MSigDB, NRF1 Q6 (MSigDB: M2907) and NFE2L1 Target Genes ID (MSigDB: M30085),
which correspond to genes containing predicted NRF1 binding sites in their genetic loci and do
not indicate if the transcription is up or downregulated in response to NRF1 activation [16,17].
Accordingly, these sets were not significantly enriched by NRF1 overexpression in this work (Figure 5D).
GO term analysis of our high confidence set of 236 genes upregulated by NRF1 indicated that in
addition to the proteasome-related genes (e.g., PSMB5, PSMC3, PSMD6), NRF1 activation additionally
promotes the upregulation of gene products involved in protein folding, including multiple classes of
chaperones (GO = 0051082; p < 0.005; Figure 5E; Supplementary Table S8). Although it is unclear if
these chaperone genes are direct targets of NRF1, the consensus identification of chaperones in the
Liu and Ibrahim RNA-seq analyses indicate a functional link between NRF1 activity and adaptive
remodeling of cellular proteostasis in response to cellular stress.

3.2.4. Defining a Core Set of NRF3 Target Genes

Applying the same RNA-seq analysis pipeline to samples overexpressing NRF3, 23 differentially
regulated transcripts were found to be shared between the Liu dataset and those found in this work
(Figure 6A). Of these, four gene products (HMOX1, CMAS, GCLM, and F1F0) were additionally found
by our mass spectrometry-based analysis to be regulated at the protein level by NRF3 overexpression.
(Figure 6B). This consensus set of four proteins was insufficient to gain meaningful GO term
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analysis using DAVID, limiting our ability to define a clear NRF3 gene set through this analysis
(Supplementary Figure S6).
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3.3. Identifying the Co-Expression Patterns of NRF Target Genes across Human Tissues

The gene sets defined herein, especially those for NRF1 and NRF2, provide new opportunities
to define selective activation of these transcription factors in cellular models. However, we sought
to expand this study to determine the integrity of these gene sets for defining activation of these
transcriptional programs in human tissues. A challenge in applying this gene set-based approach
to in vivo models is the potential for differential regulation of these pathways in different tissues.
For example, core NRF2 target genes identified in our study may be similarly regulated in some
tissues but not others. Further, genes identified as targets of NRF transcription factors herein could
demonstrate tissue-specific regulation by other transcription factors that reduce their fidelity for
selectively reporting on NRF activation. One way to address these potential challenges is to identify
subsets of the genesets defined herein that report on NRF transcription factor activity in different tissues.

Recently, a collaborative effort to comprehensively profile the diverse transcriptional programs
enacted across tissues has led to the inception of the Genotype-Tissue Expression Project (GTEx).
GTEx catalogs the RNA-sequencing-based quantification of transcript levels from 54 postmortem
tissues derived from over 1000 individuals, providing a unique opportunity to probe the coordinated
regulation of specific genes across multiple tissues. Given the comprehensiveness of this dataset,
we leveraged the GTEx database to determine if the high confidence, consensus gene sets generated for
NRF transcription factors were co-regulated across tissues using correlative analyses for co-expression.
Correlation coefficients were calculated between the expression levels of each pair of genes in the
NRF1, NRF2, and NRF3 gene sets in the frontal cortex of the brain, the liver, and the left ventricle
of the heart. The gene sets for each transcription factor were then clustered in each tissue into three
groups using k-means clustering based on the Euclidean distance between each gene’s correlation
coefficients. Surprisingly, among the thirty genes categorized as upregulated by NRF2 overexpression,
we observed significant differences in gene co-expression across tissues (Figure 7; Table 1). For example,
while canonical NRF2 target genes including NQO1, HMOX1, and MST1 showed strong co-expression
correlation across the three tissues, other canonical target genes such as GCLM and GCLC showed
variable correlation across the tissues, indicating that there is tissue-specific variability in co-expression
relationships for consensus NRF2 gene targets. Similar variability in co-expression was observed
for both NRF1 and NRF3 gene sets (Supplementary Figures S7 and S8; Supplementary Table S9).
These results suggest that while the NRF gene sets defined herein are suitable for probing selective
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activation of these pathways induced by genetic or pharmacologic approaches, in complex physiologic
settings of human tissues the contributions of other transcription factors and/or the overlapping nature
of these gene sets challenge the ability to define the activation of these pathways using this approach.
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Table 1. Correlated and anti-correlated NRF2 target genes in the indicated human tissues. Related to
Figure 7.

Brain Liver Heart

Correlated Anti-Correlated Correlated Anti-Correlated Correlated Anti-Correlated

NQO1 TBK1 NQO1 MGST1 NQO1 TXNRD1
HMOX1 MAP2 TXNRD1 CBR1 HMOX1 SQSTM1
MGST1 PRKCI HMOX1 EPHX1 MGST1 GCLM
CBR1 CSNK2A2 SQSTM1 GCLC CBR1 GSR

EPHX1 MAP1A GCLM FERMT2 TBK1 PRDX1
PRDX1 PPP3R1 GSR IL6R FERMT2 GCLC

FERMT2 ARPC2 PRDX1 PPP3R1 PRKCI RB1CC1
IL6R KIF3B WARS ZEB1 CLIP1
LIFR AFG3L2 TBK1 IL6R MAP1A
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Table 1. Cont.

Brain Liver Heart

Correlated Anti-Correlated Correlated Anti-Correlated Correlated Anti-Correlated

SERINC3 RB1CC1 CSNK2A2 AFG3L2
CLIP1 PPP3R1 SET
PRKCI ARPC2 ME1

CSNK2A2 KIF3B
ARPC2 SERINC3
KIF3B

AFG3L2
SERINC3

SET
ME1

4. Discussion

Here, we have used a transient overexpression system to define the functional targets of the
NRF transcription factors NRF1, NRF2, and NRF3. Our work serves as a complement to the study
of Liu et al., which aimed to profile the transcriptional targets of the NRF family. Here we have
used both transcriptomics and quantitative proteomics to define how NRF1, NRF2, and NRF3 sculpt
the proteomes and transcriptomes of mammalian cells. Collectively, we defined genetic targets
corresponding to overlapping and distinct transcriptional targets among NRF transcription factors
and used an analysis pipeline which incorporates transcriptional profiling, proteomics, and the data
of Liu et al. to define high confidence target lists for NRF1, NRF2, and to a lesser extent NRF3.
The genetic programs described herein will likely be of key utility in further defining the role of the
NRF transcription factors.

One of the most salient observations from our profiling work involved the composition of the
high confidence NRF1 target gene set. Included in this repertoire of NRF1 targets were a number of
chaperones including heat shock proteins (e.g., HSPA4, HSPA8, HSPA9, DNAJC1, DNAJA2) and the
chaperonin TCP complex (e.g., CCT2, CCT5, CCT8), a gene set which corresponded with a heat shock
response by GO analysis. Previously, NRF1 has been described as mediating the proteasomal ‘bounce
back’ response to proteasome inhibitor treatment by augmenting the transcription of components of the
20S proteasome and 19S regulatory complex, but a role in mediating the transcription of chaperones has
not been described [11]. Our work suggests that NRF1 may also play a role in cellular protein quality
control, not only by increasing the degradation of misfolded proteins through increased proteasomal
numbers but also by upregulating genes products actively involved in protein folding. Interestingly,
brain-specific knockout of NRF1 in mice results in the age-dependent increase in aggregated proteins,
brain atrophy, and decreased motor capacity, as is observed in neurodegenerative disease [30]. We and
others have reported the discovery of non-toxic small molecule activators of NRF1 activity in cells,
pharmacological tools which will likely be of utility in understanding if the NRF1 transcriptional
program might be augmented for proteostasis-based repair in disease [26].

Surprisingly, our transcriptional profiling results suggested that NRF3 enacted a considerably
smaller transcriptional program relative to NRF1 or NRF2. This observation as well as the moderate
overlap in NRF3 targets between this work and the work of Liu et al. may indicate that NRF3 activates a
tissue-specific transcriptional program or requires additional yet undescribed co-regulatory machinery
for robust transcriptional activation. Interestingly NRF3 is not broadly expressed across tissues like
NRF1 and NRF2. Instead, NRF3 displays uneven tissue distribution, with the highest expression in
the placenta and other female-specific tissues. Ultimately, further work understanding the upstream
stimuli which promote NRF3 activation and delineating in which cell types and in what physiological
contexts NRF3 is active will help uncover the role of this cryptic transcription factor.

As this work represents the first time that consensus genetic targets derived from multiple studies
could be defined for the NRF family members, we sought to understand how the consensus sets
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generated in this work might be co-regulated across human tissues. In the simplest circumstance,
one might expect the expression levels of genes within each set to be a function of the active levels
of a given NRF member in that tissue, which would result in high correlation coefficients among all
or nearly all genes within each gene set. Unexpectedly, we found that most NRF1, NRF2, and NRF3
core consensus gene sets were not co-regulated basally in tissues but instead displayed tissue specific
preferences in their expression, as co-regulated genes within a set within one organ were often not
correlated within another organ. This observation likely spells out the existence of other transcription
factors or epigenetic states playing a predominant role in regulating these genes basally in tissue. Often
stress-responsive transcriptional programs are treated collectively, as investigators frequently use one
or two representative transcripts to report on the entirety of a transcriptional program. This data
suggests caution in pursuing such an approach, as our data suggest that even genes perceived to
be core transcriptional targets within a given set are not basally co-regulated. Thus, we believe this
result to be of critical importance in studying the regulation of stress-responsive signaling in tissue.
Instead, our data provide a preliminary roadmap for evaluating the expression and the relationships
of NRF-driven transcripts in tissue.

5. Conclusions

Here, we have used a transient overexpression system in conjunction with RNA-seq and proteomic
profiling to annotate the functional genetic programs enacted by the Cap‘n’collar transcription factors
NRF1, NRF2, and NRF3. Integrating the work of a complementary study performed by Liu et al.,
we have defined the consensus genetic targets of the NRF family members from experiments performed
with human cell lines. Analysis of the comprehensive tissue expression GTEx indicated these gene sets
are likely not basally co-regulated in human tissues but instead display organ-specific co-expression
patterns. Together, our data provide a useful resource for future lines of inquiry aimed at understanding
the roles of NRF transcription factors in normal physiology and disease.
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Figure S1: Overview of transcriptomic and proteomic profiling of HEK293T cells overexpressing NRF1, Figure S2:
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of transcriptomic and proteomic profiling of HEK293T cells overexpressing NRF3, Figure S4: GSEA analysis
of HEK293T cells overexpressing NRF1, Figure S5: GSEA analysis of HEK293T cells overexpressing NRF2,
Figure S6: GSEA analysis of HEK293T cells overexpressing NRF3, Figure S7: Co-expression patterns of NRF1
target transcripts in human tissues, Figure S8: Co-expression patterns of NRF3 target transcripts in human tissues,
Table S1: RPKM values for transcripts identified by RNA-seq, Table S2: Differentially expressed transcripts
identified by RNA-seq analysis, Table S3: Consensus differentially expressed transcripts between Ibrahim and Liu
RNA-seq analyses, Table S4: Fold changes of m/z values for proteins identified by mass spectrometry between NRF
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