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Abstract

Ecosystems worldwide depend on habitat-forming foundation species that often
facilitate themselves with increasing density and patch size, while also engaging in
facultative mutualisms. Anthropogenic global change (e.g., climate change, eutrophi-
cation, overharvest, land-use change), however, is causing rapid declines of foun-
dation species-structured ecosystems, often typified by sudden collapse. Although
disruption of obligate mutualisms involving foundation species is known to precipitate
collapse (e.g., coral bleaching), how facultative mutualisms (i.e., context-dependent,
nonbinding reciprocal interactions) affect ecosystem resilience is uncertain. Here, we
synthesize recent advancements and combine these with model analyses supported
by real-world examples, to propose that facultative mutualisms may pose a double-
edged sword for foundation species. We suggest that by amplifying self-facilitative
feedbacks by foundation species, facultative mutualisms can increase foundation
species’ resistance to stress from anthropogenic impact. Simultaneously, however,
mutualism dependency can generate or exacerbate bistability, implying a potential
for sudden collapse when the mutualism's buffering capacity is exceeded, while re-
covery requires conditions to improve beyond the initial collapse point (hysteresis).
Thus, our work emphasizes the importance of acknowledging facultative mutualisms
for conservation and restoration of foundation species-structured ecosystems, but
highlights the potential risk of relying on mutualisms in the face of global change.
We argue that significant caveats remain regarding the determination of these feed-
backs, and suggest empirical manipulation across stress gradients as a way forward

to identify related nonlinear responses.
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1 | INTRODUCTION

Since the Industrial Revolution, humans have been altering envi-
ronmental conditions at an unprecedented pace and scale (Kareiva
et al., 2007; Steffen et al., 2018). Human-induced global warming
(Costanza et al., 1997; IPCC, 2014), together with more local im-
pacts such as pollution, biotic invasions, overharvest, and land-use
changes, has triggered the sixth mass extinction of plants and animals
(Cardinale et al., 2012). Biodiversity loss can be a direct consequence
of such impacts, but can also arise from loss of organisms that are
disproportionately important to ecosystem functions and structure
(Angelinietal.,2011; Brunoetal.,2003; Estesetal.,2011). Particularly,
the loss of foundation species (Dayton, 1972)—also known as au-
togenic ecosystem engineers (sensu Jones et al., 1997)—can elicit
dramatic shifts in biodiversity and ecosystem functioning (Angelini
etal., 2015; Borst et al., 2018; Bulleri et al., 2018; Ellison et al., 2005;
van der Zee et al., 2016). Such spatially dominant habitat-forming
organisms—including trees, wetland plants, and reef-building cor-
als and bivalves—create complex 3-dimensional biogenic structures
that modulate the availability of critical resources and ameliorate
physical stressors (Altieri et al., 2007; Donadi et al., 2013; Ellison
et al., 2005; Hoegh-Guldberg et al., 2007). Because many species
are dependent on the presence of foundation species, disturbances
that cause their decline often impact whole habitats to the extent
that entire ecosystems and their associated communities collapse
(Angelini et al., 2011; Bruno et al., 2003; Stachowicz, 2001).

Although the foundation species concept typically considers a
single dominant species or a limited number of co-occurring species
in the same functional guild (e.g., as often occurs in forests, coral
reefs, and macroalgae beds), many foundation species engage in
obligate or facultative mutualisms (Angelini et al., 2016; de Fouw
et al., 2016; Hay et al., 2004; Stachowicz, 2001). Obligate mutual-
isms, such as the association between fungi and phototrophs in li-
chens or the partnership between endosymbiotic zooxanthellae and
corals, are by definition vital to both species irrespective of envi-
ronmental conditions (Bronstein, 2015; Hoeksema & Bruna, 2000;
Kiers et al., 2010). Facultative mutualisms, by contrast, are not vital
to the organisms involved but can extend the natural environmental
range limits of one or both organisms, thereby causing a species’ re-
alized niche to exceed its fundamental niche (Afkhami et al., 2014;
Bertness & Callaway, 1994; Bronstein, 2015; Bruno et al., 2003;
Crotty & Bertness, 2015; Stachowicz, 2001). Mounting evidence
suggests that facultative mutualisms commonly influence biodiver-
sity and ecosystem structure, as many organisms are directly in-
volved in networks of such beneficial interactions (Hay et al., 2004;
Kiers et al., 2010; Silknetter et al., 2020; Stachowicz, 2001; Valdez
et al., 2020).

In this paper, we synthesize recent advancements to suggest that
facultative mutualisms can strongly affect ecosystem stability and
resilience when the interaction involves a foundation species. It is al-
ready well known that positive interactions in general, including mu-
tualisms, support positive (also known as “exacerbating”) feedback

mechanisms that, if strong enough, generate ecosystem thresholds

or “tipping points” in environmental conditions beyond which eco-
systems shift to alternative stable states (Kéfi et al., 2016; Maxwell
et al., 2017). However, while studies have mostly focused on a single
feedback mechanism, many ecosystems are characterized by multi-
ple, potentially interacting feedbacks (Maxwell et al., 2017; van de
Leemput et al., 2018). Here, we propose that facultative mutualisms
and the feedbacks they initiate can increase foundation species’
resistance to human-mediated global change stressors, but simulta-
neously predispose foundation species to abrupt collapse. To test
this hypothesis, we build a conceptual framework that considers (1)
how habitat modification by foundation species can lead to self-fa-
cilitation via a positive feedback and consequently affect ecosystem
resilience, and (2) how mutualisms generate another positive feed-
back that may interact with the first feedback. Finally, we present
examples (Figure 1; Table 1) and discuss implications and future

challenges.

2 | FOUNDATION SPECIES AND SELF-
FACILITATIVE FEEDBACKS

Foundation species modify the physical environment through their
formation of complex physical structures that alter water and/or air-
flow, mediate nutrient cycling, and trap debris and detritus (Angelini
et al., 2011; Dayton, 1972; Jones et al., 1994; Stachowicz, 2001).
Although the typically positive consequences of such habitat modi-
fication for other community members have been the conceptual
focus of many studies, foundation species also commonly improve
living conditions for themselves and their conspecifics through
the same mechanisms (Figure 2a-d) (e.g., van Hirota et al., 2011;
de Koppel et al., 2005; Maxwell et al., 2017; Scheffer et al., 2012).
Often, such self-facilitation is generated via positive density de-
pendence (Bertness & Callaway, 1994; Bruno et al., 2003) yielding
a positive feedback, in which habitat quality improves with the den-
sity and/or patch size of the foundation species. Importantly, the
strength and relevance of such self-facilitation depends on environ-
mental conditions. Changes made to an already suitable habitat via
self-facilitation will yield little overall improvement in living condi-
tions. By contrast, self-facilitation can be essential to a foundation
species’ survival, growth, and reproduction in hostile conditions,
by alleviating physical or biotic stress and thereby extending the
foundation species’ own realized niche (Bruno et al., 2003; Crotty
et al., 2018; He & Bertness, 2014). Examples of ecosystems where
foundation species benefit from positive density dependence in-
clude tropical forest and desert vegetation that mediate water avail-
ability by creating a humid microclimate to stimulate plant growth
(Hirota et al., 2011; Rietkerk et al., 2004); coral and shellfish reefs
that facilitate settlement of additional coral and shellfish recruits
by providing hard structures (Schulte et al., 2009); and seagrasses,
salt marsh plants, and mangroves that enhance their own growth
by stabilizing sediments, and trapping suspended particles to locally
enhance nutrient availability (Balke et al., 2011; Zemp et al., 2017)

(see Table 1 for further examples).
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FIGURE 1 Four examples of ecosystems shaped by foundation species, their facultative mutualists, and the positive feedbacks generated

Many ecosystems structured by foundation species, including
salt marshes, seagrass meadows, coral reefs, peatlands, and for-
ests, have been rapidly declining, with losses often characterized
by sudden collapse and low restoration success rates of degraded
habitats (Ellison et al., 2005; Hoegh-Guldberg et al., 2007; Maxwell
et al., 2017; Rietkerk et al., 2004). A growing body of theoretical
and empirical studies suggests that collapses are a consequence
of the existence of feedbacks often derived from strong self-facil-
itation (van de Koppel et al., 1997; Nystrém et al., 2000; Scheffer
et al., 2001). Ecosystems with such feedbacks typically respond in
a nonlinear fashion to environmental change whereby the feed-
backs buffer increasing external stress to support the foundation
species’ persistence until a stress threshold is exceeded, at which
point the foundation species experiences mass mortality. Moreover,
if the feedback is sufficiently strong, it can cause alternative stable
states (bistability); a condition where, depending on the initial state,
either a foundation species-structured or an alternative state is sta-
ble under the same environmental conditions (Figure 2a-d) (Scheffer
etal., 2001). An important consequence is that recovery is very diffi-
cult once the foundation species’ abundance drops below the critical

threshold required to induce the level of habitat modification needed

to initiate and sustain new growth (Balke et al., 2011; Scheffer &
Carpenter, 2003; Scheffer et al., 2001).

Over the last decades, there has been a surge of theoretical work
on how feedbacks may lead to bistability and ecosystem collapse,
as well as on indicators to detect nearness to collapse (e.g., Dakos
et al., 2015; Scheffer et al., 2001). However, despite theoretical ad-
vancements, it remains difficult to predict these phenomena in the real
world due to lack of knowledge on existing feedbacks or their strength
and importance under prevailing conditions. As a consequence, den-
sity-dependent positive feedbacks have yet to be systematically inte-
grated into ecosystem management designs, and both the protection
and restoration of foundation species-dominated ecosystems remain
extremely difficult (Bruno et al., 2003; Fischman et al., 2019; Silliman
et al., 2015; Temmink et al., 2020). Moreover, contemporary studies
have largely focused on a single feedback, often self-facilitation, as
the central mechanism underpinning nonlinear ecosystem responses
and bistability (van de Leemput et al., 2016; Maxwell et al., 2017). In
reality, however, foundation species-dominated systems are often
governed by multiple feedbacks, which may theoretically interact to
alter nonlinear responses to environmental change (van de Leemput
et al., 2016; Maxwell et al., 2017).
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(Continued)

TABLE 1

Facultative
mutualist

Foundation
species

Key references

Mutualistic feedback

Self-facilitative feedback

Ecosystem

van der Heide et al. (2012); de Fouw

Seagrasses provide organic matter for

Dense seagrasses attenuate

Lucinid bivalves

Seagrasses

Warm

sulfide production and oxygen for et al. (2016); de Fouw et al. (2018)

hydrodynamics, trap sediment and

improve light conditions

temperate

sulfide oxidation; lucinids detoxify

sulfides

to tropical
seagrass

meadows

Temmerman et al. (2007); Angelini

Grasses provide shading and

Marsh grasses attenuate hydrodynamics,
trap sediment with increasing density

and patch size

Ribbed mussels

Marsh grasses

Salt marshes

et al. (2016); Derksen-Hooijberg

et al. (2019)
Kowalchuk et al. (2002); Reijers, Siteur,

attachment; mussels lower salinity and

sulfides, increase nutrients

Plants provide sugars; endophytes

Dune grasses trap eolian sand to form

Fungal

Dune grasses

Coastal dunes

et al. (2019)

provide water and nutrients

dunes in order to escape stress from

seawater flooding

endophytes

Ellison et al. (1996); Huxham et al. (2010)

Mangroves provide habitat, with roots

Mangroves attenuate hydrodynamics and

trap sediments

Mangrove Sponges

trees

Mangrove
forests

as attachment substrate; sponges

increase nutrient availability

van de Leemput et al. (2016)

Coral provide predation shelter;

Corals form reefs that attenuate

Hard corals Herbivores

Coral reefs

herbivores lower competition from

macroalgae

hydrodynamics, and serve as for
attachment for recruits
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3 | FOUNDATION SPECIES, SELF-
FACILITATIVE, AND MUTUALISTIC
FEEDBACKS: A THEORETICAL FRAMEWORK

Mutualisms, by their very nature of providing reciprocal benefits,
generate a positive feedback in which each partner stimulates the
growth or survival of the other, thereby indirectly facilitating it-
self (Bronstein, 2015; Kiers et al., 2010). Because facultative mu-
tualisms typically vary in strength with environmental conditions
(Bronstein, 1994,2015; Hoeksema & Bruna, 2000; Stachowicz, 2001),
such interactions may invoke nonlinear responses of partnering spe-
cies to environmental change, similar to the self-facilitation by foun-
dation species discussed above (Dakos & Bascompte, 2014; de Fouw
et al., 2016, 2018; Lever et al., 2014; Maxwell et al., 2017). Indeed,
theoretical work suggests that strong mutualistic interactions in
plant-pollinator networks can cause bistability due to thresholds in
environmental conditions, beyond which these mutualistic networks
collapse (Dakos & Bascompte, 2014; Dean, 1983; Goh, 1979; Lever
etal.,, 2014).

When a foundation species that, on the one hand, facilitates it-
self also engages in a mutualism, an inherent consequence is that
the growth or survival of the foundation species is now mediated by
two feedback mechanisms, not one (de Fouw et al., 2018; Maxwell
et al,, 2017). As the two feedbacks are both positive in nature,
they may act in concert to facilitate the foundation species, poten-
tially amplifying nonlinear ecosystem responses to environmental
changes (Figure 2e-f). However, the two feedbacks may alleviate the
same or different stressors, generating a context dependence that
could strongly affect the foundation species’ vulnerability to anthro-
pogenic global change.

To explore how the self-facilitative and mutualistic feedbacks
may interactively affect the resilience of foundation species-struc-
tured ecosystems, we used a minimal mathematical model to in-
vestigate three scenarios: (1) The foundation species generates a
single, self-facilitative feedback that mitigates an environmental
stressor; (2) the foundation species also engages in a facultative
mutualism that mitigates a second environmental stressor; or (3)
the foundation species also engages in a mutualism that acts on
the same environmental stressor as the self-facilitative feedback.
Note that we define “stressor” as any external environmental
force that can reduce the health of the foundation species (sensu
Stachowicz, 2001).

The model consists of a system of two differential equations (de
Fouw et al., 2018). The change in foundation species biomass or pop-
ulation size (FS) over time is described by the following differential

equation:

aFS g (1-F3) Fs_m, fs1.Fs—m, fs2.Fs (1)
dt Kes

where g, is the maximum relative growth rate, K is the carrying ca-
pacity, m, is the maximum relative mortality, and fS1 and fS2 are func-

tions controlling the mortality due to stressors 1 and 2, respectively.
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(a)

Ecosystem state

Foundation species
Foundation species

FIGURE 2 Self-facilitative and
mutualistic feedbacks stimulate
foundation species and their associated
community. When the maximum
foundation species population size is
low, beneficial modifications of local
conditions (orange to green) are minor,
implying a relatively weak self-facilitative
feedback (black arrows) (a), yielding a
slightly nonlinear ecosystem response
to changing global, ecosystem-level
conditions (b). A higher maximum
population size generates a stronger
feedback (c), thereby increasing the

(b)

Conditions

Global conditions

nonlinearity of the ecosystem's response
to change and enhancing the potential

()

Ecosystem state

Foundation species
Foundation species

for bistability (d). When the foundation
species engages in a mutualism, both
feedbacks act together to amplify
environmental modifications (e), and the
nonlinearity of the ecosystem's response
to changing global conditions (f)

(d)

Conditions

Global conditions

(e)

Ecosystem state

Foundation species
Foundation species

(U]

Conditions

Following de Fouw et al. (2018), and as a conservative approach
to the effect of the mutualist relative to logistic growth, we assume
simple linear growth of the mutualist population size (M) that is facil-

itated by the foundation species:

dM FS M

g . (12 \_m . 2

dt ~®™ A +FS <1 Km> M- M @
with g, as the maximum growth rate, H, as the half-saturation con-

stant for the positive effect of FS on M, K as the carrying capacity of
M, and m_ as the relative mortality constant of M.

Function fS1 is described as follows:

Global conditions

fS1=51- ———-fM1 )

where §1 is the maximum (i.e., when not mitigated) stress level from

stressor 1, H,, is the half-rate constant for reducing the stressor by the

foundation species itself (i.e., the self-facilitation effect), and fM1 is a

function controlling the effect of the mutualist on stressor 1.
Function fM1 is described as follows:

Hml
fM1 = ]

ml

if mutualist M is present (4.1)
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fM1 = 1if mutualist M is absent (4.2)

in which H_, is the half-saturation constant for the effect of the mutu-
alist on reducing stressor 1.

Finally, function fS2 is described as follows:

fS2=52-fM2 (5)

where 52 is the maximum stress level from stressor 2, and fM2 is the
function controlling the mutualist's effect on stressor 2 (which is not
mitigated by the foundation species):

Hm2 f

fM2 = if mutualist M is present (6.1)

m2

fM2 = 1if mutualist M is absent (6.2)

in which H,_, is the half-saturation constant for the reducing effect of
the mutualist on stressor 2. Default model parameter settings are pre-
sented in Table 2. Scenario 1 was simulated with both fM1 and fM2
set at 1 (Equations 4.2 and 6.2, respectively); scenario 2 with fM1 at
Equation 4.2 and fM2 at Equation (6.1); scenario 3 with fM1 set at
Equation (4.1) and fM2 at Equation (6.2).

In each scenario, we used bifurcation analyses to evaluate the
stability of the equilibria of the model at varying settings of stress-
ors 1 and 2, and as a means of generally exploring how gradients
in both stressors affect ecosystem resilience. For each analysis, the
maximum stress level of either stressor 1 (S1) or 2 (52) was increased
in small steps, after which the model was run to stabilize to its equi-
librium. This analysis was then performed backwards, such that each
stressor was decreased in small steps. Finally, the two analyses were
combined to construct bifurcation plots demonstrating how the
foundation species’ population size varies across gradients in stress-
ors 1 and 2 under each of the three scenarios. We determined unsta-
ble equilibria making a quasi-steady-state assumption and plotting
equilibria for different values of the control parameters in GRIND
for MATLAB.

4 | MODEL RESULTS

Similar to earlier studies of self-facilitation (van der Heide
et al., 2007; Scheffer & Carpenter, 2003; Scheffer et al., 2001), the
model first predicts that self-facilitation by the foundation species
causes nonlinear behavior and bistability across the environmental
stress gradient (Figure 3a). Second, when a mutualism that mitigates
a second stressor is added, the foundation species’ overall health is
enhanced (i.e., its net growth:mortality ratio is higher), allowing it
to reach a higher maximum population size, and to occur across a
broader range of both stressors (Figure 3b,c). However, nonlinear-
ity also increases, such that bistability emerges for stressor 2, and

the range of bistability increases for stressor 1. Third and finally,
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when the self-facilitative and mutualistic feedbacks mitigate the
same environmental stressor, they together amplify the buffering
capacity for stressor 1, but also greatly enhance the bistability range
(Figure 3a,c).

Although theoretical, this exercise yields several notable insights.
First, foundation species can, by engaging in a mutualism, signifi-
cantly expand their environmental range limit for a stressor (Afkhami
et al., 2014). Interestingly, this “niche-broadening” may be achieved
even if the mutualism does not directly mitigate the stressor itself,
but instead stimulates the foundation species by alleviating a second
stressor. In addition to increasing ecosystem resistance to stress, the
mutualism extends the range of hysteresis, amplifying nonlinear sys-
tem responses to environmental stress. Consequently, environmen-
tal conditions may have to be improved over a much larger range to
achieve natural recovery to a stable alternate state compared with
systems whose behavior is not mediated by a mutualism. Finally, in
binding both species to a common fate under conditions where the
mutualism is essential for persistence, mutualistic interactions can
increase the foundation species’ vulnerability to perturbations that
affect the mutualist.

5 | EXAMPLES FROM REAL ECOSYSTEMS

Foundation species in marine, aquatic, and terrestrial ecosystems
often engage in mutualistic interactions (Figure 1; Table 1) (Hay
et al., 2004; Stachowicz, 2001). For example, the vast majority of
terrestrial plants engage in mycorrhizal or plant-pollinator interac-
tions (Potts et al., 2010; Smith & Read, 1997), submerged marine
and freshwater macrophytes provide shelter to grazers of algae
that compete with the plants for light and nutrients (e.g., Peterson
& Heck, 2001; Scheffer, 1999; Valentine & Duffy, 2007), Sphagnum
mosses harbor methanotrophic and nitrogen-fixing bacteria that in-
crease CO, and nitrogen availability to the plant (Larmola et al., 2014;
Raghoebarsing et al., 2006), and sponges growing on the solid sub-
strate provided by mangrove roots increase nutrient availability for
the trees (Ellison et al., 1996). Here, we discuss four relatively well-
studied examples (Figure 1) in more detail to illustrate how both self-
facilitative and mutualistic feedbacks can affect ecosystem stability,
and how human-mediated environmental changes may affect these
interactions.

5.1 | Arid ecosystems

In arid systems, grasses and shrubs often modify soil conditions to
their own benefit (Angelini et al., 2011; Kefi et al., 2007; Rietkerk
et al., 2004; Rietkerk & van de Koppel, 2008). Following scenario
1, patches of grasses and shrubs enhance water availability by in-
creasing infiltration with their root system, while simultaneously
lowering evaporation through shading with increasing density and
patch size (Klausmeier, 1999; Hille Ris Lambers et al., 2001; Rietkerk
et al., 2002).
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TABLE 2 Variables and default parameter settings of the
conceptual model

Default Description
Variables

FS - Foundation species population
size

M - Mutualist population size

Parameters

3, 0.1 Maximum relative growth rate
of the foundation species

KfS 1 Carrying capacity of the
foundation species

My, 0.3 Maximum relative mortality of
the foundation species

Sm 0.1 Maximum growth rate of the
mutualist

Hem 0.3 Half-saturation constant for
the positive effect of FS on M

K., 1 Carrying capacity of the
mutualist

m. 0.05 Relative mortality constant of
the mutualist

S1 0.05 Maximum (i.e., when not
mitigated) stress level from
stressor 1

Hegy 0.3 Half-rate constant for the
reducing effect of FS on
stressor 1

b 0.3 Half-rate constant for the
reducing effect of M on
stressor 1

S2 0.05 Maximum (i.e., when not
mitigated) stress level from
stressor 2

H 0.3 Half-rate constant for the
reducing effect of M on
stressor 2

In many cases, these foundational plants engage in mutualis-
tic interactions with mycorrhizal endophytes that benefit from the
plants by receiving carbohydrates (Smith & Read, 1997). In return,
these fungal mutualists can increase the productivity, biomass, and
environmental range limits of the plants that adopt them by allevi-
ating multiple stressors, including nutrient deficiency, salinity, and
temperature stress (Millar & Bennett, 2016). In dry environments,
plants can particularly benefit from mycorrhizae as they increase
their tolerance to drought by increasing both water and nutrient up-
take potential (Afkhami et al., 2014; Bahadur et al., 2019; Marquez
et al.,, 2007; Peay, 2016). Such mitigation of drought and nutrient
stress by both self-facilitation and mutualism is similar to scenario 3,
where the mutualist mitigates the same stressor (or two interrelated
stressors in this case) as the foundation species (Figure 3).

Although mycorrhizae can mitigate abiotic stressors, exces-

sive stress in the form of anthropogenic nutrient input or extreme
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FIGURE 3 Bifurcation analyses of a minimal model of
foundation species with mutualisms. The self-facilitative feedback
acts on stressor 1, generating bistability (scenario 1). The mutualism
increases this bistability range, particularly when it also acts

on stressor 1 (scenario 3), but even when mitigating stressor 2
(scenario 2) (a, c). When mitigating stressor 2, the mutualist also
introduces bistability for this variable (b, c)

drought can reduce the plants’ carbon allocation to the mycorrhizae
(Millar & Bennett, 2016). Reciprocally, mycorrhizal partners have

been found to adopt resource-hoarding strategies under enhanced
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nutrient availability (Kiers et al., 2010). A potential consequence of
such a weakening in mutualism strength is that the plants’ resilience
to drought also decreases (Afkhami et al., 2014; Brunner et al., 2015;
Marquez et al., 2007; Peay, 2016). Such a loss of drought resilience
may increase the potential for arid grassland and shrubland ecosys-
tems to degrade and collapse in the face of warming-induced de-
creases in precipitation.

5.2 | Tropical forests

Trees are the dominant habitat-structuring organisms of forests
(Ellison et al., 2005). Following scenario 1, trees in tropical regions
modify the environment to their own benefit by outcompeting
grasses that would otherwise facilitate wildfires that in turn pro-
mote open savannas or grasslands (Hirota et al., 2011). Moreover, in
particularly large and/or dense forest patches, trees can generate a
vegetation-climate feedback in which the trees via evapotranspira-
tion maintain a moist microclimate that stimulates rainfall, thereby
stabilizing tree-dominance and preventing grassland encroachment
(Hirota et al., 2011; Lewis, 2006; Lindenmayer et al., 2016; Zemp
et al, 2017).

Similar to arid ecosystems, tropical trees also commonly engage
in endophytic mutualisms that, following scenario 3 in the model,
can increase tree tolerance to drought and wildfires (Brunner
et al., 2015). Simultaneously, following scenario 2, many tropical tree
species engage in mutualisms that act on a second stressor—that is,
reduced reproductive capacity—as they depend on pollinators and
seed dispersers for their reproduction (Janzen & Martin, 1982; Peres
et al., 2016; Rodriguez-Cabal et al., 2007). Extirpation of monkeys,
birds, bats, and other vital seed dispersers and pollinators, however,
weaken the strength of these plant-animal mutualisms in many
areas. In the Amazon, for instance, overhunting has severely reduced
populations of seed-dispersing vertebrates, causing “empty forests”
(Redford, 1992). Consequently, seed dispersal becomes depressed,
reducing tree recruitment and causing forest canopies to become
more open (Peres et al., 2016). This can in turn weaken the tree-mi-
croclimate feedback that mitigates the first stressor (drought), thus
increasing the risk of forest collapse, particularly in many tropical

regions where global warming is altering precipitation regimes.

5.3 | Salt marshes

Salt-tolerant marsh grasses are important foundation species
along temperate and subtropical coastlines. By progressively baf-
fling currents and waves with increasing shoot density and patch
size, marsh grasses stabilize and elevate the sediment bed and
increase nutrient availability (van Bouma et al., 2009; de Koppel
et al., 2005; Temmerman et al., 2007). Following scenario 1, these
self-facilitative feedbacks have been found to increase ecosystem
resistance to small-scale disturbances, but also increase the po-

tential for bistability and collapse following intense, large-scale
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disturbances like winter storms (van van Belzen et al., 2017; de
Koppel et al., 2005).

Along the US Atlantic and Gulf coasts, ribbed mussels (Geukensia
demissa) aggregate in the mud around cordgrass stems, where they
profit from stable settlement substrate and canopy shading (Altieri
et al., 2007; Borst et al., 2018). In return, as mussels filter phyto-
plankton and clay particles from the water column, they deposit
nutrient-rich pseudofaeces, stimulating cordgrass growth and sur-
vival (Bertness, 1984). This mussel fertilization acts in concert with
cordgrass particle trapping to alleviate nutrient limitation, following
our model scenario 3.

In addition to enhancing nutrient availability, mussels can also en-
hance soil moisture and decrease salinity stress during hot dry spells,
increasing cordgrass survival by 5-25 times (Angelini et al., 2016).
During drought, the mutualism therefore buffers a second stressor
in ways similar to scenario 2. Recent work, however, suggests that in-
tense or repetitive droughts may ultimately exceed the mutualism's
buffering capacity (Derksen-Hooijberg et al., 2019). Should these
extreme events increase in both severity and frequency as pre-
dicted, the salinity-buffering mechanism will be under intensifying
pressure, increasing the likelihood of salt marsh collapse (Angelini
et al., 2016; Derksen-Hooijberg et al., 2019).

5.4 | Seagrass meadows

Seagrasses are habitat-forming, flowering plants in shallow coastal
areas worldwide (Larkum et al., 2006). Similar to salt marsh plants,
dense and large seagrass meadows reduce hydrodynamic en-
ergy and trap suspended particles, while their root mats prevent
sediment resuspension, increasing light penetration (Christianen
et al., 2013; Hansen & Reidenbach, 2012; van der Heide et al., 2007;
Koch, 2001). Following scenario 1, these habitat modifications in-
crease seagrass growth and survival, but also increase the potential
for bistability (van der Heide et al., 2007; Maxwell et al., 2017).

Although sediment trapping and stabilization stimulate seagrass
growth, they also cause a negative feedback as organic matter from
the water column accumulates in the sediment, and its anaerobic
decomposition involving sulfate-reducing bacteria has the potential
to produce toxic levels of sulfides (de Fouw et al., 2016, 2018; van
der Heide et al., 2012; Maxwell et al., 2017). Although seagrasses
stimulate sulfide oxidation by releasing oxygen from their roots,
sulfide production can outpace oxygen release under warmer con-
ditions, resulting in sulfide accumulation and seagrass mortality (de
Fouw et al., 2016, 2018). Following model scenario 2, over 90% of
seagrasses growing in subtropical to tropical conditions, and over
50% in temperate areas, are associated with lucinid bivalve mutual-
ists that have endosymbiotic sulfide-oxidizing bacteria in their gills
(van der Heide et al., 2012). In this pervasive facultative mutualism,
the lucinid-bacteria consortium profits from both the sulfide and
released oxygen and, in consuming and oxidizing sulfide, allevi-
ates sulfide toxicity stress experienced by seagrass (van der Heide
etal., 2012).
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Drought, however, was recently shown to disrupt this mutual-
ism in West African intertidal seagrass meadows. On the mudflats of
Banc d’Arguin, a drought in 2011 initiated seagrass degradation, de-
creasing oxygen release from the roots, and causing the mutualism
to collapse. This, in turn, spiked sediment sulfide levels, amplifying
seagrass die-off and causing landscape-scale degradation (de Fouw
et al., 2016, 2018). These results illustrate that extreme conditions,
such as drought or excessive eutrophication (Maxwell et al., 2017),
may exceed the buffering capacity of this mutualism, thus trigger-
ing its breakdown and seagrass mass mortality. After such collapse,
recovery may only be possible once sediment organic matter and

sulfide levels have been dramatically reduced (de Fouw et al., 2018).

6 | PERSPECTIVES

Collectively, our findings highlight that foundation species often
facilitate both themselves and associated community members
through density- or patch size-dependent alterations of abiotic con-
ditions, and that they commonly engage in facultative mutualistic in-
teractions that initiate additional feedbacks. Our model simulations,
supported by empirical observations from four different types of eco-
systems, suggest that the self-facilitative feedback can be amplified
by the mutualistic feedback, increasing the potential for nonlinear
ecosystem responses and bistability in the face of increasing human-
mediated global change stressors (Figure 3a). Specifically, our mod-
eling results suggest that when the self-facilitative and mutualistic
feedbacks operate on the same environmental stressor, ecosystem
resistance to stress can be particularly high, but, consequently, also
the range of hysteresis and thus the risk of catastrophic collapse. Our
real-world examples highlight the relevance of these findings as they
indicate that this may occur when (a) drought resistance is bolstered
by both desert plants and their endophytes (Marquez et al., 2007,
Peay, 2016), and (b) nutrient-enhancement is sustained both by salt
marsh grasses and ribbed mussels (Bertness, 1984). Although this
“amplification effect” is less dramatic when the self-facilitative and
mutualistic feedbacks operate on different stressors, their simulta-
neous functioning can have important consequences for ecosystem
resilience, as bistability may now be generated along two (instead of
one) stress gradients (Figure 3a,b). In our real-world examples, these
dynamics appear to occur in tropical forest where trees engineer the
microclimate to support their own persistence, and simultaneously
benefit from a seed-dispersing mutualist feedback.

These central findings build upon a number of prior studies
demonstrating that mutualists can broaden species’ environmen-
tal tolerance ranges (e.g., Afkhami et al., 2014; Kiers et al., 2010).
However, our work further suggests that when facultative mutu-
alistic interactions involve foundation species, they increase both
their resistance to gradual changes or sudden perturbations, and
their propensity to exhibit nonlinear ecosystem responses to an-
thropogenic global change pressures (Figure 4). Thus, consideration
of both self-facilitative and mutualism-generated feedbacks is likely

to be essential for predicting the stress thresholds beyond which

foundation species and their associated communities and ecosystem
functions will collapse, as well as the level of environmental stress
mitigation that must be achieved to trigger natural recovery.

More broadly, the results of our modeling and literature review
emphasize the importance of acknowledging and quantifying how
multiple feedbacks interact to drive ecosystem dynamics. Recent
work from coral reefs and seagrass meadows has similarly high-
lighted that foundation species can be involved in multiple feed-
backs that collectively amplify nonlinear responses (see Maxwell
et al., 2017; van de Leemput et al., 2018). Moreover, the strength of
such feedbacks and their level of interaction are likely highly con-
text-dependent, varying in strength along environmental gradients
or in response to changing conditions (Maxwell et al., 2017), an area
of study that requires far more research. Specifically, for ecosys-
tems shaped by foundation species, it is important to identify those
that are simultaneously engaged in self-facilitative and facultative
mutualistic feedbacks. Clearly, although our real-world examples
highlight only four ecosystems, there are many more of ecosystems
with foundation species where both feedback types can occur and
interact (see Table 1).

A vital next step is to resolve the relative strength of the self-fa-
cilitative and facultative mutualistic feedbacks in modulating the
dynamics of foundation species-dominated ecosystems. A first
approach could be to construct a more system-specific simulation
model to assess the potential for nonlinear behavior and bistabil-
ity in response to increasing global stressors. A second possibility is
to correlatively investigate the response of such ecosystems when
they are undergoing a sudden perturbation. Recent examples were
presented by de Fouw et al. (2016) and Angelini et al. (2016) where
intertidal seagrass meadows with lucinid bivalves and salt marshes
with ribbed mussels partly collapsed due to droughts. Although
they do not provide definitive proof for bistability, new statistical
techniques such as potential analysis may yield important clues re-
garding the importance of feedbacks in driving ecosystem dynamics
(Dakos et al., 2015; de Fouw et al., 2016; Hirota et al., 2011; Scheffer
etal., 2012).

The ultimate step is then to experimentally manipulate both
the self-facilitative and mutualistic feedbacks across relevant
stress gradients to identify nonlinear responses and alternative
stable states, and to test whether the mutualist or the founda-
tion species is the weaker link when conditions change. To our
knowledge, such elaborate experiments, which basically repre-
sent an empirical version of our model simulations, have not yet
been conducted with foundation species and their mutualists.
However, different parts of such an experiment have been car-
ried out across a range of different ecosystem types. For instance,
Afkhami et al. (2014) manipulated endophyte mutualisms across
a range of environmental conditions using field and greenhouse
experiments to empirically demonstrate mutualism-mediated
broadening of environmental tolerance to drought in plants. In
addition, Angelini et al. (2016) experimentally demonstrated mu-
tualism-mediated drought resistance in US salt marshes during a

heat spell. Neither study, however, simultaneously manipulated
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FIGURE 4 Stability landscape of (a)
ecosystems shaped by foundation

species without (a) and with mutualists

(b). Ecosystem A is controlled by a
self-facilitative feedback, and hence, a
relatively small change in global conditions
(or perturbation) is sufficient to cause

the healthy (green) system to collapse
(red). Contrastingly, as ecosystem B

is controlled by self-facilitative and
mutualistic feedbacks that amplify each
other, a more severe change in global
conditions (or perturbation) is required

for a collapse. If collapsed due to gradual
changes, recovery requires conditions

to be improved beyond the point of
collapse, a pathway that is much longer for
ecosystem B
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the strength of the self-facilitative feedback (e.g., by manipulating
plant density or patch size). Experiments in which both the foun-
dation species and the mutualist were manipulated have been car-
ried out with seagrasses and lucinids (van der Heide et al., 2012),
and with cordgrass and ribbed mussels (Borst et al., 2018). In these
cases, however, the environmental conditions were not manipu-
lated. Moreover, none of the above experimental studies focused
on identifying nonlinear responses or bistability across stress gra-
dients such as presented in our model analyses, emphasizing that
understanding these systems through experimental manipulation
is currently an important caveat.

7 | POTENTIAL MANAGEMENT
IMPLICATIONS

From a conservation standpoint, it is of primary importance to iden-
tify whether foundation species generate self-facilitative feedbacks,
mutualistic feedbacks, or both, and to measure their strength. If
feedbacks are indeed important, our work suggests that, ideally,
managers and regulators should aim to maintain stress levels well
below the point where these feedbacks become vital for foundation
species persistence (i.e., <0.3 in our model; see Figure 3). Obviously,
this may be infeasible, especially when a stressor is initiated by global
rather than local processes, such as droughts or heat waves. In such

cases, however, it may be possible to reduce local stressors for the
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purpose of increasing foundation species' capacity to persist under
increasing global stress. Specifically, as suggested by our model and
earlier work (He & Silliman, 2019; Scheffer et al., 2015), when selfa-
cilitative and mutualistic feedbacks both buffer against the same
global stressor (i.e., stressor 1), mitigation of a second local stressor
that is not affected by the feedbacks (see Figure 3c, scenario 3) can
be highly effective in enabling the ecosystem to persist in a founda-
tion species-dominated state. The underlying reason for this is that
the maximum net growth of the foundation species increases lin-
early with a reduction of stressor 2, which in turn increases both
self-facilitation and mutualism feedback strength and thus the foun-
dation species' capacity to buffer stressor 1. Furthermore, when one
of these feedbacks instead buffers a local stressor, the response of
the foundation species to local improvements, and therefore also
its ability to withstand and mitigate the global stressor, becomes
nonlinear.

Even when local stressors are mitigated via proactive manage-
ment or regulation, continued global environmental change may ul-
timately cause foundation species to become fully reliant on their
facultative mutualistic partners. Under such circumstances, further
escalation of the global stress or sudden perturbations, such as ex-
treme storms or consumer outbreaks, may ultimately exceed the
buffering capacity of the self-facilitative and/or mutualistic feed-
backs, causing foundation species collapse. Once degraded, self-fa-
cilitative feedbacks required for sustaining the foundation species

are absent, yielding establishment thresholds that prevent natural
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recovery. Moreover, these dynamics may be exacerbated by the ab-
sence of mutualists that can help improve environmental conditions
and the foundation species’ health (Angelini et al., 2016; Angelini &
Silliman, 2012). Consequently, environmental conditions need to be
improved much more than the level of stress that provoked the col-
lapse to initiate natural, or unassisted, recovery (hysteresis) under
such circumstances (Figure 4).

In the context of restoration or habitat creation efforts, our
findings suggest that harnessing self-facilitation and mutualisms
can enhance the success of such interventions to regain foundation
species and their ecological benefits (Gagnon et al., 2020; Valdez
et al., 2020). Indeed, recent experimental work in salt marshes
highlights that including self-facilitation into restoration designs by
clumping cordgrass transplants rather than planting them in dis-
persed arrays can double restoration yields (Silliman et al., 2015).
Moreover, integrating mutualisms into restoration by co-transplan-
tation of cordgrass and mussels can enhance success by a similar
margin (Borst et al., 2018). At the same time, however, it is import-
ant to realize that such reliance on self-facilitation and mutualisms
comes at the cost of increased threshold behavior, which decreases
predictability and may unintentionally set systems up for sudden

collapse in the long run.

8 | CONCLUSIONS

It is clear that the biodiversity and functioning of many terrestrial,
freshwater, and marine benthic ecosystems hinges on habitat-
forming foundation species (Angelini et al., 2011; Borst et al., 2018;
Ellison, 2019). Such spatially dominant habitat-forming organisms
(e.g., trees, terrestrial shrubs and grasses, marine and freshwater
macrophytes, bivalve and coral reefs) create complex biogenic struc-
tures that ameliorate physical stress and modulate resource avail-
ability. Although it is widely appreciated that associated species
often benefit from such habitat modification, foundation species
also facilitate their own growth through these same mechanisms.
Although such self-facilitative and mutualistic feedbacks can act as
a buffer against increasing environmental stress, theory and obser-
vations suggest that when they are disrupted, foundation species
can experience rapid mortality, resulting in persistent collapse of the
ecosystem they support.

This study highlights that many foundation species engage in
facultative mutualisms that, by providing reciprocal benefits, gen-
erate a second positive feedback that may act on the same or a dif-
ferent stressor as the self-facilitative feedback. Overall, our model
and case studies suggest that such mutualisms, which are pervasive
in natural systems, pose a double-edged sword in the face of hu-
man-mediated global change. Specifically, mutualisms help protect
and restore foundation species-structured ecosystems in times of
rapid, global environmental change, but reliance on self-facilitative
and mutualistic feedbacks may come at the inherent cost of in-
creased threshold behavior, increasing the potential for bistability

and sudden, persistent collapse.
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