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INTRODUCTION
The tumor immune microenvironment has been focused 

on in both solid and hematological tumors.   Bystander cells 
in lymphoid malignancy are important for the progression of 
tumors.1   Immune cells around the tumor contribute to the 
pro-tumor immunity, and support the survival and progres-
sion of the tumor as a niche.   Immune cells are currently tar-
geted for immunotherapy, for example, chimeric antigen 
receptor (CAR) -T cell therapy,2 and immune checkpoint 
inhibitors such as anti-programmed cell death 1 (PD-1) anti-
body.3   CAR-T cell therapy is particularly effective against 
hematological tumors.   In the case of classic Hodgkin lym-
phoma (cHL), anti-PD-1 antibody is highly effective.   This 
suggests that the immune interactions between the tumor and 
its surrounding cells are important for the progression of 
hematological tumors and their therapy.

Intercellular communication tools, such as cytokines and 
chemokines, are important for educating tumor biology.   
Furthermore, intercellular transfer of molecules, such as via 
trogocytosis and exosomes, was recently reported to be 

involved in facilitating the interaction between the tumor and 
surrounding immune cells.4-7   Although cytokines and che-
mokines induce gene expression of target cells, they must 
undergo signal transduction.   Trogocytosis and exosomes 
mediate direct transfer of molecules from donor cells to tar-
get cells.8   They may be able to control the function of target 
cells more rapidly than the induction of gene expression by 
cytokines and chemokines.

In this article, we reviewed these biological phenomena 
functioning in lymphoid malignancy based on our findings.

TROGOCYTOSIS
Trogocytosis is a phenomenon characterized by the direc-

tional movement of molecules between the interacting cells 
or towards the cells connected to a donor cell via the inter-
changing junctions of the plasma membrane.9,10   In the 
1970s, the proteins that were specifically expressed in one 
cell type were detected from the surface of other cell 
types.11,12   The transfer of major histocompatibility complex 
(MHC) molecule from antigen-presenting cells (APCs) to 
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T-cells has also been observed.13   Using in vitro and in vivo 
experiments, trogocytosis was demonstrated to occur in the 
membrane of lymphocytes such as B-, T-, and NK cells.   
Lymphocytes exhibit the potential to extract the surface mol-
ecules via the “immunological synapse” from APCs through 
conjugation.   Physiologically, trogocytosis may influence 
immune regulation.   CD8+ T-cells, which acquire MHC from 
APCs via trogocytosis, are sensitive to peptide-specific lysis 
mediated by the neighboring T-cells.14   The transfer of 
CD80/86 from dendritic cells to T-cells helps to regulate 
T-cells.   Transferred CD80/86 are impaired in cytotoxic 
T-lymphocyte antigen 4 (CTLA4)-expressing cells.15   
“Cross-dressing” involves the transfer of MHC complexes 
from the surface of donor cells via intercellular transfer.   
After viral infection, dendritic cells acquire MHC of the 
donor cell through cross-dressing via trogocytosis, leading to 
the activation of drive memory CD8+ T-cells.16   Trogocytosis 
is characterized by the rapid movement of the membrane.   In 
a previous report, trogocytosis occurred within minutes, 
which can be distinguished from other intercellular transfer 
mechanisms such as exocytosis.17

Some tumor cells were reported to trogocytose immune 
cells.   One molecule of interest is human leukocyte antigen 
G (HLA-G).   HLA-G is a potent immune inhibitory mole-
cule that impairs the functions of NK, T-, and B-cells.18   The 
transfer of HLA-G from the tumor to NK cells leads to the 
suppression of the anti-tumor effects.4   Another report 
revealed that the transfer of natural killer group 2 membrane 
D ligand (NK2GDL) from the tumor cells pays a role in NK 
cell-cell fratricide via the NKG2D-NKG2DL axis. 19   
However, the biological significance of other molecules 
remains unknown.

Lymphoid malignancy and trogocytosis

A previous report demonstrated that several cell lines of 
lymphoid malignancies trogocytose immune cells,20 suggest-
ing that trogocytosis is involved in the biology of lymphoid 
malignancies.   In particular, cHL was assumed to be 
involved in this phenomenon.7   Tumor cells, such as 
Hodgkin and Reed-Sternberg (HRS) cells, account for only 
1% in tumor tissue, and surrounding immune cells, such as 
B-, T-cells, and macrophages, play an important role in 
cHL.21   HRS cells release numerous chemokines, such as 
CCL5, CCL17, CCL22, and CCL28, which attract the 
immune cells.22

We focused on PD-L1, which is highly upregulated in 
HRS cells.   It is widely accepted that anti-PD-1 antibody is 
strongly effective against cHL, which was reported to exhibit 
an overall response rate of 65-87%.3,23-26   PD-L1 in mono-
cyte/tumor-associated macrophages (TAMs) is also upregu-
lated in the tumor tissue of cHL.27,28   Moreover, the propor-
tion of monocyte/TAMs in the tumor tissue or peripheral 
blood is associated with a poor prognosis of cHL.29,30   We 
hypothesized that the direct contact between HRS cells and 
monocytes is important for the survival of tumors, and found 
that PD-L1/L2 membrane transfer occurs from HRS cells to 
monocytes/TAMs via trogocytosis.31   As the upregulation of 

PD-L1/L2 on monocytes/TAMs was confirmed to support 
immune evasion by tumors,32-34 this transfer may function in 
cHL immune dysregulation.

To demonstrate that direct contact induces PD-L1/L2 
upregulation, we co-cultured HRS cells with monocytes.   
Upregulation was induced just after 1 hour of co-culture and 
PD-L1/L2 membrane transfer from HRS cells to monocytes 
was detected using a confocal microscope.   We next gener-
ated PD-L1/L2 knockout cell lines and revealed that these 
cell lines co-cultured with monocytes did not induce PD-L1/
L2 upregulation in the recipient cells.   Thus, the upregula-
tion of PD-L1/L2 on monocytes in a short time may be attrib-
uted to trogocytosis.

We further confirmed that PD-L1/L2 upregulation via tro-
gocytosis is observed in the tumor tissue of patients with 
cHL.   We postulated that TAMs in contact with HRS cells 
(HRS-contacted TAMs) exhibit higher PD-L1/L2 levels than 
those not in contact (HRS-uncontacted TAMs).   Indeed, 
HRS-contacted TAMs exhibited significantly upregulated 
PD-L1/L2 levels compared with HRS-uncontacted TAMs.31   
Images are presented in Figure 1.   Furthermore, CD30, 
which is strongly expressed in HRS cells, was highly upregu-
lated in HRS-contacted TAMs.   This supports the idea that 
trogocytosis induces PD-L1/L2 upregulation on TAMs in 
cHL patients.

PD-L1/L2 upregulation on TAMs may play a role in the 
suppression of effector T-cells.   HRS cells are often defected 
in MHC class I peptide molecules.35   TAMs, which is one of 
the APCs, possess MHC class II molecules and can recognize 
CD4+ T-cells.   CHL tissue surrounding HRS cells has abun-
dant CD4+ regulatory and type 2 helper T-cells.   PD-1+ CD4+ 
T-cells accumulate in close proximity to HRS cells.36   As 
HRS cells originate from B cells, they possess MHC class II 
molecules, like APCs.   However, more than 60% of patients 
with cHL exhibit negative or decreased expression of MHC 
class II molecules in HRS cells.35   A recent report suggested 
that the anti-PD-1 antibody response in cHL is not due to the 
cytotoxic T-cells because no cytotoxic T-cell immune 
response was observed after anti-PD-1 antibody treatment.   
Conversely, a reduction in type 1 regulatory T-cells and 
PD-L1+ TAMs was observed after this treatment.37   Collectively, 
PD-L1/L2 upregulation on TAMs via trogocytosis functions 
in the induction of PD-1/PD-L signaling between TAMs and 
CD4+ T-cells, and may affect cHL tumor progression.   We 
summarized our findings in Figure 2.   Trogocytosis is more 
effective in facilitating the rapid increase of PD-L1/L2 on the 
surface of TAMs than cytokines.   Transferred PD-L1/L2 by 
trogocytosis may promptly induce immunosuppression.

Reports on other molecules that undergo trogocytosis in 
cHL are listed in Table 1.   The transfer of CD137 from HRS 
cells to APCs, such as B-cells and monocytes, plays a role in 
immune suppression in cHL.38   CD137 is a T-cell co-stimu-
latory molecule expressed on HRS cells.   As a result of the 
transfer of CD137 to APCs, the CD137-CD137L complex is 
internalized, thereby leading to the disappearance of CD137L 
from APCs.   In addition, the transfer of CD137 from HRS 
cells to the neighboring HRS cells is observed, which leads 
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Fig. 1.  Expression of PD-L1 was higher in TAMs in direct contact with HRS cells than in TAMs in not con-
tact with HRS cells.
Using CD30 single staining, the HRS-abundant region was defined as the HRS+ area and the HRS-scarce 
region was the HRS- area. PD-L1/CD163 double staining was performed in each area. Brown: PD-L1, Red: 
CD163.

Fig. 2.  Shema for the establishment of the tumor microenvironment in cHL.
Trogocytosis-mediated transfer from HRS cells lead to rapid PD-L1/L2 
upregulation on TAMs. In cHL tissue, PD-1+CD4+ T-cells are enriched, and 
they interact with PD-L1/L2 upregulated TAMs through PD-1 and PD-L1/L2 
interaction via MHC presentation.
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to the disappearance of CD137L from HRS cells.
CD83 was recently demonstrated as a promising target 

molecule for the treatment of cHL.39   CD83 exerts immuno-
suppressive effects and PD-1+ CD83+ T-cells may be impli-
cated in unresponsiveness in the tumor microenvironment.40   
Li et al. provided evidence for the transfer of CD83 from 
HRS cells to T-cells, resulting in the generation of PD-1+ 
CD83+ suppressive CD4+ T-cells.39

CD30 is involved in escaping immune surveillance via 
trogocytosis.   CD30 is associated with recruiting TNFR-
associated factors (TRAF) and TRAF-binding proteins, 
resulting in NF-κβ activation.41   Nakashima et al. reported 
that the trogocytosis of CD30 from HRS cells to the sur-
rounding  ce l l s  leads  to  the  express ion  of  CD30L.   
Internalized CD30-CD30L complexes may be play an essen-
tial role in initiating the CD30 signaling pathway and this 
process can be inhibited via actin polymerization inhibitors.42

Other markers for immune checkpoint molecules in cHL 
may also play important roles.   For example, CD86 on 
TAMs in close proximity to HRS cells is upregulated and 
involved in immune evasion mediated by the CD86-CTLA4 
axis.43   CD86 is upregulated in HRS cells.44   Membrane 
transfer of CD86 from HRS cells to TAMs may occur and be 
related to the immune microenvironment of cHL.

Focusing on other lymphoid malignancies, Brown et al. 
demonstrated that the transfer of CD86 and HLA-G from the 
tumor cells to regulatory T-cells is associated with a poor 
prognosis of multiple myeloma (MM) by examining 168 
MM patient samples of bone marrow and peripheral blood.45   
However, there are relatively few reports demonstrating the 
biological significance of trogocytosis, especially in the field 
of oncology; therefore, further studies are required.

Clinical application of trogocytosis

Reports of trogocytosis are relatively abundant regarding 
treatments based on immunotherapy.   For example, treat-
ment using the anti-CD20 antibody rituximab in B-cell lym-
phoid malignancies leads to the transfer of CD20 from the 
tumor cells to monocytes via the FcR receptor, thereby lead-
ing to antigen loss in the tumor cells.46,47   Using chronic lym-
phocytic leukemia (CLL) B-cells, Valgardsdottir et al. 

investigated trogocytosis and phagocytosis mediated by 
human neutrophils following treatment using anti-CD20 anti-
bodies such as rituximab and obinutuzumab.   They revealed 
that human neutrophils mediate trogocytosis rather than 
phagocytosis of CLL cells opsonized with anti-CD20 anti-
bodies.   Trogocytosis can be observed more effectively upon 
treatment with rituximab than with obinutuzumab.48   
Similarly, MM treatment using the anti-CD38 antibody dara-
tumumab results in the loss of CD38 protein due to its trans-
fer from the tumor cells to monocytes and granulocytes.49   
Collectively, trogocytosis influences the effectiveness of 
molecular targeting therapy and some drugs are exclusively 
associated with this phenomenon.

Trogocytosis was reported to be involved in CAR-T cell 
therapy resistance.50   The transfer of CD19 from acute lym-
phoid leukemia cells to infused CAR-T cells leads to CD19 
loss from the tumor cells and CD19 upregulated CAR-T cells 
are attacked by other surrounding CAR-T cells.   As trogocy-
tosis is involved in inducing resistance to immune therapy in 
some cases, this phenomenon requires monitoring.

Therefore, regulating trogocytosis may improve the 
effectiveness of immunotherapy.   Neutrophil antibody-
dependent cellular cytotoxicity (ADCC) involves a trogocy-
tosis-related necrotic procedure for inducing cancer cell 
death.   Trogocytosis from antibody-opsonized cancer cells to 
neutrophils leads to cell death, and this process is promoted 
via CD47- SIRPα checkpoint inhibition.51   Guideng et al. 
demonstrated a method for T-cell receptor ligand discovery 
using trogocytosis.52   Trogocytosis from T-cells to target 
cells may be used to identify novel targets for immunother-
apy.   Furthermore, capturing the tumor cell membrane via 
trogocytosis results in increased cytotoxic T-cells.53

In contrast, we focused on trogocytosis-mediated transfer 
of molecules involved in the immune microenvironment 
from a biological viewpoint.31   We revealed that inhibitors of 
trogocytosis may be used as anti-tumor agents.   To date, tro-
gocytosis have not been focused from this point of view.   
Although the detailed mechanisms of trogocytosis in human 
cells are not well classified, some agents have been reported 
to inhibit amebic trogocytosis, resulting in cell death.54   
Clinical applications of trogocytosis inhibitor must be 
assessed in the future.

The molecular targets associated with trogocytosis 
require further investigation.   Considering the role of trogo-
cytosis, the following points may be key factors: 1) recipient 
cells can acquire a protein from donor cells in as early as few 
minutes, 2) recipient cells can be deprived of donor proteins 
that are not originally expressed, and 3) the loss of proteins 
from donor cells occurs due to the transfer.   These features 
are clues for investigating the novel molecules that play an 
important role in tumor progression via trogocytosis.   
Elucidating the mechanisms for trogocytosis may help iden-
tify new therapeutic targets for establishing the treatment of 
hematological tumors.

Target 
molecules Recipient cells Suggested roles References

PD-L1/L2 monocyte/TAMs enhancement of T cell 
inhibition (particularly 
CD4+ T cells)

31

CD137 APCs, HRS cells inhibition of T cell 
activation

38

CD30 various cells induce CD30-CD30L 
signaling

42

CD83 T cells generation of suppressive 
PD-1+ CD83+ CD4+ T 
cells

39

Table 1. Role for trogocytosis in cHL

TAMs: tumor-associated macrophages, APCs: antigen-presenting 
cells, HRS: Hodgkin and Reed-Sternberg
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EXOSOMES
Exosomes are extracellular vesicles (EVs) that are pro-

duced in the endosomal component of cells and range from 
50-200 nm in diameter.   Exosomes were originally discov-
ered in the 1960s, and are regarded as the mediators of extra-
cellular excretion mechanisms to release unnecessary pro-
teins and nucleic acids.   However, after microRNAs 
(miRNAs) were reported to be present in exosomes in 2007, 
many researchers have investigated the biological signifi-
cance of miRNA secretion via exosomes.55   Exosomes func-
tion as intercellular communicators and are believed to be 
involved in the development of many diseases.   Tumor cells 
were reported to secrete exosomes more actively than normal 
cells, and the tumor antigen expressing exosomes may be 
considered as a diagnostic and therapeutic target.

Moreover, tumor-derived exosomes affect the immune 
microenvironment, and play a role in the metastasis and pro-
gression of tumors.   When the tumor metastasizes to other 
organs, the cells have to migrate between the stromal cells to 
reach the blood vessels.   Exosomes promote tumor metasta-
sis through activating tumor cell motility via fibronectin, deg-
radation of extracellular matrix via protease MT1-MMP, and 
promotion of angiogenesis and vascular permeability.56-59   
Many tumor cells are known to establish a tumor microenvi-
ronment, which is known as a pre-metastasis niche, before 
metastasis.   Peinado et al. demonstrated that the tumor-
derived exosomes are essential for the migration of mono-
cytes from the bone marrow, which leads to the formation of 
a pre-metastasis niche, and they also determined the orienta-
tion of metastatic tissue.60   In addition, integrin, which is 
expressed on the surface of exosomes, was reported to posi-
tion the metastatic tissue.61

There are several molecules (DNA, RNA, and protein) 
that can be transferred by exosomes.   However, biological 
differences between the types of transferred molecules 
remain unknown.   Zhang et al. classified exosomes by size; 
exomeres (~35 nm), small-exosomes (60-80 nm), and large-
exosomes (90-120 nm).62   These three subsets demonstrated 
unique biophysical properties by different expression patterns 
of proteins, lipids, DNA, RNA, and N-glycosylation.   
Further studies are needed to assess the biological differences 
in these molecules.

As mentioned earlier, miRNA secretion via exosomes has 
attracted the attention of many researchers.   miRNA is 
18–25-nt single-stranded non-coding RNA that binds com-
plementarily to multiple arrays of target mRNA, resulting in 
the destabilization and inhibition of the translation of the 
gene.63,64   Each miRNA targets several mRNAs, and miR-
NAs are implicated in many biological processes and phe-
nomena.65   We previously found a link between miRNAs and 
hematological malignancies, and demonstrated that miRNAs 
are involved in cell differentiation and tumor progression.66-69   
In the next section, we discuss the role of exosome-mediated 
transfer of miRNAs in the development of lymphoid malig-
nancy based on our findings.

Lymphoid malignancy and exosomes

Epstein-Barr virus (EBV) is associated with several lym-
phoid malignancies.   EBV can induce B- and NK/T-cell lym-
phoid malignancies in immunosuppressed patients.70   We 
previously focused on the development of EBV-positive lym-
phoma71,72 and investigated the functional role of exosomes 
secreted by lymphoma cells.73   Patients with EBV-positive 
diffuse large B-cell lymphoma (DLBCL) and cHL exhibit a 
poorer prognosis than EBV-negative patients.74   In particular, 
rituximab and CHOP (cyclophosphamide, doxorubicin, vin-
cristine, prednisone; R-CHOP), which are a part of standard 
chemotherapy, were less effective against EBV-positive 
DLBCL.75   Therefore, there is an urgent need to establish 
new treatments for EBV-positive lymphoma.

Of note, many immune cells infiltrate EBV-positive lym-
phoma tissue, suggesting that the survival of tumor cells 
depends on the inflammatory microenvironment.   Pedal et 
al. reported that EBV-coding protein, latent membrane pro-
tein 1, is released from EBV-infected cells and incorporated 
into the dendritic cells, thereby leading to changes in their 
properties.   In addition to proteins, EBV-derived miRNAs 
were detected in the exosomes.   Of note, 40 miRNAs are 
clustered and transcribed from the BamHI fragment A right-
ward transcript (BART) region, known as BART miRNA.76   
Previous studies revealed that intracellular BART functions 
in the survival of tumors by inhibit ing apoptosis. 77   
Therefore, we hypothesized that the secreted BART miRNA 
is involved in the development of EBV-positive lymphoma.

We demonstrated that exosomes secreted from EBV-
transfected cells are selectively incorporated into monocytes, 
but not lymphocytes, when peripheral blood mononuclear 
cells are treated with exosomes.   Exosomes possessing high 
copy numbers of miRNAs induce TNF-α and IL-10 expres-
sion in monocytes, suggesting that the transfer of EBV-
derived miRNA can induce a TAM-like phenotype.78   This 
suggests that macrophages, which capture exosomes contain-
ing EBV miRNA, play an important role in the formation of 
tumors.

Next, we used an EBV-infected humanized mouse model, 
which was previously described.79   Although EBV only 
infects primates, such as humans, this model enables infec-
tion by EBV and the development of lymphoma in infected 
mice through repopulating human CD34+ hematopoietic stem 
cells in immunocompromised NOG (NOD/Shi-scid/
IL-2Rγnull) mice.   We compared the lymphoma-forming 
capacity between the Akata and B95-8 EBV strains.   Akata 
possesses a complete miRNA cluster, whereas B95-8 has a 
deletion in a large part of the miRNA cluster.   Akata-infected 
mice developed lymphoma and died within 12 weeks after 
infection.   Conversely, B95-8 infected mice did not develop 
lymphoma.   We then intravenously administered miRNA-
containing exosomes after B95-8 infection to examine the 
effects of exosome-mediated miRNA transfer.   Transfer of 
miRNAs via exosomes significantly promoted the develop-
ment of lymphoma.   Moreover, there was marked macro-
phage infiltration of lymphoma tissue, suggesting that 
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exosomes influenced macrophage infiltration.   We depleted 
the macrophages through clodronate liposome administra-
tion, which resulted in the depletion of lymphoma cells.   
This supports the hypothesis that EBV-derived exosomes 
mediate the formation of a microenvironment by increasing 
macrophage infiltration, as shown in Figure 3.73

We further investigated other potential EV-carried inflam-
matory factors associated with TAM formation in EBV-
positive lymphoma.   Mass spectrometric and phospholipido-
mic analysis revealed that several immunomodulatory 
proteins and lipid mediators containing EVs are important for 
inducing the tumor microenvironment in EBV-positive 
lymphoma.80

Exosome-mediated establishment of a tumor-supporting 
environment has been reported.   Waldenström macroglobu-
linemia, which is characterized by a mutation in the innate 
immune-signaling adaptor myeloid differentiation response 
88 (MyD88), was reported to secrete a mutant of MyD88 in 
EVs.   The mutant of MyD88 transferred via EVs induces 
signaling in the recipient cells and establishes a proinflamma-
tory microenvironment in the bone marrow.81   Exosomes 
from Burkitt lymphoma cell lines increased the proliferation, 
differentiation, and class switch recombination in recipient 
B-cells.82   Another report demonstrated that exosomes are 
related to angiogenesis in MM.   Hypoxia upregulated miR-
1 3 5 b  s e c r e t i o n  i n  M M - d e r i v e d  e x o s o m e s  a n d 

miR-135b suppressed factor-inhibiting hypoxia-inducible 
factor-1 (HIF-1) in the recipient endothelial cells.   These 
events are thought to induce angiogenesis under hypoxic 
conditions.83

Clinical application of exosomes

Exosomes are present in human body fluid.   They are 
easy to extract through liquid biopsy, such as blood, urine, 
and saliva, and function as a novel diagnostic and prognostic 
tool.84,85   They are stable and can be preserved for long dura-
tion.   We suggest that BART miRNA in EBV-positive lym-
phoma be used as a novel marker for predicting a poor out-
come.   We investigated BART13 miRNA expression in 
EBV-positive DLBCL biopsy tissue at our institute.   The 
high expression of BART13 in EBV-positive lymphoma is 
strongly correlated with a poor prognosis.73   Although it 
should be noted that the data were from a small number of 
samples, EBV-positive lymphoma exhibiting high expression 
of BART miRNA may require a new therapeutic approach 
instead of standard chemotherapy, such as R-CHOP.   
However, further investigation of BART miRNA in liquid 
biopsy should be addressed.   Circulating miRNAs are non-
invasive, and they have been reported for the diagnosis and 
prognosis.86,87   Thus, circulating BART miRNA may become 
an easy-to-use tool for the treatment of EBV-positive 
lymphoma.

Fig .  3 .   Shema  fo r  the  e s t ab l i shmen t  o f  the  EBV + B  ce l l  l ymphoma 
microenvironment.
1) EBV-infected cells release exosomes containing EBV miRNAs (including BART 
miRNAs), which are incorporated into the macrophages. 2) Lymphoma-derived exo-
somes alter the gene expression and convert the macrophages into “tumor-associated 
macrophages”. The accumulation of BART miRNAs and upregulation of tumor-sup-
porting molecules, TNFα, IL-10, and ARG1, promote the development of EBV+ B 
cell lymphoma. 3) The survival of EBV+ B cell lymphoma depends on TAMs and the 
deletion of TAMs leads to tumor death.
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Reports on exosomes and its suggested roles in lymphoid 
malignancies are listed in Table 2. 

Another report demonstrated that miRNAs are useful for 
the prognosis of hematological malignancies.   In CLL, a few 
miRNAs, such as miR-21, miR-155, and miR-146a, were 
demonstrated to play key roles in cancer progression.   The 
miRNA expression profile can be used as a biomarker for 
treatment and follow-up.88   EVs possessing miRNAs, such 
as miR-24, miR-155, miR-127, and let-7, are considered use-
ful biomarkers in cHL, which may help predict therapy 
response and relapse.89   Furthermore, two circulating miR-
NAs, let-7b and miR-18a, are useful biomarkers for predict-
ing favorable survival in patients with MM.90   Let-7b was 
demonstrated as a tumor-suppressor miRNA in MM.   miR-
18a was reported to inhibit HIF-1α activity91 and lead to the 
induction of M1 macrophages through targeting IRF2.92   
Thus, let-7b and miR-18a function in the inhibition of tumor 
progression in MM.

Exosomes can be used as the therapeutic targets for 
immunotherapies.   In several DLBCL cell lines, exosome-
mediated Wnt signaling controlled the transitions of cell 
states and the inhibition of exosomes strongly reduced tumor 
progression.93   A recent report revealed that melanoma-
derived exosomal PD-L1 plays an immuno-suppressive role 
in the tumor and may be associated with the response to anti-
PD-1 antibody.94   Further elucidation of the role of immune 
checkpoint molecules expressed in cancer-derived exosomes 
is warranted to improve the effectiveness of cancer immuno-
therapy.   On the other hand, it has been reported that EVs are 
used in immunotherapy.   Using acute lymphoid leukemia 
cell lines, even EV antigens alone can induce memory T lym-
phocytes via B-cell activation.95

In summary, studies on exosomes have made great prog-
ress in the past decade.   However, there has been less pro-
gression of clinical trials for hematological tumors associated 
with EVs than those for solid tumors.6   Therefore, we should 
focus on the clinical application of exosomes in this area.

CONCLUSION
Although trogocytosis and exosome-mediated transport 

were initially considered as arbitrary phenomena, they have 
the potential to affect the surrounding immune cells to estab-
lish the tumor microenvironment, as described in this review.   
Bystander immune cells play an important role in the tumor 
microenvironment.   As hematological malignancies originate 
from the immune cells, these phenomena affect the develop-
ment and biology of tumors.   Therefore, they may be used as 
markers for predicting outcome.   In addition, elucidating 
these factors may help overcome the issue of chemotherapy 
resistance and improve cancer immunotherapy.
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Diseases Exosome-releasing 
factors Suggested roles References

EBV+ 
lymphoma

BART13 miRNA prediction of poor 
outcome

73

CLL miR-21, miR-155, 
miR-146a

biomarker for treatment 
and follow-up

88

cHL miR-24, miR-155, 
miR-127, let7

prediction of therapy 
response and relapse

89

MM let-7b, miR-18a prediction of favorable 
survival

90

Table 2. Clinical application for exosomes in lymphoid malignancies

EBV: Epstein-Barr virus, CLL: chronic lymphocytic leukemia, cHL: 
classical Hodgkin lymphoma, MM: multiple myeloma, BART: 
BamHI fragment A rightward transcript
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