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Abstract 

Background:  A large number of biological studies have shown that miRNAs are inextricably linked to many complex 
diseases. Studying the miRNA-disease associations could provide us a root cause understanding of the underlying 
pathogenesis in which promotes the progress of drug development. However, traditional biological experiments are 
very time-consuming and costly. Therefore, we come up with an efficient models to solve this challenge.

Results:  In this work, we propose a deep learning model called EOESGC to predict potential miRNA-disease associa-
tions based on embedding of embedding and simplified convolutional network. Firstly, integrated disease similarity, 
integrated miRNA similarity, and miRNA-disease association network are used to construct a coupled heterogeneous 
graph, and the edges with low similarity are removed to simplify the graph structure and ensure the effectiveness of 
edges. Secondly, the Embedding of embedding model (EOE) is used to learn edge information in the coupled hetero-
geneous graph. The training rule of the model is that the associated nodes are close to each other and the unassoci-
ated nodes are far away from each other. Based on this rule, edge information learned is added into node embedding 
as supplementary information to enrich node information. Then, node embedding of EOE model training as a new 
feature of miRNA and disease, and information aggregation is performed by simplified graph convolution model, in 
which each level of convolution can aggregate multi-hop neighbor information. In this step, we only use the miRNA-
disease association network to further simplify the graph structure, thus reducing the computational complexity. 
Finally, feature embeddings of both miRNA and disease are spliced into the MLP for prediction. On the EOESGC 
evaluation part, the AUC, AUPR, and F1-score of our model are 0.9658, 0.8543 and 0.8644 by 5-fold cross-validation 
respectively. Compared with the latest published models, our model shows better results. In addition, we predict the 
top 20 potential miRNAs for breast cancer and lung cancer, most of which are validated in the dbDEMC and HMDD3.2 
databases.

Conclusion:  The comprehensive experimental results show that EOESGC can effectively identify the potential 
miRNA-disease associations.
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Background
As a kind of non-coding RNA (ncRNA), miRNA was 
once thought to be the medium of transcriptional noise 
from RNA to protein [1–4]. However, this idea was 
proved wrong, and it was verified that non-coding RNA 
plays an important role in various biological effects [1, 5]. 
MiRNA is endogenous, evolutionarily conserved single 
stranded ncRNA that regulates gene expression through 
complementary base pairing with corresponding target 
RNA (mRNA) sequences [6–8]. More and more studies 
had shown that miRNA was closely related to the gen-
eration of complex diseases, such as various cancers, dia-
betes, Alzheimer’s disease and other diseases [9–13]. In 
particular, miRNA act as oncogenes or tumor inhibitors 
in the generation and metastasis of some cancers, includ-
ing breast cancer [11] and lung cancer [13]. An impor-
tant goal of medical data modeling and classification is 
to make predictions based on training data and available 
features. Medical data sets with high dimensional fea-
ture space and relatively small sample numbers are key 
problems in machine learning tasks [14]. Therefore, more 
and more researchers hope to use intelligent models to 
predict the potential association between miRNA and 
disease based on the existing proven data of miRNA and 
disease. Most of the methods proposed so far rely on the 
hypothesis that functional similarity of miRNAs is asso-
ciated with similar diseases [15]. The following are sev-
eral methods for predicting miRNA-disease associations 
based on graph encoders, random walk, machine learn-
ing, and graph convolutional neural network.

Nowdays, graph neural networks have shown their 
superior performance, such as graph autoencoder. Ji 
et  al. [16] proposed a semi-supervised model (SVAE-
MDA), which was a novel feature learning approach to 
obtain their feature representations from an integrated 
set of miRNA and disease similarity networks. SVAE-
MDA used known miRNA-disease associations in the 
form of cascaded dense vectors to train predictors based 
on variable auto-encoders. The reconstruction probabil-
ity of predictors was used to measure the micronucleic 
miRNA-disease associations. In addition, the model did 
not need to use negative samples to reduce noise data. 
Zhang et  al. [17] also proposed an unsupervised deep 
learning framework with variable autoencoder to pre-
dict miRNA-disease associations by constructing two 
spliced matrices as autoencoder (VAE) inputs where VAE 
learned the potential representation of input and recon-
structed the data from the learned distribution. The asso-
ciation score of miRNA-disease was obtained by using 
the trained VAE model. Liu et al. [18] proposed a frame-
work based on stacked autoencoder and XGBoost to pre-
dict the potential miRNA-disease associations (SMALF). 
This model differs from the two previous models as it 

used an autoencoder to extract miRNA and potential fea-
ture vectors of disease, rather than acting as a classifier. It 
used XGBoost to predict positional miRNA-disease asso-
ciations. Ding et al. [19] proposed a new computational 
model based on variational graph auto-encoder with 
matrix factorization (VGAMF) for miRNA-disease asso-
ciations prediction. The innovation of this model is to use 
two autoencoders to obtain miRNA and disease feature 
representation on miRNA similarity network and disease 
similarity network respectively. This is something that no 
other model has used.

Secondly, motivated by word2vec, a random walk 
algorithm was used in the graph to obtain the sequence 
of nodes and thus the embedding representation of 
the nodes. Numerous studies had confirmed that the 
use of a random walk algorithm can effectively predict 
miRNA-disease associations. Niu et al. [20] constructed 
a prediction model based on the random walk and binary 
regression, which extracted the features of the miRNAs 
by restarting the random walk and used binary logistic 
regression to score the new miRNA-disease associations. 
Li et  al. [21] proposed a three-layer heterogeneous net-
work combined with a non-equilibrium random walk 
for the miRNA-disease associations’ prediction model 
(TCRWMDA). This model enabled the construction of a 
three-layer heterogeneous network, which enriched the 
information in the basic network and enabled the min-
ing of more effective information between the networks. 
Dai et al. [22] proposed a double random walk based on 
a Logistic weighted profile to explore the miRNA-disease 
associations model (LWBRW). The special feature during 
the process of constructing this network. A logistic func-
tion was used to extract valuable information. Weighted 
known proximity (WKNKN) was used to preprocess the 
known association matrix, and the new miRNA-disease 
associations were inferred by double random walk on 
the miRNA network and the disease network using the 
LWBRW method.

Thirdly, traditional machine learning methods are simple 
but still have good results. The random forest algorithm 
had also made outstanding contributions in miRNA-
disease associations prediction. Chen et al. [23] proposed 
a random forest-based method to predict the miRNA-
disease associations (RFMDA), using feature selection 
based on positive and negative sample feature frequencies 
to reduce the dimension of the sample space. A random 
forest model was trained to obtain an association score 
between miRNA and disease. Later, Yao et  al. [24] pro-
posed an improved RF model (IRFMDA). Different from 
Chen’s multi-attribute decision analysis method, this model 
utilized the importance score of RF variables to realize fea-
ture selection, which could effectively reduce the influence 
of redundancy and noise information, and selected more 
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valuable samples to represent samples, thus improving the 
prediction ability of the model. Zheng et al. [25] proposed a 
machine learning approach (MLMDA) to predict and ver-
ify miRNA-disease associations by integrating heterogene-
ous information sources. This model used the k-mer sparse 
matrix to extract miRNA sequence information and other 
similarity information, which then implements an autoen-
coder to extract the most representative features of these 
features. In the end, random forest classifiers are deployed 
to predict miRNA-disease associations. Chen et  al. [26] 
proposed a novel rank-based KNN-based miRNA-disease 
associations prediction calculation method (RKNNMDA) 
to predict potential miRNA-disease associations. K-nearest 
neighbor (KNN) algorithm was used to search for miRNA 
and disease. Then the k-nearest neighbors were reordered 
according to the SVM sorting model. Finally, a weighted 
vote was conducted to obtain a final ranking of all possible 
miRNA disease associations.

Finally, graph convolutional neural networks have shown 
powerful advantages in the processing of complex graphs, 
which has led to an increasing number of researchers 
using graph convolutional neural networks to solve prob-
lems. Peng et al. [27] implemented a convolutional neural 
network-based framework (MDA-CNN) for predicting 
miRNA-disease associations by combining similarities 
between miRNA, similarities between diseases, and inter-
actions between proteins. Chu et al. [28] proposed a new 
graph sampling method by using feature graph and topol-
ogy graph to identify miRNA-disease associations (MDA-
GCNFTG) through graph convolution. This method was 
modeled based on the potential associations of feature 
space and the structural relationship of miRNA-disease 
associations data where this model could predict not only 
new miRNA-disease associations but also new disease-
related miRNAs under unbalanced sample distribution. 
Tang et al. [29] proposed a multi-view and multi-channel 
attention convolutional network to predict the potential 
miRNA-disease associations (MMGCN). GCN was used to 
extract miRNA and node features from different similarity 
views, and the model used node embedding learned from 
multi-channel attentional enhancement to make associa-
tion predictions. Li et al. [30] proposed a neural inductive 
matrix completion with a graph convolutional network 
(NIMCGCN) approach to predict miRNA disease asso-
ciation. First, a graph convolutional network (GCN) was 
used to learn miRNA and disease underlying feature rep-
resentation. Then, the learned features were input into a 

new neural induced completion matrix (NIMC) model to 
generate the completion correlation matrix. The approach 
used supervised end-to-end learning to effectively predict 
miRNA-disease associations.

In conclusion, most of the miRNA-disease associations’ 
prediction frameworks have been proposed using the 
embedding of a single model learning node. Both of them 
ignore the edge information of the Coupled heterogeneous 
graph, the edge between networks can act as supplemen-
tary information of nodes. This supplementary informa-
tion is important because it makes potential feature more 
complete and accurate. The framework we have proposed 
is to fill that gap. We use the EOE model based on the link 
to learn edge features and add them into node embedding 
as supplementary information. The SGC model is used for 
information aggregation. By combining the two models, 
learning edge information and aggregating neighbor infor-
mation enables each node embedding to contain richer 
information, which also lays the foundation for effective 
prediction of miRNA-disease potential associations.

Methods
We present a novel framework for predicting the poten-
tial miRNA-disease associations. As shown in Fig.  1, the 
framework consists of four steps in total:

•	 The first step is to construct the coupled heterogene-
ous graph, where we use the disease similarity, miRNA 
similarity, and confirmed miRNA-disease association 
networks to construct the graph and remove the edges 
with less similarity to reduce the complexity of the 
graph.

•	 The second step is using the link-based node embed-
ding model-EOE to add network edge information to 
node features.

•	 The third step is to use the SGC model for feature 
aggregation to fully learn the structural information of 
the graph, and finally get the low dimensional embed-
ding of the node.

•	 The last step is to feed the final embedding splicing 
into the MLP for prediction.

Database
A coupled heterogeneous graph consists of two dis-
tinct but related sub-nets connected by inter-network 
edges [31]. Consists of two distinct but related sub-nets 

(See figure on next page.)
Fig. 1  Flow chart of EOESGC. Step 1 is to construct the coupled heterogeneous graph. FS is the functional similarity of miRNA, MFS is the Gaussian 
kernel similarity of miRNA, DSS is the semantic similarity of disease, DGS is the Gaussian kernel similarity of disease, and A is miRNA-disease 
association matrix. Step 2 is to use the EOE model to learn edge information. Step 3 uses the SGC model to aggregate node information. Step 4 uses 
MLP to predict miRNA-disease association score
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Fig. 1  (See legend on previous page.)



Page 5 of 12Pang et al. BMC Medical Informatics and Decision Making          (2021) 21:319 	

connected by inter-network edges. The term “different” 
implies that the vertices of the two sub-networks are of 
different node types. The term “correlation” implies that 
the vertices of two sub-networks have a particular inter-
action. To construct a miRNA-disease coupled hetero-
geneity graph, we downloaded data from the HMDD2.0 
database [32] containing 495 miRNAs, 383 diseases, and 
5430 confirmed miRNA-disease associations. We use the 
adjacency matrix A to represent miRNA-disease associa-
tions where Aij = 1 means there is an interaction between 
miRNA i and disease j, while Aij = 0 means there is no 
relationship. In the experiment stage, we used dbDEMC 
[33] and HMDD3.2 databases as the verification data-
base to verify the accuracy of the EOESGC model we 
proposed.

Disease similarity network
We effectively combine disease semantic similarity with 
a disease Gaussian interaction profile kernel similarity to 
construct disease similarity network. To ensures edges 
among disease nodes are valid, we set a threshold and 
remove the link below the threshold. Therefore, the disease 
similarity is calculated as follows:

The first semantic similarity is DSS1 , the second seman-
tic similarity is DSS2 , and the Gaussian interaction 
profile kernel similarity is DGS. In the experiment, α rep-
resents a scaling factor. The disease similarity obtained 
after removing data with low similarity according to the 
threshold h:

(1)
DS′(di, dj) =α

DSS1(di, dj)+ DSS2(di, dj)

2

+ (1− α)DGS(di, dj)

Disease semantic similarity model 1
Medical subject headings (MESH) [34] is the authorita-
tive subject list compiled by the United States National 
Library of Medicine. It is a normalized and expandable 
dynamic thesaurus. Mesh is a collection of more than 
18,000 medical topics that we use to study the relation-
ships between diseases. The disease can be described as 
a directed acyclic graph (DAG = Nd ,Ed ), where Nd is the 
node-set of d and it’s ancestor nodes, Ed is edge set [35]. 
Figure 2 shows the DAG of two diseases.

To calculate the similarity of two disease semantics 
based on DAG(D), we need to calculate the seman-
tic contribution score for each disease in the graph. We 
define the contribution score of disease d to disease D in 
DAG(D) as:

where � = 0.5 is a decay factor indicating that the more 
distant nodes from disease D contribute less to the 
semantics of disease D. The semantic value of disease D 
is calculated based on the semantic contribution score of 
the disease nodes in DAG(D).

If DAG (A) and DAG (B) have same diseases, we consider 
disease A and disease B to be similar. Therefore, the first 
semantic similarity between two diseases is defined as:

(2)DS(di, dj) =

{

DS′(di, dj) DS′(di, dj) ≥ h
0 other else

(3)

D1
D =

{

1 d = D

max
{

� ∗ D1
D(d

′)|d′ ∈ the children of d
}

d �= D

(4)DV 1(D) =
∑

d∈N (D)

D1
D(d)

Fig. 2  Directed acyclic graph of diseases. a Directed acyclic graph of breast cancer in situ, b directed acyclic graph of gastrointestinal neoplasms
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Disease semantic similarity model 2
Xuan et al. [36] defined the essential difference between 
the second disease semantic similarity and the first dis-
ease semantic similarity which differs in the calculation 
of the semantic contribution of disease nodes. The ances-
tor nodes of disease D have d1 and d2, and if d1 appears 
less frequently in DAG than d2, then we believe that d1 
has a greater semantic contribution to disease D. There-
fore, the semantic contribution score of disease node d to 
disease D is defined as:

As in model 1, the semantic value of each disease and the 
semantic similarity of the two diseases are defined as:

Disease Gaussian interaction profile kernel similarity
Since not all the diseases can be found in the MESH, we 
use the disease Gaussian interaction profile kernel simi-
larity (GIP) as a supplement. GIP similarity is calculated 
for miRNA and disease respectively using the method 
proposed by Zhao et  al. [37]. The adjacency matrix 
A ∈ Rm∗n of miRNA-disease, where each column is used 
to represent a disease, is defined as IP(D), where each 
column is defined as IP(D) to represent a disease. Then, 
the Gaussian interaction kernel similarity between dis-
eases di and dj is defined as:

where γd is used to control kernel bandwidth, γ ′

d is usu-
ally set to 0.5 for controlling the kernel bandwidth γd is 
defined as:

(5)DSS1 =

∑

t∈N (di)∩N (dj)

(

D1
di
(t)+ D1

dj
(t)

)

DV 1(di)+ DV 1(dj)

(6)

D2
D(d) = −log

(

the number of DAGs including d

the number of disease

)

(7)DV 2(D) =
∑

d∈N (D)

D2
D(d)

(8)DSS2 =

∑

t∈N (di)∩N (dj)

(

D2
di
(t)+ D2

dj
(t)

)

DV 2(di)+ DV 2(dj)

(9)KD(di, dj) = exp
(

− γd ||IP(di)− IP(dj)||
2
)

(10)γd = γ ′

d/
1

n

n
∑

i=1

||IP(di)||
2

MiRNA similarity network
We use miRNA functional similarity and Gaussian inter-
action profile kernel similarity to construct miRNA simi-
larity network. The Gaussian interaction profile kernel 
similarity is the same as in the previous section. miRNA 
similarity is defined as:

where α is the scale factor, FS is the miRNA function sim-
ilarity. We set a threshold value of h, in believing there 
is no association between miRNAs with a similarity less 
than h. Therefore, the final miRNA similarity network is 
defined as:

According to Wang et al. [35] study, miRNAs with simi-
lar functions are often associated with diseases with 
similar semantics, and the relationship between different 
diseases can be represented by a directed acyclic graph 
(DAG) structure. The functional similarity of miRNA is 
inferred by measuring the similarity of DAG of related 
diseases. Firstly, the similarity of disease dt to the disease 
set DT is defined as:

If the disease set associated with m1 is DT1 and the dis-
ease set associated with m2 is DT2 , then the functional 
similarity between and is defined as:

where di belongs to DT1 , dj to DT2 , m is the number of 
diseases contained in DT1 , and n is the number of dis-
eases contained in DT2.

EOESGC model
We combine two embedding models to obtain the embed-
ding of nodes. The first is the link-based graph embedding 
model-Embedding of Embedding model, which proposed 
a new graph type called coupled heterogeneous graph, and 
miRNA-disease network essentially belongs to this type. 
The EOE model emphasizes that linked vertices should 
be close to each other and unlinked vertices should be far 
away from each other. The latter rule is also important. 
Therefore, the model sets different loss functions to satisfy 

(11)
MS′(m1,m2) = αFS(m1,m2)+ (1− α)MGS(m1,m2)

(12)

MS(m1,m2) =

{

MS′(m1,m2) MS′(m1,m2) ≥ h
0 other else

(13)S(dt ,DT ) = max1≤i≤kS(dt , di)

(14)

MS(m1,m2) =

∑

1≤i≤m S(di,DT2)+
∑

1≤j≤n S(dj ,DT1)

m+ n
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this rule. A harmony matrix M was proposed to calculate 
the proximity between different types of nodes. The link-
based embedding model can learn edge features of graph 
well and add them to node features as supplementary infor-
mation, which is effective and easy to implement. Then, 
we input the obtained embedding and miRNA-disease 
association network into the simplified graph convolution 
network to continue learning node features. The nonlin-
ear GCN [38] is transformed into a simple linear model 
SGC, which reduces the additional complexity of the GCN 
by repeatedly eliminating the non-linearity between the 
GCN layers and folding the resulting function into a lin-
ear transformation. This simplified linear SGC model is 
more efficient on many tasks than GCN and some other 
GNN networks along with fewer parameters as well. And 
the embedding model based on convolution can effectively 
obtain the neighbor information of the node. The EOESGC 
model does not join the embedding of the two models but 
puts the embedding obtained from one model into the sec-
ond model for training. The experiment proves that this 
method can effectively learn node embedding.

Embedding of embedding
The EOE uses proximity to measure whether there are 
links between nodes. The larger the degree of proximity is 
the more similar between two same types of nodes will be, 
and correlations between two different types of nodes will 
show. We input the similarity matrix of nodes as the origi-
nal feature. So we define the proximity between two nodes 
of the same type as follows:

where di represents row i of the disease similarity matrix, 
dj represents row j of the disease similarity matrix, mi 
represents row i of the miRNA similarity matrix, mj rep-
resents row j of the miRNA similarity matrix.

For different types of nodes, the feature matrix M ∈ Rm∗n 
is introduced during the calculation of proximity since 
their features cannot be directly computed in different fea-
ture spaces. Thus the proximity between pairs of nodes of 
different types is defined as:

In order to satisfy that bounded nodes with small proba-
bility and boundless vertices with large probability should 
receive greater penalties. The loss function is defined as:

(15)p(di, dj) =
1

1+ exp
(

− dTi dj
)

(16)p(mi,mj) =
1

1+ exp
(

−mT
i mj

)

(17)p(di,mj) =
1

1+ exp
(

− dTi Mmj

)

where Ed is the set of edges between diseases, Em is 
the set of edges between miRNAs, Edm is the edge set 
between disease and miRNA, Wd is the similarity matrix 
of disease, Wm is the similarity matrix of miRNA, and 
Wdm is the weight between disease and miRNA.

Simplifying graph convolutional network
In the traditional GCN, each layer can only aggregate the 
information of directly connected neighbors. while in SGC, 
we can set the information aggregation of K-hop neigh-
bors at each layer. SGC consists of two parts, a fixed fea-
ture extractor and a linear logistic regression classifier. In 
our proposed framework, only the feature extractor is used 
to obtain the embedded representation of nodes. Because 
miRNA and disease embedding learned from the EOE 
model still belong to two different feature spaces, they are 
first mapped to the same feature space.

We map diseases and miRNAs into the Z dimensional 
feature space as follows:

where xm and xd are miRNA embedding and disease 
embedding output by EOE, WM , WD

∈ RZ are the map-
ping matrices. Then, the feature embedding of the dis-
ease and miRNA are fed into the SGC. The convolution 
operation for each layer is as follows:

(18)

loss = −

[

∑

(di ,dj)∈Ed

(Wd)ij log(p(di, dj))

+

∑

(mi ,mj)∈Em

(Wm)ij log(p(mi,mj))

+

∑

(di ,mj)∈Edm

(Wdm)ij log(p(di,mj))

]

−

[

∑

(di ,dj)/∈Ed

log(1− p(di, dj))

+

∑

(mi ,mj)/∈Em

log(1− p(mi,mj))

+

∑

(di ,mj)/∈Edm

log(1− p(di,mj))

]

(19)Xm = WM
· xm

(20)Xd = WD
· xd

(21)Ã =A+ I

(22)S =D̃−
1
2 ÃD̃−

1
2

(23)Sk =S · · · SS
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where A is the adjacency matrix of the graph, I is the 
identity matrix; D is the degree matrix of A, K is the step 
size.

Finally, the output disease embedding and miRNA 
embedding are spliced, and make predictions with MLP. 
This step uses the cross-entropy loss function to optimize 
the model.

where y is the edge label, ỹ is the predicted score.

Results
We combine EOE and SGC models to learn the embed-
ding of nodes, and the two models are trained separately. 
The main purpose of the EOE model is to add edge infor-
mation from the coupled heterogeneous graph to nodes, 
with the similarity matrix of miRNA and disease as the 
original feature input. The model mainly relies on the loss 
function to train the feature matrix of miRNA, the fea-
ture matrix of disease, and the harmony matrix M. For 
the construction of graph convolutional network, we 
adopt two-layer simplified graph convolutional layer con-
struction, each layer gathers two-hop neighbor informa-
tion, namely K = 2, and the output dimension is 64. MLP 
consists of two fully connected layers, of which the first 
layer contains 64 neurons. The details are shown in Fig. 3.

Experimental approaches and evaluation criteria
To verify the validity of our proposed EOESGC model, 
we conduct experiments on the HMDD2.0 database and 
evaluate the model performance by using 5-fold cross-
validation and 10-fold cross-validation. Considering 
the large difference in the number of positive and nega-
tive samples during the experiment, we randomly select 
5 negative samples for each positive sample to form the 
experimental data, thus achieving the function of balanc-
ing the data set. The results are shown in Fig. 4. The AUC 
of our model for 5-fold cross-validation is 0.9658 and the 
AUPR is 0.8543, the AUC for 10-fold cross-validation is 
0.9644 and the AUPR is 0.8540.

Comparisons with the state‑of‑the‑art methods
To prove the superiority of the proposed model, we 
compare it with several more excellent models recently 
proposed, which were LWPCMF [39],      VAGMF 
[19],      SMALF [18],      CEMDA [40] ,and ICFMDA [41]. 
The average AUC of the 5-fold cross-validation is used 
as the evaluation index, and the results are shown in 
Table  1. Among them, the SMALF model has a better 
effect, which uses a stacked auto-encoder to learn node 
features and achieves a better effect, with an AUC value 

(24)X̄ =SkX

(25)loss = −[ylogỹ+ (1− y)log(1− ỹ)]

of 0.9505. However, the effect of the EOESGC framework 
proposed by us is more outstanding, with an AUC value 
of 0.9658, 1.5% higher than that of SMALF.

Parameter sensitivity analysis
Different embedding dimensions will lead to different 
model training speeds and costs. To select the optimal 
embedding dimension, we conduct 5-fold cross-valida-
tion experiments with different dimensions. The experi-
mental results are shown in Fig. 5. When the embedding 
dimension is less than 64, the AUC, AUPR, F1-score 
value shows an upward trend; when the embedding 
dimension is greater than 64, the evaluation indexes tend 
to be stable, but the training speed decreases signifi-
cantly. Therefore, 64 is selected as the feature dimension 
of the node after comprehensive consideration.

Compare the different combination types
To verify the effectiveness of learning node embed-
ding in the EOESGC combined model, we conducted 
an ablation experiment. There are two different kinds 
of experiments. Category 1 to verify the effectiveness 
of using the EOE model, we compared this step with 
the model of a simplified graph convolutional neural 
network. Category 2 is to verify the effectiveness of 
the combination of EOE and SGC embedded mod-
els. We also select the combination of the other three 
commonly used graph convolutional neural networks 

Fig. 3  The structure of simplified graph convolutional neural 
network model is proposed. The input is a vector, and the output is 
the predicted score for each sample
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with EOE, namely GCN [35], TAG [42] ,and Graph-
Sage [43]. As shown in Table  2, if edge information 
is not added as supplementary information for node 
embedding, the effect of SGC is poor. In addition, the 
EOE model has a poor combination effect with other 

commonly used convolution models. Therefore, the 
experimental results fully prove the validity of this 
framework.

Fig. 4  Cross validation results. a 5-fold cross-validated ROC curve with a mean AUC of 0.9658; b 5-fold cross-validated PR curve with a mean AUPR 
of 0.8543; c 10-fold cross-validated ROC curve with a mean AUC of 0.9644; d 10-fold cross-validated PR curve with a mean AUPR of 0.8540

Table 1  The AUC of EOESGC and baseline

Method AUC​

EOESGC 0.9658

LWPCMF 0.9411

VAFMF 0.9280

SMALF 0.9503

CEMDA 0.9203

ICFMDA 0.9045

Fig. 5  Parameter analysis of EOESGC
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Case study
Breast neoplasms are common cancers that threaten 
women’s health worldwide and are also one of the lead-
ing causes of nausea in women’s deaths [44]. In recent 
years, gene diagnosis and gene therapy of breast cancer 
has become a hot topic. Studies have shown that miRNA, 
as a regulatory factor, plays an important role. For exam-
ple, low expression of mir-195 can be easily observed in 
breast cancer cell lines and tissue samples from chemo-
therapy-sensitive or drug-resistant patients [44]. In addi-
tion, mir-195 can decrease the survival rate and increase 
apoptosis of breast tumor cells by down-regulating the 
expression of Raf-1, Bcl-2 ,and P-glycoprotein [44]. 
Therefore, it is necessary to use advanced methods to 
predict the potential miRNA related to breast neoplasms, 
so we predict the top 20 miRNAs related to breast 
tumors, as shown in Table 3. All the miRNAs we predict 
can be found in the validation database.

Lung neoplasms are the most common type of nau-
sea and have a high mortality rate. Previous studies have 
shown that miRNA is involved in almost every process 
of lung cancer, including tumor progression, angiogen-
esis, invasion ,and metastasis. For example, the expres-
sion level of miR-29s was found to be inversely correlated 
with DNA methyltransferase 3A (DNMT3A) and DNA 
methyltransferase 3B (DNMT3B) in lung cancer tissues 
by controlling methylation to inhibit the reexpression of 

tumor suppressor genes and inhibit tumorigenesis [45]. 
The first 20 miRNAs associated with lung cancer were 
predicted using our proposed framework, as shown in 
Table 4, among which the first 19 miRNAs are success-
fully verified.

Conclusions
Experiments show that our proposed EOESGC frame-
work can effectively predict the potential miRNA-dis-
ease associations. In the coupled heterogeneous graph, 
EOE is used to add edge information to node embed-
ding, which makes node embedding contain richer and 
more comprehensive information. Then the SGC model 
is used to aggregate the node information. Finally, the 
results are predicted using MLP. We combine EOE and 
SGC models for the first time. The two models play dif-
ferent roles respectively, but their purpose is to learn the 
effective feature embedding of nodes. To simplify the 
computational complexity and ensure the edge validity in 
the coupled heterogeneous graph, we simplify the graph 
structure twice. The AUC value of EOESGC model based 
on 5-fold cross-validation is 0.9650, which is higher than 
that of previous methods. The top 20 associated potential 
miRNAs are predicted in lung and breast cancer cases.
dbDEMC and HMDD3.2 databases are used in the vali-
dation database, and 20, 19 miRNAs are identified in the 
validation database. Therefore, the EOESGC framework 
is very effective for predicting the potential miRNA-dis-
ease associations.

Although our proposed framework can effectively pre-
dict the miRNA-disease potential association, we cannot 
predict the miRNAs associated with new diseases. If the 
original data does not contain the known miRNAs of the 
disease, we cannot predict the unknown miRNAs. There-
fore, in the next step, we need to solve the problem of 
how to effectively predict the potential miRNAs of new 
diseases.

Table 2  The different combination types result

Model AUC​ AUPR F1-score

EOESGC 0.9658 0.8543 0.8644

SGC 0.9482 0.8134 0.8427

EOEGCN 0.9178 0.7193 0.7973

EOEGraphSAGE 0.9301 0.7685 0.8169

EOETAG​ 0.9501 0.8147 0.8419

Table 3  The top 20 potential miRNAs related to Breast 
Neoplasms

miRNA Evidence miRNA Evidence

hsa-mir-142 dbDEMC,HMDD3.2 hsa-mir-106a dbDEMC,HMDD3.2

hsa-mir-150 dbDEMC,HMDD3.2 hsa-mir-574 dbDEMC,HMDD3.2

hsa-mir-181c dbDEMC,HMDD3.2 hsa-mir-15b dbDEMC,HMDD3.2

hsa-mir-192 dbDEMC,HMDD3.2 hsa-mir-30e dbDEMC,HMDD3.2

hsa-mir-494 dbDEMC,HMDD3.2 hsa-mir-138 dbDEMC,HMDD3.2

hsa-mir-378a dbDEMC,HMDD3.2 hsa-mir-424 dbDEMC,HMDD3.2

hsa-mir-184 dbDEMC,HMDD3.2 hsa-mir-372 dbDEMC,HMDD3.2

hsa-mir-208b dbDEMC hsa-mir-212 dbDEMC,HMDD3.2

hsa-mir-208a dbDEMC,HMDD3.2 hsa-mir-134 dbDEMC,HMDD3.2

hsa-mir-99a dbDEMC,HMDD3.2 hsa-mir-28 dbDEMC

Table 4  The top 20 potential miRNAs related to Lung Neoplasms

miRNA Evidence miRNA Evidence

hsa-mir-16 dbDEMC,HMDD3.2 hsa-mir-378a dbDEMC

hsa-mir-122 dbDEMC,HMDD3.2 hsa-mir-20b dbDEMC

hsa-mir-15a dbDEMC,HMDD3.2 hsa-mir-23b dbDEMC

hsa-mir-106b dbDEMC,HMDD3.2 hsa-mir-184 dbDEMC

hsa-mir-195 dbDEMC,HMDD3.2 hsa-mir-342 dbDEMC,HMDD3.2

hsa-mir-429 dbDEMC hsa-mir-208a HMDD3.2

hsa-mir-373 dbDEMC,HMDD3.2 hsa-mir-99a dbDEMC,HMDD3.2

hsa-mir-451a dbDEMC,HMDD3.2 hsa-mir-302b dbDEMC

hsa-mir-141 dbDEMC,HMDD3.2 hsa-mir-15b dbDEMC

hsa-mir-302a dbDEMC hsa-mir-208b Unconfirmed
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