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Lysosome incorporate and degrade proteins in a process known as autophagy. There are
three types of autophagy; macroautophagy, microautophagy, and chaperone-mediated
autophagy (CMA). Although autophagy is considered a nonselective degradation
process, CMA is known as a selective degradation pathway. All proteins internalized in
the lysosome via CMA contain a pentapeptide KFERQ-motif, also known as a CMA-
targeting motif, which is necessary for selectivity. CMA directly delivers a substrate protein
into the lysosome lumen using the cytosolic chaperone HSC70 and the lysosomal
receptor LAMP-2A for degradation. Hepatitis C virus (HCV) NS5A protein interacts with
hepatocyte-nuclear factor 1a (HNF-1a) together with HSC70 and promotes the lysosomal
degradation of HNF-1a via CMA, resulting in HCV-induced pathogenesis. HCV NS5A
promotes recruitment of HSC70 to the substrate protein HNF-1a. HCV NS5A plays a
crucial role in HCV-induced CMA. Further investigations of HCV NS5A-interacting proteins
containing CMA-targeting motifs may help to elucidate HCV-induced pathogenesis.
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INTRODUCTION

The molecular mechanisms of autophagy were discovered by Prof. Yoshinori Ohsumi and his team
via the identification of the autophagic-related genes (ATGs) in yeast in the early 1990s (Ohsumi,
2014). ATG genes are well-conserved among eukaryotes. The field of autophagy has been developed
rapidly on the basis of these great discoveries. Lysosomes, together with other proteolytic systems,
are involved in the constant turnover of intracellular constituents. Using this mechanism, cells
eliminate aggregate-prone proteins and organelles, bulk cytoplasm, and infectious pathogens.
Moreover, there is growing evidence of autophagy’s roles in cell death, differentiation, aging,
growth control, antigen presentation, cell defense, and adaptation to hostile conditions (Cuervo,
2004; Mizushima, 2007).

Because of the numerous functions of autophagy in the cells, interference with this process could
be associated with various human diseases. Many diseases, such as cancer, neurodegenerative
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diseases, metabolic dysfunction, liver diseases, and cardiovascular
diseases, have been linked to disruptions in autophagy. (Levine
and Kroemer, 2008; Yang and Klionsky, 2020). The failure of
autophagic clearance is linked to the intracytoplasmic
accumulation of misfolded and aggregate-prone protein in most
adult-onset neurodegenerative disorders (Nixon, 2013).
Autophagy is also critical in the adaptive immune response,
specifically in the processing and presentation of major
histocompatibility complex (MHC) class II antigens, in addition
to its role in innate immunity (Levine and Deretic, 2007).
Consequently, numerous intracellular pathogens hijack this
pathway by evading autophagic detection, changing the
autophagic route, and manipulating the autophagosomal
compartment to their benefit (Ogawa et al., 2011).

In mammalian cells, proteins are incorporated into lysosomes
by (1) macroautophagy, (2) microautophagy, and (3) chaperone-
mediated autophagy (CMA) (Figure 1). In macroautophagy, a
protein with other cytosolic components and organelles is
entrapped in a double-membrane-bound vesicle, called an
autophagosome. The autophagosome fuses with the lysosome,
followed by degradation of the sequestered components. In
microautophagy, cytosolic components are directly ingested by
lysosomes through invagination of the lysosomal membrane.
The third form of autophagy, CMA, is distinct from the other
types of autophagy in terms of identification of protein target by
chaperone protein HSC70 and mechanism of delivery to the
lysosomal lumen (Cuervo, 2004; Mizushima, 2007; Glick
et al., 2010).
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THE MOLECULAR MECHANISM OF
CHAPERONE-MEDIATED AUTOPHAGY

Although autophagy was commonly regarded in the past as a
nonselective breakdown system, CMA turned out to be a type of
selective autophagy. CMA selectively recognizes substrate
proteins by the specific protein recognition and translocation
into the lysosomal membrane in association with HSC70, a heat
shock protein of around 70 kDa. All of the protein substrates
degraded by CMA have a specific pentapeptide motif (KFERQ-
motif; CMA-targeting motif) in their amino acid sequences
(Kirchner et al., 2019; Kacal et al., 2021). A potential CMA-
targeting motif can be found in 30-40% of soluble cytosolic
proteins. However, additional motifs are made possible by
posttranslational modifications, such as phosphorylation or
acetylation, thus increasing the number of possible substrates.

A protein-containing CMA-targeting motif is recognized by
the cytosolic chaperone HSC70 (Chiang et al., 1989; Cuervo,
2011; Kirchner et al., 2019). The next step of the CMA pathway is
the binding of the protein complex, a target protein and HSC70,
to the cytosolic tail of lysosome-associated membrane protein
type 2A (LAMP-2A) at the lysosomal membrane (Cuervo and
Dice, 1996). LAMP-2A is one of the three splice variants of
LAMP-2 genes: LAMP-2A, LAMP-2B, and LAMP-2C. LAMP-
2A is the crucial determinant of the CMA pathway. LAMP-2A
protein is necessary for CMA, but not for other types of
autophagy. The production, e l iminat ion, and sub-
compartmentalization of LAMP-2A receptor modulate the
FIGURE 1 | Three autophagy pathways. Proteins are incorporated into lysosomes by (1) macroautophagy, (2) microautophagy, or (3) chaperone-mediated
autophagy (CMA). Autophagy was formerly considered a nonselective bulk degradation process. However, CMA results in the selective degradation of the cytosolic
proteins. Macroautophagy involves the encapsulation of a protein with other cytosolic components and organelles in a double membrane-bound vesicle
(autophagosome). The autophagosome fuses with the lysosome and the sequestered components are degraded. Microautophagy is a process in which lysosomes
directly engulf cytosolic components through membrane invagination. CMA involves the selective destruction of CMA-targeting motif-containing proteins transported
to lysosomes by the chaperone HSC70 and the internalization of proteins by LAMP-2A.
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CMA activity in the cells (Kaushik and Cuervo, 2012; Kaushik
and Cuervo, 2018; Arias and Cuervo, 2020). Multimerization of
LAMP-2A is required for translocation of unfolded substrate
protein into the lysosome lumen (Cuervo and Wong, 2014).
Finally, the target protein is rapidly degraded in the lysosome,
followed by the dissociation of the translocation complex and
monomerization of LAMP-2A (Figure 2).
CMA AND EMI

Endosomal microautophagy (eMI) is another type of selective
protein degradation using HSC70 for recognition of a CMA-
targeting motif. In contrast to CMA, the unfolding and LAMP-
2A binding of cytosolic proteins is not required for eMI. A
substrate protein for eMI is sequestered by the formation of the
invagination in the surface of the endosomal membrane through
the coordinated function of ESCRT I (TSG101) and three
accessory proteins: VPS4A, VPS4B and Alix. After binding to a
substrate protein, HSC70 interacts with phosphatidylserine of
the endosomal membrane. HSC70 is internalized along with the
substrate protein in microvesicles involved in the endosomal
sorting complex required for transport (ESCRT). Substrate
proteins in vesicles are degraded in the late endosome
(Figure 3). However, it’s still unclear whether the entire
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ESCRT machinery is necessary for the eMI pathway (Tekirdag
and Cuervo, 2018; Sahu, et al., 2011). In the CMA pathway,
HSC70 is released back to the cytosol after the substrate is
transferred back to LAMP-2A. On the other hand, HSC70 is
internalized and degraded with the target protein in the eMI
pathway (Sahu, et al., 2011; Madrigal-Matute and Cuervo, 2016).
Although both CMA and eMI use the CMA-targeting motif for
substrate recognition, the substrates of CMA and eMI do not
fully overlap. The CMA-targeting motif is necessary and
sufficient for HSC70-induced degradation on CMA, whereas
the CMA-targeting motif is not sufficient for the targeting
degraded proteins in eMI (Tekirdag and Cuervo, 2018; Kichner
et al., 2019). Microtubule-associated protein Tau, involved in
axoplasmic transport in normal neurons, is known to be
degraded by both eMI and CMA (Mukherjee et al., 2016). The
intrinsic properties of the substrate protein may be accountable
for the shifting between these two pathways. Because CMA and
eMI require different receptors to transport the target protein to
the appropriate location of degradation, the knock-down of each
receptor will assist in the analysis of protein degradation; that is,
the knock-down of LAMP2A membrane protein increases the
amount of target protein in the CMA pathway. On the other
hand, the substrate protein level increases in the eMI pathway
after the knock-down of the VPS4A/B protein (Tekirdag and
Cuervo, 2018).
FIGURE 2 | Molecular mechanism of chaperone-mediated autophagy (CMA). CMA is a five-step process. Recognition of the CMA-targeting motif in the
substrate protein by HSC70 (step 1); binding of the substrate−chaperone complex to LAMP-2A (step 2); unfolding of the protein substrate (step 3);
multimerization of LAMP-2A and translocation of the protein to the lysosomal lumen mediated by lysosomal HSC70 (step 4); protein degradation and
disassembly of LAMP-2A multimer (step 5).
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CMA AND HUMAN DISEASES

Many studies have discovered the association of impairment of
the CMA process and human diseases. CMA is known to be
involved in Parkinson’s disease (Wong and Cuervo, 2010),
Huntington’s disease (Bauer et al., 2010; Koga et al., 2011; Qi
et al., 2012), Alzheimer’s disease (Liu et al., 2009; Wang et al.,
2009), prostate cancer (Lv et al., 2011), and renal diseases
(Sooparb et al., 2004). Salmonella enterica, an invasive
intracellular bacterium, exploits LAMP-2A and HSC70 to
promote proliferation (Singh et al., 2017). This bacterium
activates the CMA pathway to degrade tripartite motif (TRIM)
21, an E3 ubiquitin ligase which is involved in regulating the
IFN-I response, to escape the host immune system (Hos
et al., 2020).
CMA AND HEPATITIS C VIRUS INFECTION

HCV is an enveloped, positive single-stranded RNA virus that
belongs to the Flaviviridae family, Hepacivirus genus (Ray et al.,
2013). The HCV genome consists of a 9.6kb RNA encoding a
polyprotein of 3,010 amino acids (aa). The polyprotein is cleaved
into three structural proteins (core, envelope 1 [E1], and
envelope 2 [E2]) and seven nonstructural proteins (p7,
nonstructural protein 2 [NS2], NS3, NS4A, NS4B, NS5A,
NS5B) proteins by viral proteases and host signal peptidase
(Ray et al., 2013). The structural proteins are responsible for
the formation of virions, whereas the nonstructural protein is
involved in viral replication (Lohmann et al., 1999; Blight et al.,
2000). Approximately 56 million people (0.8% of the global
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
population) are chronically infected with HCV (World Health
Organization, 2021). Within two or three decades after infection,
around 20% of HCV carriers will develop cirrhosis and
hepatocellular carcinoma, either of which requires liver
transplantation (Roudot-Thoraval, 2021).

Several studies have associated both structural and
nonstructural HCV proteins with macroautophagy (Guevin
et al., 2010; Su et al., 2011; Wang et al., 2014; Lee et al., 2019).
As macroautophagy serves various functions in the host cell, it
also serves to sustain HCV life cycle. However, the molecular
mechanism by which HCV induces macroautophagy is still
unclear (Ke and Chen, 2014).

HCV infection causes not only intrahepatic diseases but also
extrahepatic manifestations, such as metabolic disorders
(Ramos-Casals et al., 2017; Koike, 2009). We reported that
HCV infection suppresses GLUT2 gene expression via selective
lysosomal degradation of transcription factor HNF-1a protein
(Matsui et al., 2012). HCV infection induces lysosomal
degradation of this protein via interaction with NS5A protein
(Matsui et al., 2015). We then discovered the HCV-induced
selective degradation of HNF-1a via CMA (Matsui et al., 2018).

Other groups reported that CMA targets IFNAR1
degradation in the lysosome in free fatty acids-treated HCV
cell culture (Kurt et al., 2015; Dash et al., 2016). They also
reported that CMA promotes Beclin1 degradation through Nrf2
signaling in persistently infected HCV cell cultures (Aydin et al.,
2018; Dash et al., 2020).

It has been reported that ER stress induces CMA via activation
of p38 MAPK, resulting in phosphorylation of LAMP-2A and
accumulation of LAMP-2A on lysosomal membrane (Li et al.,
2017). Dash et al. (Dash et al., 2019) have described that ER stress
uses the p38MAPK-CMA pathway tomaintain cell survival under
FIGURE 3 | Molecular mechanism of endosomal microautophagy (eMI). Multifunctional chaperone HSC70 recognizes protein bearing CMA-targeting motifs. Upon
cargo binding, HSC70 directly interacts with phosphatidylserine (PS) in the endosomal membrane. HSC70 is internalized along with protein into microvesicles via the
coordinating functions of ESCRT I (TSG101), ESCRT III, VPS4A/B, and Alix. The degradation of microvesicles occurs in the endosomal lumen or lysosome via
endosome−lysosome fusion. ESCRT, endosomal sorting complex required for transport.
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stress. HCV was reported to induce ER stress (Wang et al., 2019).
Therefore, it remains to be elucidated whether HCV infection
induces ER stress to activate CMA pathway.
MOLECULAR MECHANISM OF HCV-
INDUCED CMA PATHWAY

To clarify the molecular mechanism underlying the HCV-
induced CMA pathway, we searched for the CMA-targeting
motif within HNF-1a. We identified the CMA-targeting motif
of HNF-1a raging from aa 130 to 134, QREVV (Figure 4).
HSC70 binds HNF-1a via its CMA-targeting motif,
130QREVV134. Protein Complex NS5A/HSC70/HNF-1a is
transported to the lysosome, resulting in the association of
HNF-1a with LAMP-2A. HNF-1a crosses the membrane with
the assistance of LAMP-2A. HNF-1a is degraded in the
lysosome. We propose that HCV-induced HNF-1a
degradation via CMA suppresses GLUT2 gene expression,
leading to the downregulation of cell surface expression of
GLUT2 and the disruption of glucose uptake into the cells
(Matsui et al., 2012; Matsui et al., 2015; Matsui et al.,
2018) (Figure 4).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
ANALYSIS OF HCV-INDUCED CMA
PATHWAY

Detection of the CMA-Targeting Motif in
the Sequence of Substrate Protein
The CMA-targeting motif in the amino acid sequence of the
substrate protein is essential for the interaction between HSC70
and a substrate protein. Cuervo’s group proposed the basic
requirements for the CMA-targeting motif (Kaushik and
Cuervo, 2018; Kirchner et al., 2019). A CMA-targeting motif
contains one or two of the positively charged residues: lysine (K)
or arginine (R); one or two of the hydrophobic residues:
phenylalanine (F), isoleucine (I), leucine (L), or valine (V); one
of the negatively charged residues: aspartic acid (D) or glutamic
acid (E); and one glutamine (Q) on either side of the
pentapeptide (Figure 4). The removal of the pentapeptide
amino acid in a target protein inhibited its lysosomal
degradation, underscoring the importance of this motif in the
CMA pathway (Dice et al., 1990; Wing et al., 1991; Kaushik and
Cuervo, 2012). Free Web-based software, KFERQ finder V0.8
(https://rshine.einsteinmed.org/) was developed by Cuervo’s
group to facilitate rapid identification of this motif in any
protein sequences (Kirchner et al., 2019).
A B

FIGURE 4 | Mechanism of the HCV-induced degradation of HNF-1a via CMA. (A) The basic requirements of the CMA-targeting motif. One glutamine residue (Q)
flanked on either side by one or two basic amino acids (K or R), an acidic amino acid (D or E), and one or two bulky hydrophobic amino acids (F, I, L or V). Following
this rule, we identified the CMA-targeting motif (130QREVV134) in the POUs domain of HNF-1a. (B) HCV NS5A interacts with HSC70 and recruits HSC70 to HNF-1a
protein. HSC70 binds to the CMA-targeting motif of HNF-1a. The protein complexes are delivered to the surface of the lysosomal membrane to bind to LAMP-2A.
Once HNF-1a binds to LAMP2A, HNF-1a unfolds and crosses the lysosomal membrane with the assistance of LAMP-2A. Finally, HNF-1a is degraded by lysosomal
proteases, resulting in the downregulation of the GLUT2 transcription. GLUT2 mRNA levels and GLUT2 expression decrease, resulting in decreased glucose uptake
to the cell, which in turn leads to hyperglycemia.
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HCV NS5A Plays a Crucial Role in HCV
Induced-CMA Pathway
HCV infection enhances the interaction between HSC70 and HNF-
1a (Matsui et al., 2018). The selective lysosomal degradation of
HNF-1a protein is induced by HCV NS5A. Domain I of NS5A
plays a crucial role in the interaction with HNF-1a and the
degradation of HNF-1a protein (Matsui et al., 2015).

HCV NS5A interacts with HSC70 to promote the recruitment
of HSC70 to the substrate protein. NS5A binds both HSC70 and
the substrate protein. HSC70 binds to its substrate protein via the
CMA-targeting motif. Protein Complex NS5A/HSC70/substrate
protein is transported to the lysosomal membrane, resulting in
association with LAMP-2A. The substrate protein can then cross
the membrane with the assistance of LAMP-2A.

HSC70 and LAMP-2A Are Key
Components of the CMA Machinery
The cytosolic chaperone HSC70 recognizes the host protein via
the CMA-targeting motif (Bonam et al., 2019). The HCV-
induced degradation of HNF-1a is restored by the siRNA
knockdown of HSC70. To investigate whether LAMP-2A plays
a role in the HCV-induced degradation of HNF-1a, we knocked
down LAMP-2A mRNA by siRNA. The knockdown recovered
the level of substrate protein in HCV-infected cells. This result
suggests that HNF-1a is degraded through CMA, but not
through eMI (Matsui et al., 2018).

HCV NS5A Is Colocalized With a Substrate
Protein in the Lysosome
In HCV-uninfected cells, HNF-1a is localized mainly in the
nucleus. When cells are infected with HCV, HNF-1a is localized
in both the nucleus and in the cytoplasm. Since HCV NS5A is
localized in the cytoplasm, NS5A is colocalized with HNF-1a
protein in the cytoplasm in HCV-infected cells. HCV NS5
protein binds to HNF-1a and retains it in the cytoplasm,
which may facilitate the CMA-induced degradation of HNF-
1a. We performed immunofluorescence staining to confirm the
subcellular colocalization of NS5A and HNF-1a in the lysosome.
When cells were treated with a lysosomal enzyme inhibitor,
pepstatin A, the colocalization of HNF-1a protein with HCV
NS5A was detected in the lysosome.

Treatment of Lysosomal Inhibitor
NH4Cl, an inhibitor of lysosomal proteolysis, is known to
neutralize the acidic lysosomal pH. When HCV infection
induces protein degradation of the substrate through the CMA
pathway, treatment of the cells with 5mM NH4Cl restores the
substrate protein levels.
CMA AND OTHER VIRUSES

As an obligate intracellular pathogen, viral replication depends
strongly on the host machinery. Viruses utilize the autophagy
system of the host, including the CMA pathway, to maintain
their life cycles. In addition, some viruses interact with HSC70
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
and its co-chaperones, resulting in either a positive or negative
life cycle regulator (Kaushik and Cuervo, 2018; Wang et al.,
2020). Recently, it was reported that the NS2A protein of Zika
virus promoted degradation of karyopherin subunit alpha 2
(KPNA2) via CMA, resulting in increased Zika virus
production. The KNPA2 protein level was restored in the
LAMP-2A knockdown cells infected with the Zika virus,
indicating the important role of the CMA pathway in this viral
replication (He et al., 2020).
CONCLUSIONS AND FUTURE
PERSPECTIVES

We clarified the molecular mechanism underlying HCV-induced
CMA. We demonstrated that HCV NS5A interacts with
chaperone HSC70, and recruits it to the substrate protein for
lysosomal degradation via CMA, thereby facilitating HCV
pathogenesis. There are two crucial requirements of the
substrates for HCV-induced CMA; NS5A binding and a CMA-
targeting motif. We and other groups have been investigating
NS5A-interacting proteins (Matsui et al., 2012; Sianipar et al.,
2015; Ross-Thriepland and Harris, 2015; Chen et al., 2016;
Minami et al., 2017; Abe et al., 2020). Using software, we can
easily do a search to determine whether the NS5A-interacting
proteins contain potential CMA-targeting motifs. We have
already found that at least 40 NS5A-binding proteins that
contain potential CMA-targeting motifs. Further identification
of novel substrates for HCV-induced CMA pathways is required
to clarify the physiological relevance of the CMA-dependent
degradation of host proteins in HCV infection. We provided
evidence suggesting that NS5A-HSC70 complex is important for
HCV-induced CMA. Small molecules that can inhibit the NS5A-
HSC70 interaction may contribute to the therapeutic strategy for
HCV-induced pathogenesis.
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