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Prediction of radiation-induced
acute skin toxicity in breast
cancer patients using data
encapsulation screening and
dose-gradient-based multi-
region radiomics technique:
A multicenter study
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Radiotherapy, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine,
Hangzhou, China, 4Department of Radiology, Hunan Cancer Hospital, Affiliated Cancer Hospital of
Xiangya School of Medicine, Central South University, Changsha, China, 5Department of Radiotherapy,
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Purpose: Radiation-induced dermatitis is one of the most common side effects

for breast cancer patients treated with radiation therapy (RT). Acute

complications can have a considerable impact on tumor control and quality

of life for breast cancer patients. In this study, we aimed to develop a novel

quantitative high-accuracy machine learning tool for prediction of radiation-

induced dermatitis (grade ≥ 2) (RD 2+) before RT by using data encapsulation

screening and multi-region dose-gradient-based radiomics techniques, based

on the pre-treatment planning computed tomography (CT) images, clinical and

dosimetric information of breast cancer patients.

Methods and Materials: 214 patients with breast cancer who underwent RT

between 2018 and 2021 were retrospectively collected from 3 cancer centers

in China. The CT images, as well as the clinical and dosimetric information of

patients were retrieved from the medical records. 3 PTV dose related ROIs,

including irradiation volume covered by 100%, 105%, and 108% of prescribed

dose, combined with 3 skin dose-related ROIs, including irradiation volume

covered by 20-Gy, 30-Gy, 40-Gy isodose lines within skin, were contoured for

radiomics feature extraction. A total of 4280 radiomics features were extracted

from all 6 ROIs. Meanwhile, 29 clinical and dosimetric characteristics were

included in the data analysis. A data encapsulation screening algorithm was

applied for data cleaning. Multiple-variable logistic regression and 5-fold-
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cross-validation gradient boosting decision tree (GBDT) were employed for

modeling training and validation, which was evaluated by using receiver

operating characteristic analysis.

Results: The best predictors for symptomatic RD 2+were the combination of 20

radiomics features, 8 clinical and dosimetric variables, achieving an area under

the curve (AUC) of 0.998 [95% CI: 0.996-1.0] and an AUC of 0.911 [95% CI:

0.838-0.983] in the training and validation dataset, respectively, in the 5-fold-

cross-validation GBDT model. Meanwhile, the top 12 most important

characteristics as well as their corresponding importance measures for RD 2+

prediction in the GBDTmachine learning process were identified and calculated.

Conclusions: A novel multi-region dose-gradient-based GBDT machine

learning framework with a random forest based data encapsulation screening

method integrated can achieve a high-accuracy prediction of acute RD 2+ in

breast cancer patients.
KEYWORDS

Breast cancer, radiation therapy, radiation-induced skin toxicity, machine learning,
radiomics, gradient boosting decision tree
1 Introduction

Surpassing lung cancer as the leading cause of global cancer

incidence, breast cancer accounted for 11.7% of all new cancer

cases with 685,000 deaths, ranking the fifth leading cause of

cancer mortality worldwide in 2020 (1). Most patients with

breast cancer are treated with surgery (e.g., lumpectomy or

mastectomy) followed by radiation therapy (RT) on the

residual ipsilateral breast or chest wall, with alternative dose

boost to the tumor bed and/or regional lymph node irradiation

applied (2–4). Treatment-induced acute skin toxicity (i.e., acute

radiodermatitis) with a different degree, ranging from erythema

to desquamation (dry or moist), ulceration, and necrosis, is one

of the most common acute side effects of RT underwent by

breast cancer patients, with approximately 90% of treated

patients experiencing erythema and 30% experiencing moist

desquamation (5–8). Such acute skin toxicity negatively affects

multiple aspects of quality of life (QOL) of breast cancer

radiotherapy patients, such as physical discomfort, emotional

distress, and body image disturbance, and so on (9).

The acute skin reactions are prone to progress during the

treatment and remain after completion of the treatment. In

addition, severe acute reactions may be prodromal of subsequent

late effects (10), and the RT schedule might be changed or even

terminated due to these negative reactions. Therefore, early

prediction of acute radiodermatitis when formulating a

radiation therapy regimen could potentially reduce the risk of

skin toxicity. Furthermore, early management of acute
02
radiodermatitis in breast cancer patients can improve both

day-to-day functioning and satisfaction with radiation

treatment, and therefore QOL and outcome of patients.

Qualitative evaluation of acute skin toxicity mainly by visual

inspection of the skin-related symptoms of breasts is subject to

practitioner bias, variability in grading dermatitis as well as

differentiating the severe dermatitis (e.g., moist desquamation)

due to clinician expertise, and underreporting by patients (9, 11).

Most importantly, this method detects early signs of dermatitis

with low sensitivity and specificity. Based on the semi-

quantitative analysis of clinical and dosimetric predictors of

acute skin toxicity, the normal tissue complication probability

(NTCP) models can be established to predict severe acute skin

toxicity in breast cancer patients (10). However, the prediction

performance was relatively poor with an area under the curve

(AUC) as low as 0.77 (10).

To improve the prediction performance, quantitative early

thermal imaging biomarkers were identified and used in machine

learning frameworks (i.e., thermoradiomics) to build the predict

model, and a high prediction accuracy (test accuracy = 0.87) on

the independent test data at treatment fraction of 5 was achieved

for predicting acute skin toxicity at the end of RT (12, 13).

However, the prediction performance is not sufficient enough to

be as an effective clinical decision support tool for intervention

and management of dermatitis in breast cancer patients, probably

due to the 2-D surface imaging with limited information provided

rather than 3-D volume imaging with one more dimension

information offered. The models built on 2-D surface thermal
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imaging constrain their usage for 3-D dose distribution

optimization guidance. Furthermore, the extra usage of thermal

imaging devices and additional procedures involved might

increase the labor burdens in the breast radiation oncology

clinic and reduce the patient throughput.

In this study, we investigated 3-D planning CT volume

imaging and machine learning frameworks to develop a

quantitative prediction tool for radiation-induced acute

radiodermatitis in breast cancer patients before RT treatment.

This multicenter retrospective study was performed using a

novel 3-D dose-gradient-based multi-region radiomics

technique with the data encapsulation screening method

integrated. The gradient boosting decision tree (GBDT)

algorithm was used to build the predictive model. We

hypothesized that acute radiodermatitis is associated with the

3-D region-based characteristic radiomics signatures in breast

cancer patients before RT.
2 Methods and materials

2.1 Patients and CT scans

This study retrospectively reviewed 256 patients with stage

0-IV breast cancer, who underwent post-surgery (i.e.,

lumpectomy, mastectomy, or breast reconstruction) intensity-

modulated radiation therapy or volumetric modulated arc

therapy RT with or without concurrent chemotherapy and/or

Hormone therapy, at 3 cancer centers including our hospital

from October 2018 to August 2021 under institutional review

board approval. The patients received a prescription dose of

whole breast and/or chest wall irradiation mainly using regimens

of 50 Gy in 25 fractions or 42.5 Gy in 16 fractions with an

optional boost of 10 Gy in 5 fractions to the tumor bed using the

6 MV photons. The patients were monitored for skin symptoms

from the start of RT to at least 1 month after the completion of

RT. A total of 214 patients (144 patients with ≥ 2 grade skin

toxicity) were selected based on the exclusion criteria including

(1) prior or subsequent RT to the chest, (2) previous skin

disorder, (3) with dose boost using electron therapy, (4) male

patients, (5) loss of clinical characteristics records. Informed

consent from all the patients was obtained before the study. All

study participates were graded for skin toxicity using

Radiotherapy Oncology Group (RTOG), Common

Terminology Criteria for Adverse Events (CTCAE) Ver. 4 (6, 7).

In our study, all patients underwent breathing training

before radiotherapy; 88 of them with left-sided breast cancer

were treated with deep inhalation breath-hold (DIBH)

radiotherapy technique, and their CT scans were completed in

breath-hold state. Other 126 of them with right-sided breast

cancer underwent 4D-CT scans in free-breathing state. CT scans

of the patients for treatment planning were mainly conducted
Frontiers in Oncology 03
using a Philips Brilliance Big Bore CT (Philips Medical Systems,

Cleveland, OH, USA) 2 to 7 days before RT. The imaging

parameters of the CT scans include voltage (120 kVp), tube

current (325 mA or 375mA), exposure time (800 ms or 933 ms),

pixel size (0.5×0.5 mm or 0.6×0.6 mm), slice thickness (5 mm),

and image size (XY: 768×1024, Z: around 80). The Pinnacle

(Philips Medical Systems, Andover, MA) or Eclipse treatment

planning systems (Varian Medical Systems, Palo Alto, CA) were

used for the calculation of the radiation dose distribution of

contoured treatment volumes.

The planning CT scans and associated dose distributions of

eligible patients were collected for data analysis and model

building (Figure 1). Clinical characteristics of the patients

include age, body mass index (BMI), body temperature, tumor

laterality, tumor quadrant positions, pathological tumor size

(e.g., tumor maximum diameter), tumor grade, tumor

histology type, TNM stage, overall stage, CRP, ER, PR, HER-2,

surgery method, chemotherapy, hormone therapy, etc. (Table 1).

All patients were informed by nurses about the basic skin

cares before treatment, including daily rinsing of the breast skin

surface with warm water, keeping the breast skin moist and

clean, and avoiding friction of the skin of breasts by hard

clothing. If the patients are prone to RD 2+, they may be

advised to use silver sulfadiazine 1% three times per day for 5

weeks. All the patients and family members confirmed the

consensus of cooperation.
2.2 Data processing and model building

2.2.1 Radiomics feature extraction
The construction and application of a radiation dermatitis

prediction model was illustrated in Figure 1. A total of 884

radiomics features were extracted from each delineated ROI by

using the open-source image biomarker explorer (IBEX)

software platform (14). The radiomics features extracted

includes seven categories: shape, intensity direct, intensity

histogram, gray-level co-occurrence matrix (GLCM) (2.5D),

neighbor intensity difference (2.5D), gray level run length

matrix (2.5D), and intensity histogram Gaussian fit. Radiomics

features were extracted from PTV regions defined with 100%,

105%, 108% of the prescribed dose and skin regions defined with

20-Gy, 30-Gy, 40-Gy isodose of the skin for the following

model building.

2.2.2 Null interpolation
Based on the fact that missing of clinical and dosimetric

variable values are types of data missing completely at random

(MCAR) or missing at random (MAR), two methods of

maximum likelihood (ML) and multiple imputation (MI) can

be used to fill null variable values. We used the ML method to

impute the linear null data; the MI method was applied to fill the
frontiersin.or
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non-linear null data. For radiomics features, since the

proportion of null data is very low (<10%) and the correlation

between feature variables is high, the method of directly

removing null data should not generate the biased estimation.

2.2.3 Unbalanced data handling
Training on imbalanced dataset would create a biased

prediction in the minority class of dataset. The degree of

imbalance of dataset is based on the proportion of a minority

class in the whole dataset and could range from mild (20-40%),

moderate (1-20%) to extreme (<1%) imbalances (15). Previous

studies showed that resampling approach is a useful pre-

processing step to handle the imbalanced dataset (16, 17). This

method modifies the imbalance distribution of the majority and

minority classes at the data level before training with classifiers.

In this study, due to a mild imbalanced dataset used (non-RD2+

patients/total patients =32.7%), an imbalanced adjustment

strategy of Synthetic Minority Oversampling Technique

(SMOTE) was utilized before all the data sets were trained.

SMOTE is a very popular algorithm for oversampling of the

minor class data. Briefly, SMOTE takes k data from k-NN (near

neighbors) for each data in the minor class to perform

oversampling, and then generates new data by obtaining “in-

line” data with one of the randomly chosen k-NN data results for

a number of magnification.
Frontiers in Oncology 04
2.2.4 Screening of prediction variable
The p values were calculated for clinical and dosimetric

variables (Table 1), in which the chi-square test was used by

default for categorical variables, and the MUW test was used by

default for continuous variables. If the data did not meet the

conditions for the chi-square test, the fisher’s exact test was used

instead. The variables with P value< 0.5 were selected for

multiple-variable logistic regression analysis in the following

step. Because the sample size of this study is relatively not large,

the current data might not represent the actual situation, and the

low p value might cause missing of important variables that

account for the prediction model. In performing multiple-

variable logistic regression of clinical and dosimetric variables,

we set a relatively high P value of 0.5 (compared to P< 0.1 or P<

0.05) to avoid too few variables included in the regression

analysis, which may loss valuable variables for further analysis.

This resulted in 8 variables included in the regression

equation (Table 2).

For the radiomics data extracted from the 6 ROIs, the

MWU test was firstly performed with P value < 0.05 set, and

then redundant features with variance ≤ 0.05 were deleted. In

the next step, the pairwise correlation coefficient between one

variable and all the remaining variables was calculated, and

variables with correlation coefficient ≥ 0.9 were deleted. When

the correlation coefficients of two variables are the same, the
A

B

C

FIGURE 1

Schematic diagram of data analysis for machine learning in this study: Collection and analysis based on dosimetric factors (A), patient clinical
factors (B), and radiomics factors (C) extracted from different dose-gradient regions of patients. ROIs, regions of interest; RD 2+, radiodermatitis
with ≥ 2 grade; RD 2-, radiodermatitis with< 2 grade.
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TABLE 1 Demographic and clinical information of the patients (n=214) in the study.

Demographic and clinical characteristics Grade ≤ 1(n = 70) Grade ≥ 2(n = 144) P value (Chi-squared/MUW test)

Age (mean (SD)) 50.04 (9.44) 49.48 (9.62) 0.804

BMI (mean (SD)) 22.94 (3.03) 23.25 (2.70) 0.773

Body temperature (mean (SD)) 36.67 (0.33) 36.70 (0.35) 0.692

Laterality (%) Left 44 (62.9) 82 (56.9) 0.411

Right 26 (37.1) 62 (43.1)

Quadrant position (%) Upper-Outer 17 (24.3) 23 (15.9) 0.207

Upper-Inner 26 (37.1) 57 (39.6)

Lower-Outer 13 (18.6) 54 (37.5)

Lower-Inner 14 (20.0) 10 (6.9)

Tumor maximum diameter (cm)
(mean SD)

1.97 (0.91) 2.28 (1.68) 0.759

Tumor grade (%) I 5 (7.2) 13 (9.0) 0.958

II 36 (51.4) 69 (47.9)

III 29 (41.4) 62 (43.1)

Histologic type (%) DCIS 10 (14.3) 13 (9.0) 0.114

IDC 59 (84.3) 124 (86.1)

ILC 1 (1.4) 5 (3.5)

IMC 0 (0.0) 1 (0.7)

LCIS/DCIS 0 (0.0) 1 (0.7)

Overall Stage (%) 0 4 (5.7) 9 (6.3) 0.189

I 14 (20.0) 16 (11.1)

IIA 17 (24.3) 31 (21.5)

IIB 0 (0.0) 1 (0.7)

IIIA 3 (4.3) 12 (8.3)

IIIB 18 (25.7) 30 (20.8)

IIIC 13 (18.6) 40 (27.8)

IV 1 (1.4) 5 (3.5)

T Stage (%) Tx~is 1 (1.4) 4 (2.8) 0.109

T0 3 (4.3) 5 (3.4)

T1 4 (5.7) 5 (3.5)

T2 43 (61.4) 74 (51.4)

T3 17 (24.3) 48 (33.3)

T4 2 (2.9) 8 (5.6)

N Stage (%) 0 36 (51.4) 66 (45.8) 0.595

1 18 (25.7) 46 (31.9)

2 11 (15.7) 21 (14.6)

3 5 (7.2) 11 (7.7)

M Stage (%) 0 70 (100.0) 143 (99.3) 0.002

1 0 (0.0) 1 (0.7)

CRP (mg/l) (mean (SD)) 2.27 (4.19) 2.36 (5.03) 0.876

ER (%) Positive 55 (78.6) 114 (79.2) 0.960

Negative 15 (21.4) 30 (20.8)

PR (%) Positive 50 (71.4) 112 (77.8) 0.312

Negative 20 (28.6) 32 (22.2)

HER2 (%) Positive 14 (20.0) 34 (23.6) 0.554

Negative 56 (80.0) 110 (76.4)

Surgery method (%) Lumpectomy 41 (58.6) 84 (58.3) 0.928

Mastectomy 27 (38.6) 59 (41.0)

Reconstruction 2 (2.8) 1 (0.7)

(Continued)
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variable with the larger correlation with the classification result

was kept. Meanwhile, a variance inflation factor (VIF) was

calculated for multiple linear tests on the remaining variables,

in which all variables with VIF ≥ 10 were removed. Then, a

decision tree encapsulation screening method was applied to

filter the variables for the following prediction model building.

The encapsulation screening method integrated the feature

selection process with the training process, and used the

predictive ability of the model as a measure of feature

selection to select a high-quality subset of variables.

2.2.5 Model training and validation
The GBDT machine learning algorithm was used to train

and validate the clinical and dosimetric, radiomics, and

combined prediction models, respectively. Gradient boosting is

an integrated boosting method, which iterates the new learner
Frontiers in Oncology 06
through the gradient descent algorithm, and boosting refers to

connecting multiple weak learners in series to generate a new

strong learner.

For binary GBDT in this study, the loss function is defined as

(18)

L(y, f (x)) = log(1 + exp ( − yf (x))) (1)

where y is the label, and f(x) denotes the prediction value.

Then the negative gradient error at the current time is defined as

rti = −
∂ L(y, f (x))

∂ f (x)

� �
f (x)=ft−1(x)

=
yi

1 + exp (yif (xi))
(2)

For the generated decision tree, the best residual fitting value

of each leaf node is

ctj = argminoxi∈Rtj
(log(1 + exp(yift−1(xi + c)))) (3)
TABLE 1 Continued

Demographic and clinical characteristics Grade ≤ 1(n = 70) Grade ≥ 2(n = 144) P value (Chi-squared/MUW test)

Chemotherapy (%) No 13 (18.6) 32 (22.2) 0.541

Yes 57 (81.4) 112 (77.8)

Hormone therapy (%) No 44 (62.9) 77 (53.5) 0.195

Yes 26 (37.1) 67 (46.5)

EQD2_all (mean (SD)) 52.16 (5.18) 52.66 (4.16) 0.466

Lotion application (%) No 6 (8.6) 5 (3.5) 0.115

Yes 64 (91.4) 139 (96.5)

PTV_mean (mean (SD)) 5098.71 (325.99) 5139.06 (317.50) 0.838

PTV_max (mean (SD)) 5773.97 (477.05) 5839.24 (454.27) 0.937

PTV_boost (%) Yes 41(58.6) 80(55.6) 0.678

No 29(41.4) 64(44.4)

SKIN_mean (mean (SD)) 3608.40 (493.26) 3587.22 (570.25) 0.730

SKIN_max (mean (SD)) 5447.94 (489.98) 5535.82 (464.63) 0.504

SKIN_V20 (mean (SD)) 87.26 (10.00) 85.65 (12.01) 0.316

SKIN_V30 (mean (SD)) 70.60 (14.74) 69.69 (15.31) 0.461

SKIN_V40 (mean (SD)) 44.59 (21.24) 43.83 (20.93) 0.626
SD, standard deviation; BMI, body mass index; DCIS, ductal carcinoma in situ; IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; IMC, invasive mammary carcinoma; LCIS,
lobular carcinoma in situ; HER2, human epidermal growth factor receptor 2; ER, estrogen receptor; PR, progesterone receptor; EQD2_all,equivalent dose of all treatment phase at 2Gy/
fraction.
TABLE 2 Multiple-variable logistic regression of selected clinical and dosimetric variables.

Variable Coefficient Wald Z Pr (>|Z|)

Laterality 0.6983 1.86 0.0628

Quadrant position 0.1183 2.09 0.0362

Histologic type 0.2709 0.68 0.4967

T Stage 0.1641 0.69 0.4923

PR -0.2727 -0.73 0.4631

Hormone therapy 0.4601 1.35 0.1776

EQD2_all -0.1483 -0.75 0.4525

Lotion application 0.7188 1.08 0.2789
fron
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Since the above equation is difficult to be optimized in a

computer, we use the following loss function to approximate it

instead:

ctj =
oxi∈Rtjrti

oxi∈Rtj
rtij j*(1 − rtij j) (4)

The pseudocode of the binary GBDT is as follows:
Fron
Gradient Boosting Trees Algorithm

1 Initialize f0(x) = argming oN
i=1L(yi, g )

2. For m=1 to M:

(a) For i=1,2,…,N compute: rim = −½∂ L(yi ,(f (xi))∂ f (xi)
�f=fm−1

(b) Fit a regression tree to the targets rim gibing

terminal regions,

Rjm, j = 1,2,…,Jm compute:

(c) For j = 1,2,…,Jm compute:γjm=argminγ∑xi∈RjmL(yi,fm

−1(xi)+γ)

(d) Update fm(x) = fm−1(x) +oJm
j=1gjmI(xi ∈ Rjm)

3. Output. f̂ (x) = fM(x)
ALGORITHM

The entire data set was divided into 5 equal sub-folds with

the ratio of close to 1:1 for RD 2+ and non-RD 2+ patients in

each sub-fold, and the patients in each sub-fold do not appear

repeatedly. 70% of the data in each sub-fold were used for GBDT

model training, and the remaining 30% were used for validation.

A gbm package in Rstudio was used to implement the GBDT

algorithm (19). Since the problem is a classification problem, the

Bernoulli distribution was selected in the loss function.

The learning rate shrinkage parameter was set at 0.05, and the

number of decision tree was set to 10000. The optimal number of

iterations and the importance of each explanatory variable were

determined by using a 5-fold cross-validation.
3 Results

3.1 Variable selection and data handling

With the null imputation method being applied to the

clinical and dosimetric datasets, total of 29 clinical and

dosimetric variables were retained for further analysis. The

number of remained non-null radiomics features extracted

from the PTV_100PD, PTV_105PD, PTV_108PD,

SKIN_20Gy, SKIN_30Gy, and SKIN_40Gy were 812, 789, 674,

684, 657, and 664, respectively.

After the SMOTE method was applied, the total number of

samples was increased from 214 to 280, and the number of non-
tiers in Oncology 07
RD 2+ cases was increased from 70 to 140. In the new balanced

data, the ratio of RD 2+ and non-RD 2+ patients was close to 1:1.
3.2 Model training and validation

As mentioned above, the 8 clinical and dosimetric variables

selected were fed into the GBDT model for training. The

performance of GBDT model in the training and validation

datasets using the selected clinical and dosimetric variables is

shown in Table 3. It is observed that the clinical and dosimetric

characteristics showed moderate predictive power for RD 2+,

even in the best performance in the second and third sub-folds in

the training and validation set (i.e., AUC of 0.839 with 95% CI of

0.788-0.891, and AUC of 0.816 with 95% CI of 0.705-0.927).

With the MWU test, zero-variance test, correlation test, VIF

verification and tree encapsulation screening method being

successively applied to the radiomics dataset, we obtained 20

radiomics features from the 2 types of ROIs with 6 dose levels.

The VIFs of these radiomics features and their AUCs in

predicting RD 2+ were shown in Table 4. As can be observed

from the table, these radiomics features showed limited

p r ed i c t i on pe r f o rmanc e on th e i r own , s u ch a s

PTV_100PD_radiomics_average (AUC, 0.566 [95% CI: 0.497-

0.632]), SKIN_20Gy _radiomics_average (AUC, 0.569 [95% CI:

0.501-0.636]), and so on.

As can be observed in Table 5, using combined radiomics

features from all the ROIs, the prediction was improved

significantly for the GBDT model both in training and

validation sub-folds (e.g., AUC of 0.998 [95% CI, 0.996-1] for

the training set, AUC of 0.907 [95% CI, 0.829-0.985] for the

validation set).

As shown in Table 6, in the GBDT model built on the

combined clinical, dosimetric and radiomics characteristics, the

best performance of the model resided in the first and fourth

sub-fold in the training and validation set, with a AUC of 0.998

[95% CI:0.996-1.0] and a AUC of 0.911 [95% CI: 0.838-0.983],

respectively. The best performance with the highest AUC value

of each sub-folds in training and validation set of the three

GBDT models were summarized in Figure 2.
3.3 Important predictor analysis

Meanwhile, the top 12 most important characteristics as well

as their corresponding importance measures (i.e., mean and

standard deviation) for RD 2+ prediction in the combined

GBDT model were shown in Figure 3. Three clinical

characteristics were selected in this top variable list, including

Hormone.therapy, T.Stage, and Quadrant.positions. Four

radiomics features from the SKIN_30Gy region, including
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ID_Local Range Max, IH_Gauss Fit1 Gauss_Std, GOH_MAD

and GLCM-25225.4Contrast, were identified as important

features for prediction of RD 2+. Five radiomics features,

including GLCM_2590.7_IV, Shape_Number Of Objects and

GOH_0.975_Quantile from PTV_108PD, IH_Gauss Fit1

Gauss_Mean and ID_Local Entropy Max from PTV_105PD,

were chosen in this top list. Most of these features focus on

describing the region heterogeneity and complexity of the

textures in patients’ PTV and skin volumes.

As illustrated in Figure 4, changes of the top 12 variable

values were correlated with risk scores of RD 2+. For instance,

the increase of SKIN_30Gy.GLCM-25225.4Contrast value was
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correlated to the decreased risk score for the occurrence of RD 2

+; and it seems like that a threshold of SKIN_30Gy.IH_Gauss

Fit1 Gauss_Std can be set to identify the patients with a high risk

for RD 2+. We further explored the distributions (i.e., spatial and

amplitude) of feature values, calculated from sliding sub-

volumes (e.g., containing 7×7×7 voxels) within the ROIs, of

several variables in the top list. Figure 5 shows the exemplary

amplitude and spatial distributions of the feature values of

IH_Gauss Fit1 Gauss Mean, GLCM_25225.4Contrast, and

IH_Gauss Fit1 Gauss_Std extracted from the sub-volumes

within the ROIs of PTV_100PD, SKIN_30Gy, SKIN_30Gy,

respectively, for patients with and without RD 2+.
TABLE 3 The GBDT model performance in training and validation dataset using selected clinical and dosimetric variables. The bold values
indicate the best prediction performance in the training set and validation set, respectively.

Type-
GBDT

Folds 1-foldsModel-1 2-foldsModel-2 3-foldsModel-3 4-foldsModel-4 5-foldsModel-5

Training-set RD 2
+/Non-
RD 2+

0.830
95% CI: 0.777-0.884
(DeLong)

0.839
95% CI: 0.788-0.891
(DeLong)

0.786
95% CI: 0.727-0.845
(DeLong)

0.802
95% CI: 0.744-0.861
(DeLong)

0.811
95% CI: 0.754-0.867
(DeLong)

Validation-
set

RD 2
+/Non-
RD 2+

0.725
95% CI: 0.587-0.863
(DeLong)

0.743
95% CI: 0.611-0.877
(DeLong)

0.816
95% CI: 0.705-0.927
(DeLong)

0.748
95% CI: 0.618-0.879
(DeLong)

0.759
95% CI: 0.631-0.886
(DeLong)
TABLE 4 AUC of 20 radiomics features after variable screening using decision tree encapsulation screening method. The bold values indicate the
average values across the dose regions.

Feature VIF AUC 95%CI(DeLong)

PTV_100Pd_F2.GLCM25270.7_Corr 8.608 0.591 0.524-0.658

PTV_100Pd_F4.ID_LocalStdMedian 8.945 0.604 0.537-0.670

PTV_100PD_F4.ID_Range 1.407 0.510 0.441-0.577

PTV_100PD_F8.ShapeMax3Ddiameter 1.551 0.544 0.476-0.612

PTV_100PD_F6.IHGaussFit1GaussMean 1.311 0.576 0.507-0.644

PTV_100PD_radiomics_average 4.364 0.566 0.497-0.632

PTV_105PD_F2.GLCM25.333.7_Corr 1.208 0.592 0.525-0.659

PTV_105PD_F4.ID_LocalEntropyMax 1.080 0.570 0.502-0.637

PTV_105PD_F8.ShapeMeanBreadth 1.123 0.587 0.520-0.655

PTV_105PD_radiomics_average 1.137 0.583 0.516-0.650

PTV_108PD_F1.GOH0.975Quantile 1.277 0.588 0.519-0.656

PTV_108PD_F2.GLCM25180.1Dissimilarity 1.831 0.574 0.506-0.642

PTV_108 PD_F8.ShapeNumberOfObjects 1.292 0.606 0.540-0.672

PTV_108PD_F2.GLCM2590.7_IV 1.301 0.568 0.500-0.636

PTV_108PD_radiomics_average 1.425 0.584 0.516-0.652

SKIN_20Gy.F2.GLCM25225.4Contrast 3.749 0.570 0.503-0.637

SKIN_20Gy.F8.ShapeConvexHullVolume3D 1.827 0.554 0.486-0.622

SKIN_20Gy.F8.ShapeMeanBreadth 7.401 0.582 0.515-0.650

SKIN_20Gy _radiomics_average 4.326 0.569 0.501-0.636

SKIN_30Gy_F2.GLCM25225.4Contrast 1.411 0.577 0.510-0.645

SKIN_30Gy_F4.ID_LocalRangeMax 1.286 0.613 0.546-0.680

SKIN_30Gy_F6.IHGaussFit1GaussStd 1.255 0.641 0.576-0.706

SKIN_30Gy_F1.GOH_MAD 1.351 0.591 0.524-0.658

SKIN_30Gy_F8.ShapeMax3DDiameter 1.075 0.655 0.59040.719

SKIN_30Gy _radiomics_average 1.276 0.615 0.549-0.682
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4 Discussion

There is currently no gold standard for the prevention and

management of RD 2+ for breast cancer patients. Many

interventions are based on the experience of physicians and

nurses, anecdotal evidence, or low-level evidence, and there are

very limited prospective data to guide interventions currently.

The goal of treatment is primarily to improve patient comfort,

minimize the risk of further damages, and promote wound

healing. This study aimed to provide an innovative method to

quantitatively assess the risk of radiation dermatitis before

treatment, which will greatly reduce the clinical cost of trial

and error for high-risk patients, and offer the opportunity to

optimize the radiotherapy plan for high-risk patients just

before treatment.

Ionizing radiation essentially damages the mitotic ability of

clonogenic or stem cells within the basal layer of epidermis, thus

preventing the process of repopulation and weakening the

integrity of the skin. The degrees of damage range from mild

to severe as telangiectasias, erythema, desquamation,

keratinocyte cell death, fibrosis and inflammatory response

(10). The incidence of grade 2 or higher radiation dermatitis

in this study (approximately 67.3%) was similar to that in

previous studies (31%-50%) (20). In this study, we extracted

radiomics features from skin- and PTV-related ROIs defined by

different dose gradients in the planning CT images. It was found

that these radiomics characteristics combined with clinical and

dosimetric factors significantly improved the predictive accuracy

of RD 2+. The results showed the potential of taking the risk of

RD 2+ and the radiation sensitivity of multiple ROIs into
Frontiers in Oncology 09
account in the RT planning procedures, which facilitates

personalized radiation dose distribution at the planning stage

of RT to improve outcomes for patients at the high risk of RD

2+.

In this study, all patients were divided into three groups: (1)

lumpectomy (i.e., partial breast resection surgery or breast

conserving surgery) group, (2) mastectomy group, (3) breast

reconstruction group. Previous studies found that lumpectomy

was associated with a higher rate of moderate or severe

dermatitis than mastectomy (63% vs. 24%, P = 0.003) (21–23),

which might be due to the local dose escalation after breast

conserving surgery. However, our data did not show the same

situation. In the lumpectomy cohort, RD 2+ was found in 80

(66.1%) out of 121 patients who underwent a dose escalation to

the tumor bed. In the mastectomy cohort, 68.6% (59/86) patients

developed RD 2+. There was no significant statistical difference

between the two groups (p = 0.556), which suggested that local

increase of radiation dose might not be an important risk factor

for RD 2+. Meanwhile, it was found that there was no significant

difference in the occurrence probability of RD 2+ between

lumpectomy and mastectomy groups (p=0.441), which

indicated that the surgery method might not be a risk factor

for RD 2+.

Previous study demonstrated that higher biologically

equivalent dose was correlated to an increase in the rate of

moderate or severe dermatitis (12). Our results showed that

there were no statistically significant differences in EQD2_all

(P = 0.457) between patients with and without RD 2+ by using

the MUW test. Patient large breast size and high BMI have been

found to be independent risk factors of acute skin toxicity,
TABLE 5 The GBDT model performance in training and validation dataset using 20 selected radiomics features. The bold values indicate the best
prediction performance in the training set and validation set, respectively.

Type-GBDT Folds 1-foldsModel-1 2-foldsModel-2 3-foldsModel-3 4-foldsModel-
4

5-foldsModel-5

Training-set RD 2
+/Non-
RD 2+

0.998
95% CI: 0.996-1.0
(DeLong)

0.997
95% CI: 0.993-1.0 (DeLong)

0.997
95% CI: 0.994-1.0 (DeLong)

0.974
95% CI: 0.954-
0.993
(DeLong)

0.998
95% CI: 0.996-1.0
(DeLong)

Validation-
set

RD 2
+/Non-
RD 2+

0.881
95% CI: 0.782-0.981
(DeLong)

0.907
95% CI: 0.829-0.985
(DeLong)

0.901
95% CI: 0.814-0.987
(DeLong)

0.867
95% CI:
0.777-0.958
(DeLong)

0.875
95% CI:
0.769-0.980
(DeLong)
TABLE 6 The GBDT model performance in training and validation dataset using selected radiomics combined with clinical and dosimetric
variables. The bold values indicate the best prediction performance in the training set and validation set, respectively.

Type-GBDT Folds 1-foldsModel-1 2-foldsModel-2 3-foldsModel-3 4-foldsModel-4 5-foldsModel-5

Training-set RD 2+/Non-RD 2+ 0.998
0.996-1.0
(DeLong)

0.996
0.991-1.0
(DeLong)

0.998
0.991-1.0
(DeLong)

0.996
0.991-1.0
(DeLong)

0.983
0.970-0.995
(DeLong)

validation-set RD 2+/Non-RD 2+ 0.857
0.755-0.960
(DeLong)

0.908
0.835-0.982
(DeLong)

0.816
0.706-0.927
(DeLong)

0.911
0.838-0.983
(DeLong)

0.837
0.723-0.950
(DeLong)
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including moist desquamation (24). A greater self-bolusing effect

is supposed to increase toxicity in the inframammary and

axillary folds, due to the dose buildup of skin-on-skin.

Therefore, patients with large breast size and/or high BMIs are

prone to RD 2+ due to the greatest areas of skin-on-skin overlap.

However, our results showed that the BMI, as well as

chemotherapy, expression of hormone receptors or HER2,

were not directly associated with RD 2+, which was consistent

with the similar study carried by a French study team (13).
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Although the clinical and dosimetric characteristics were not

significantly predictive of symptomatic RD 2+ in multivariable

logistic modeling, they showed good performance both in the

training and validation datasets when the GBDT algorithm was

adopted (e.g., best AUCs in 5-flod CV in training and validation

dataset are 0.839 with 95% CI of 0.788-0.891 and 0.816 with 95%

CI of 0.705-0.927, respectively) (Table 3). This suggested that the

GBDT algorithm was the appropriate choice for the problem in

this study.
A B

FIGURE 2

The receiver operating characteristic (ROC) curves for the classification of patients with and without radiodermatitis (RD 2+). The 3 curves are
for classifiers that were built using clinical and dosimetric (red line), radiomics signatures within multiple ROIs (green line), and the combination
of clinical, dosimetric, and radiomics features within multiple ROIs (blue line), respectively. (A): prediction model performance in the training set;
(B): prediction model performance in the validation set. AUC, area under the curve; ROIs, regions of interest.
A B

FIGURE 3

Top 12 most important variables in the combined GBDT model for radiodermatitis prediction. (A) the radar plot of top 12 most important
prediction features in 5 folds cross validation GBDT machine learning process; (B) The mean and standard deviation of importance measures of
the top 12 most important radiodermatitis prediction features sorted by the average measures.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1017435
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Feng et al. 10.3389/fonc.2022.1017435
By using decision tree encapsulation screening method, we

screened out 5, 3, 4, 3, and 5 features from the 5 ROIs of

PTV_100PD, PTV_105PD, PTV_108PD, SKIN_20Gy, and

SKIN_30Gy, respectively. The number of radiomics features

retained from the PTV ROIs was greater than the skin ROIs.

The predictive ability of radiomics features of a single ROI was

relatively low, which indicated that it was difficult to extract

predictors with excellent prediction performance from a single

ROI. However, when we used all the screened 20 radiomics

features from multiple ROIs, the best AUC values of the

prediction model reached 0.998 with 95% CI of 0.996-1.0 and

0.907 with 95% CI of 0.829-0.985 in the training and validation

set, respectively. Therefore, we speculate that the occurrence of

RD 2+ is not only directly related to the patient’s skin, but also

the characteristics of the PTV adjacent to the skin which will also

have an important impact on the occurrence of RD 2+.

In this study, our analysis found that RD 2+ was not strongly

correlated to the dose characteristics of the skin as well as those

of PTV adjacent to the skin, whereas the radiomics indicators of
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PTV_100PD, PTV_105PD, PTV_108PD, SKIN_20Gy, and

SKIN_30Gy showed strongly correlated to the occurrence of

RD 2+. This suggested that radiomics characteristics of these

ROIs of the skin and PTV play more important role in the

prediction of RD 2+ than the dosimetric characteristics for

breast cancer patients treated with RT. For the sake of safety,

driving those PTV and skin regions to the low-abundance

regions of RD 2+-sensitive radiomics features holds the

potential to reduce the occurrence of RD 2+.

In the combined prediction model, radiomics features

extracted from the SKIN_30Gy, PTV_100PD, PTV_105PD, and

PTV_108PD were the most important predictors of RD2+; while

clinical characteristics, including estrogen therapy, tumor T stage,

and tumor quadrant positions, were also important predictors. A

previous study reported the volume of skin receiving a dose >35

Gy (SKIN_V35), PTV-V100%, PTV-V105%, PTV-V107% (i.e.,

volumes receiving percentage of prescribed dose within PTV)

were the most significant dosimetric predictors associated

with >50% probability of RD 2+ toxicity (20). Although our
FIGURE 4

Quantitative correlation analysis of changes in top 12 most important variables in the GBDT model with changes in risk scores of
radiodermatitis.
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FIGURE 5

The amplitude and spatial distributions of the feature values of IH_Gauss Fit1 Gauss Mean, GLCM_25225.4Contrast, and IH_Gauss Fit1 Gauss_Std
extracted from the sub-volumes within the ROIs of PTV_100PD, SKIN_30Gy, SKIN_30Gy, respectively, for patients with and without RD 2+.
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results did not show the strong correlation between the volumes of

SKIN_V30 and/or SKIN_V40 and the occurrence of RD 2+, and

the correlations between the volumes of PTV-V100%, PTV-

V105%, and/or PTV-V107% and the occurrence of RD 2+ were

not analyzed, our results revealed strong correlations between

specific radiomics features extracted from these volumes and the

occurrence of RD 2+.

As can be found from Tables 5, 6 and Figure 2, the model

performance was not improved significantly when the clinical

and dosimetric characteristics were added for training. This fact

highlighted the role of radiomics features, extracted from the

multiple dose-gradient-based ROIs of planning CT images of the

patients, in the prediction of RD 2+ before treatment using the

GBDTmodeling method. This can be very helpful if clinical and/

or dosimetric details of the patients were lost, as collecting these

data is a labor intensive and time consuming task in practice.

The reason why we chose CT images for radiomics study

rather than MRI images is that planning CT images were

obtained within a week before the start of RT, whereas MRI

images were usually acquired at the beginning of patient

admission. As such, the patients’ CT images reflect the

baseline of the skin condition before RT more than MRI

images do. Although MRI has advantages over CT in breast

imaging, Wang et al. conducted a predictive model for the

fibrotic level of neck muscles after radiotherapy by using

radiomic features extracted from the MRI images before and

after radiotherapy and planning CT in nasopharyngeal

carcinoma patients, and they found that the prediction model

based on CT radiomics features has better performance in the

prediction of the grade of post-radiotherapy neck fibrosis (25).

Therefore, we adopted extraction of radiomics features from

patients’ CT images instead of MRI images, which are usually

not available due to the high cost.

The robustness of radiomics features was usually influenced

by respiratory motion (26). For the patients with breast cancer,

the respiratory motion was mainly manifested in the anterior-

posterior direction. In our study, the left-side breast cancer

patients underwent CT scans in the breath-holding state,

therefore, the CT radiomics features from these patients was

relatively reliable. For patients with right-side breast cancers,

4D-CT scans were performed using the free-breathing scan

protocol. In this scenario, the maximum respiratory motion

was restrained not to exceed 1.5cm; the respiratory rate was

maintained at about 13 times per minute, and the optimal

scanning pitch was set based on our previous studies (27).

Furthermore, the contouring of ROIs and the extraction of the

radiomics features were conducted in the MIP image mode.

Therefore, the impact of respiratory motion on the training and

verification of the machine learning model should be negligible.

Although the prediction model of this study requires further

validation on an additional center as an independent test, we

believed that the partition of the dataset into training set and
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validation set is good practice to ensure the reliability of the

predictive models developed. In building GBDT model, we used

the internal data cross-validation method (i.e., 75% of patients as

the training set, and the remaining 25% as the validation set).

Given the small sample size, this cross-validation method can

make full use of the data. This internal cross-validation method

may be more suitable for small sample dataset and can improve

the generalization ability of the model, as reported in previous

studies on machine learning applications (28, 29). Part of

procedures of this method is similar to that reported

previously by Kocak et al. They performed feature extraction

and dimensionality reduction on CT images of all patients before

adopting a 10-fold cross validation random forest training and

validation (30). In our future work, we will consider to combine

the dataset of our center with other regions in China, in which an

independent test cohort can be obtained to achieve improved

reliability of the prediction model.

Inflammatory response has been shown to be generally

associated with RD 2+. In the initial period of RT, there is an

immediate generation of an inflammatory response. The early

inflammatory response to radiation is mainly caused by pro-

inflammatory cytokines (e.g., IL-1, IL-3, IL-5, IL-6, and tumor

necrosis factor [TNF]-a), chemokines, receptor tyrosine kinase,

and adhesions molecules. These factors can create local

inflammatory response of eosinophils and neutrophils. Janko

et al. have ascertained that IL-1 had an important role in the

development of RD 2+. They found that mice that lack either IL-

1 or the IL-1 receptor developed less inflammation and less

severe pathological changes in their skin (31). On the other

hand, 80% of tissues and cells are composed of water. Most of the

radiation damage from exposure of low-LET rays is due to the

radiolysis of water resulting in the production of free radicals

(ROS) and reactive nitrogen species (RNS). Radiation leads to an

upregulation of free radicals and oxidases in tissues, and the

distributions of which in cells , t issues and organs

are heterogeneous.

Given these facts, we expect that the distributions of pro-

inflammatory cytokines, ROS and RNS in the skin are

individualized and specific in patients, and these specificities

or differences might be reflected by the different distributions

of radiomics features, such as distributions of the feature values

of IH_Gauss Fit1 Gauss Mean, GLCM_25225.4Contrast,

and IH_Gauss Fit1 Gauss_Std shown in Figure 5. The

specific relationship between the distributions of cytokines

and enzymes and radiomics signatures needs to be

further investigated.

As can be observed in Figure 5, the high values of IH_Gauss

Fit1 Gauss Mean feature in PTV_100PD of the patient with RD 2

+ mainly appeared close to the body surface and chest wall, and

distributed in strip pattern. Whereas the high value of this

feature in the patient without RD 2+ appeared in the middle

of PTV_100PD in a cluster style. The GLCM_25225.4Contrast
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feature has a scatter-like distribution in the SKIN_30Gy of the

patient with RD 2+, whereas the feature of the patient without

RD 2+ ha s a s i ng l e -ho t - s po t d i s t r i bu t i on . The

IHGaussFit1GaussStd feature has little difference in the heat

map within SKIN_30Gy; however, the histograms (i.e.,

amplitude distribution) of the feature values between the

patient with and without RD 2+ exhibit apparently different

envelopes. These exemplary distributions of radiomics features

between patients with and without RD 2+ demonstrated their

potential to identify the patients at the high risk of RD 2+.

However, the correlation between the occurrence location of RD

2+ and the spatial distribution of radiomics feature needs to be

further investigated in the future study. We envision that the

prediction of the locations where RD 2+ occurs in advance of RT

will be possible, which would facilitate personalized skin care

prior to the occurrence of severe RD 2+.
5 Conclusion

In this study, we developed a novel dose-gradient based

GBDT machine learning model using 20 CT radiomics features

within PTV_100PD, PTV_105PD, PTV_108PD, SKIN_20Gy

and SKIN_30Gy volumes and 8 clinical and dosimetric

characteristics to predict RD 2+ in breast cancer patients

before radiotherapy treatment. Our results demonstrated that

combining features within multiple ROIs related to different

dosimetric gradient in treatment planning CT images can

achieve the best prediction performance compared to using

single ROI as well as clinical or dosimetric characteristics only.

The model offers the opportunity to take the risk of RD 2+ and

the sensitivity of multiple ROIs into account in the radiation

therapy planning procedures, thus enabling the personalized

radiation dose distribution at the planning stage of RT to

improve outcomes for patients at high risk for RD 2+.
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