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Background: Sepsis-associated acute kidney injury (AKI) is frequent in patients admitted

to intensive care units (ICU) and may contribute to adverse short-term and long-term

outcomes. Acute kidney disease (AKD) reflects the adverse events developing after AKI.

We aimed to develop and validate machine learning models to predict the occurrence of

AKD in patients with sepsis-associated AKI.

Methods: Using clinical data from patients with sepsis in the ICU at Beijing Friendship

Hospital (BFH), we studied whether the following three machine learning models

could predict the occurrence of AKD using demographic, laboratory, and other related

variables: Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM), decision

trees, and logistic regression. In addition, we externally validated the results in the

Medical Information Mart for Intensive Care III (MIMIC III) database. The outcome was

the diagnosis of AKD when defined as AKI prolonged for 7–90 days according to Acute

Disease Quality Initiative-16.

Results: In this study, 209 patients from BFH were included, with 55.5% of them

diagnosed as having AKD. Furthermore, 509 patients were included from the MIMIC

III database, of which 46.4% were diagnosed as having AKD. Applying machine learning

could successfully achieve very high accuracy (RNN-LSTM AUROC = 1; decision trees

AUROC = 0.954; logistic regression AUROC = 0.728), with RNN-LSTM showing the

best results. Further analyses revealed that the change of non-renal Sequential Organ

Failure Assessment (SOFA) score between the 1st day and 3rd day (1non-renal SOFA)

is instrumental in predicting the occurrence of AKD.

Conclusion: Our results showed that machine learning, particularly RNN-LSTM, can

accurately predict AKD occurrence. In addition, 1 SOFAnon−renal plays an important role

in predicting the occurrence of AKD.
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INTRODUCTION

The prevalence of acute kidney injury (AKI) in patients admitted
to intensive care units (ICU) is approximately 50%. Nearly half
of all AKI cases are present with sepsis, which may further
worsen the prognosis (1, 2). Previous studies have reported the
mortality rate of ICU patients with septic AKI as 30–45%, with
the survivors still associated with the increased risk of chronic
kidney disease (CKD) and cardiovascular events (3).

Increased severity and higher duration of AKI are associated
with poor prognosis. In line with several previous results, Kellum
et al. reported poorer clinical outcomes in patients with AKI
lasting longer than 7 days than in patients who had renal function
recovered within 7 days (4). Similar results have been previously
reported in other studies (5, 6). Furthermore, in patients who
developed sepsis persistent AKI beyond 7 days was associated
with adverse clinical outcomes (5, 6). Hence, Acute Disease
Quality Initiative-16 (ADQI-16) workshop suggested defining
acute kidney disease (AKD) as impaired kidney function lasting
7–90 days after AKI (7). Unlike AKI patients, whose renal
function typically recovers within 7 days, AKD patients suffer
from persistent renal impairment and often have poor clinical
outcomes (8).

Recent studies have utilized machine learning techniques
for predicting AKI. Using machine learning techniques such as
logistic regression and extreme gradient boosting (XGBoost),
Zhang et al. identified some important clinical factors associated
with AKI such as age, urinary creatinine concentration,
maximum blood urea nitrogen concentration, and albumin (9).
Zimmerman et al. showed that comprehensive demographics
and physiologic features can accurately predict max serum
creatinine level during day 2 and day 3 and also predict new
AKI onset by cross-validation on linear regression and multiple
machine learning models (10). However, AKD prediction has not
been reported.

The AKD phase is a time window for potentially initiating
key interventions to alter the natural history of kidney disease
(7), and thus, the early identification of patients at high risk
of developing AKD is important. Previous studies have shown
that age, hypertension, diabetes mellitus, the history of CKD,
the severity of AKI, and the use of mechanical ventilators
were associated with the onset of AKD (11–17), however,
machine learning methods have been seldom used to predict the
occurrence of AKD. This study was aimed at using longitudinal
data to predict the occurrence of AKD.

MATERIALS AND METHODS

Data Source and Participants
Patients were recruited from the intensive care unit of Beijing
Friendship Hospital (BFH), between January 1, 2015 and
December 21, 2020. We obtained electronic healthcare data from
Medical Information Mart for Intensive Care III (MIMIC III)
(18). The inclusion criteria were as follows: (1) age ≥ 18 years
old; (2) AKI caused by sepsis. The exclusion criteria were as
follows: (1) AKI duration <48 h; (2) length of survival time <7
days; (3) CKD stage 5 or end-stage kidney disease defined as
estimated glomerular filtration rate <15 ml/min/1.73 m2; (4)

patients with missing important data (e.g., data on demographics
and variables for calculating traditional severity scores). The
study was reported according to the recommendations of the
Transparent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis (TRIPOD) statement (19).

Data Extraction
We extracted the following data from BFH and the MIMIC
III records upon admission to ICU (day 1): (1) demographic
information; (2) ICU details, including vitals, laboratory
data, mechanical ventilation requirement, and exposure to
nephrotoxic drugs; (3) severity of illness was measured
using Simplified Acute Physiology Score II (SAPS II), Acute
Physiological Score III (APS III), and non-renal Sequential
Organ Failure Assessment (SOFA) score. The data on non-renal
SOFA, creatinine, and urine output were recorded daily until
day 3. Delta non-renal SOFA, delta creatinine, and delta urine
output was the difference between the value at day 3 and the
admission value.

Outcomes and Definitions
The occurrence of AKD was the primary outcome. AKD was
defined as the presentation of at least KDIGO Stage 1 criteria
for >7 days after an AKI-initiating event, which agrees with
the diagnostic criteria proposed by ADQI-16 in 2017 (7). The
definition of sepsis was based on the diagnostic criteria of
the Third International Consensus Definitions for Sepsis and
Septic Shock (Sepsis-3), including a suspected infection and
a SOFA score of ≥2 (20). The Kidney Disease: Improving
Global Outcomes (KDIGO) classification according to both
serum creatinine (SCr) and urine output (UO) criteria were
used to define AKI (21). CKD was defined according to the
Clinical Practice Guideline for the Evaluation and Management
of Chronic Kidney Disease (22).

Sample Size
The sample size was defined as having at least 10 outcome events
per variable per estimated parameter according to a previous
study (23). Our sample and the number of AKD approached that
determined by the calculated result.

Statistical Analysis
Values were presented as total numbers (percentages) for
categorical variables and the means ± SDs or medians
(interquartile ranges) for continuous variables. Comparisons
were made using the Student’s t-test or rank-sum test for
continuous variables, and the Chi-square test or Fisher’s exact
test for categorical variables, as appropriate. All statistical
tests were two-sided, and P-values of <0.05 were considered
statistically significant.

Model Development and Validation
The included patients from BFH and MIMIC III comprised
the training dataset and the validation dataset, respectively.
We selected three models for comparison: Recurrent Neural
Network-Long Short-Term Memory (RNN-LSTM), decision
tree, and logistic regression. The discrimination performance
of these models in the training dataset and the validation
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dataset was evaluated by area under the receiver operating
characteristic (AUROC).

Recurrent Neural Network-Long
Short-Term Memory
The RNN has been widely used to handle the longitudinal
variables, LSTM is one type of RNN (24, 25). It can effectively
process a large amount of sequential data. It comprises several
modules, which can store the processed data from the previous
stage. Unlike ordinary RNN, classic LSTM comprises several
modules called cells. Data can be transferred from the previous
cell to the next cell, including input gate, forget gate, and output
gate. All data are added to the input gate, and the output gate
displays the final data result. Unlike ordinary RNN which can
have only one memory stacking method, LSTM can control the
transmission state through the gating state, remember important
information and forget unimportant information. The forget gate
can enhance the ability of LSTM to process data and avoid the
problem of data dependence.

Decision Tree
Decision tree/random forest can predict the classification (AKD
or non-AKD) from the data, which can display the decision
result more clearly (26). We can use the decision tree to interpret
the prediction results. The process from the root to the leaf
of the tree shows the prediction classification, according to the
algorithm of the decision tree. Each step of the decision tree
involves checking a piece of data. If the predictor satisfied a
certain condition, it would follow the upper branch to indicate
type 0, predicting that AKDwill occur. Otherwise, it would follow
the lower branch to indicate type 1, predicting that AKD will
not occur. The decision trees were trained to create a model that
could factor in multiple input variables and predict the value of
the target variable. The division of the tree continues until the
node contains the minimum number of training examples or

reaches the maximum tree depth. The complexity parameter is
used to indicate the prediction performance, which depends on
how many classes are mixed in the two groups generated by the
decision tree (27). We choose the number of leaves when the
complexity parameter is the lowest to minimize the chance of
making errors in the decision tree.

Logistic Regression
In the training dataset, we used the Least Absolute Shrinkage and
Selection Operator (LASSO) method to select the most useful
predictive variables (28). Continuous variables were made into
dichotomous variables and were entered into a logistic regression
with other variables. The nomogram predicting the occurrence
of AKDwas established using the LASSOmethod for the selected
variables. The performance of the nomogram was evaluated by
calibration curves. The calibration evaluation uses a calibration
chart to show the relationship between the observed frequency
and the predicted probability. The nomogram was verified in the
validation dataset to evaluate the stability of the nomogram. In
addition, decision curve analysis (DCA) was used to evaluate
the clinical utility of the final nomogram (29). The net benefit
is calculated by subtracting the proportion of false positives from
true positives (30).

Moreover, the discrimination of three machine learning
algorithms in predicting the occurrence of AKD patients was
compared using Delong’s method. The discrimination was
validated externally by the AUROC in the MIMIC III database.

We performed all statistical analyzes using R software version
4.0.5 (R Foundation for Statistical Computing).

RESULTS

Participants
As shown in Figure 1, a total of 5,629 patients were screened
during the study period in the BFH. The initial research

FIGURE 1 | Flow chart of patient selection.
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TABLE 1 | Baseline characteristics of the Beijing Friendship Hospital (BFH) and Medical Information Mart for Intensive Care III (MIMIC III) cohorts.

BFH cohort MIMIC III cohort

Non-AKD (n = 93) AKD (n = 116) P-value Non-AKD (n = 273) AKD (n = 236) P-value

Age, mean (SD) 54.7 (20.7) 64.5 (14.7) <0.001 64.3 (16.5) 62.6 (18.1) 0.252

Male, (%) 58 (62.4) 74 (63.8) 0.832 160 (58.6) 117 (49.6) 0.041

BMI, kg/m2, median [Q1, Q3] 26.6 (22.5, 30.4) 26.3 (22.4, 29.4) 0.837 27.3 (23.5, 32.2) 27.3 (23.3, 31.2) 0.782

Heart failure, n (%) 19 (20.4) 30 (25.9) 0.357 66 (24.2) 50 (21.2) 0.423

Hypertension, n (%) 45 (48.4) 74 (63.8) 0.025 21 (7.7) 30 (12.7) 0.060

Chronic obstructive pulmonary disease, n (%) 12 (12.9) 19 (16.4) 0.482 62 (22.7) 61 (25.8) 0.410

Chronic liver disease, n (%) 3 (3.2) 6 (5.2) 0.491 30 (11.0) 27 (11.4) 0.872

Diabetes mellitus, n (%) 35 (37.6) 66 (56.9) 0.006 76 (27.8) 52 (22.0) 0.132

Chronic kidney disease, n (%) 37 (39.8) 26 (22.4) 0.007 36 (13.2) 18 (7.6) 0.042

Charlson score, median [Q1, Q3] 2 (1, 3) 2 (1, 4) 0.001 2 (1, 3) 2 (1, 3) 0.729

Emergency department, n (%) 59 (63.4) 75 (64.7) 0.856 33 (12.1) 36 (15.3) 0.298

Surgery, n (%) 25 (26.9) 20 (17.2) 0.092 99 (36.3) 56 (23.7) 0.002

APS III, median [Q1, Q3] 45 (32, 62) 44.5 (32, 63) 0.779 40 (29, 55) 36.5 (26, 48) 0.035

SAPS II, median [Q1, Q3] 35 (25, 46) 35 (27, 44) 0.779 31 (23, 44) 31.5 (23, 41) 0.461

Non-renal SOFA at day 1, median [Q1, Q3] 3 (1, 6) 3 (1, 6) 0.310 3 (1, 5) 2 (1, 4) 0.044

Non-renal SOFA at day 3, median [Q1, Q3] 3 (1, 6) 3 (1, 6) 0.375 2 (1, 4) 2 (1, 4) 0.226

Delta non-renal SOFA, median [Q1, Q3] 0 (0, 0) 0 (0, 1) <0.001 0 (0, 0) 0 (0, 0) 0.478

AKI stage, n (%) <0.001 0.008

1 13 (14.0) 3 (2.6) 132 (48.4) 145 (61.4)

2 33 (35.5) 20 (17.2) 91 (33.3) 55 (23.3)

3 47 (50.5) 93 (80.2) 50 (18.3) 36 (15.3)

Baseline creatinine, mg/dl, median [Q1, Q3] 0.7 (0.5,1.0) 0.8 (0.5, 1.1) 0.880 0.6 (0.5, 0.9) 0.60 (0.4, 0.9) 0.700

Creatinine at day 1, mg/dl, median [Q1, Q3] 1.3 (0.9, 2.2) 1.4 (0.9, 2.5) 0.857 1.1 (0.9, 1.5) 1.0 (0.8, 1.4) 0.050

Creatinine at day 3, mg/dl, median [Q1, Q3] 1.1 (0.9, 1.6) 1.2 (0.8, 2.0) 0.014 1.0 (0.8, 1.3) 0.9 (0.7, 1.4) 0.159

Delta creatinine, mg/dl, median [Q1, Q3] −0.1 (−0.7, 0.0) −0.1 (−0.40, 0.0) 0.001 −0.1 (−0.20, 0.0) 0.0 (−0.1, 0.0) <0.001

Urine output at day1, ml/kg/h, median [Q1, Q3] 0.9 (0.4, 2.9) 0.9 (0.4, 2.8) 0.457 1.9 (0.7, 3.9) 1.9 (0.8, 4.0) 0.324

Urine output at day3, ml/kg/h, median [Q1, Q3] 1.1 (0.7, 1.7) 0.9 (0.3, 1.5) <0.001 1.0 (0.6, 1.6) 1.1 (0.7, 2.1) 0.438

Delta urine output, ml/kg/h, median [Q1, Q3] 1.1 (0.7, 1.7) 0.9 (0.3, 1.5) <0.001 −0.3 (−1.7, 0.0) −0.2 (−1.0, 0.0) 0.219

Diuretics, n (%) 22 (23.7) 94 (81.0) <0.001 126 (46.2) 91 (38.6) 0.084

Mechanical ventilation, n (%) 61 (65.6) 74 (63.8) 0.787 137 (50.2) 103 (43.6) 0.141

Renal toxic drugs, n (%) 46 (49.5) 89 (76.7) <0.001 115 (42.1) 84 (35.6) 0.132

MIMIC III, Medical Information Mart for Intensive Care III; AKD, acute kidney disease; BMI, body mass index; APS III, Acute Physiological Score III; SPAS II, Simplified Acute Physiology

Score II; SOFA, Sequential Organ Failure Assessment.

identified 23,620 ICU admissions from the MIMIC III database.
In addition, 209 and 509 patients were assigned to the
training dataset and validation dataset, respectively. Twenty-
eight predictors were extracted from the database and included
in the model. The occurrence of AKD rate was 55.5% (116
patients with AKD) in the training dataset and 46.4% (236
patients with AKD) in the validation dataset. A comparison of
baseline characteristics between the AKD group and non-AKD
group in BFH and MIMIC-III cohorts are recorded in Table 1.
AKD patients were older and had higher Charlson score and
delta non-renal SOFA; higher creatinine at day 3 and AKI stage;
more medical history of hypertension, diabetes mellitus, and
CKD; more application of diuretics and renal toxic drugs in
the training dataset (p < 0.05), while they had a lower delta
creatinine, urine output at day 3, and delta urine output (p <

0.05). Furthermore, comorbidities of CKD, higher AKI stage, and

lower delta creatinine also showed similar results between AKD
patients and non-AKD patients in the validation dataset (p <

0.05). Our study was reported according to the guidelines of the
TRIPOD statement.

Model Development
In RNN-LSTM, as the validation loss was decreasing over time,
the accuracy of the model increased (Figure 2). The LSTM has
been trained up to 200 epochs to obtain the smallest loss and
the greatest accuracy. Throughout the training process of 200
epochs, our training loss and validation loss had decreased and
accuracy increased gradually, respectively. At the 200th epoch,
the training loss and the validation loss are approximately the
lowest, where the training accuracy and the validation accuracy
reach 97.96 and 97.66%, respectively. We found that the training
graph and the validation graph are quite similar. Thus, it can be
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FIGURE 2 | Loss (A) and accuracy (B) vs. epoch graph (up to 200 epochs).

FIGURE 3 | Significance of the predictors in the Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM) model. All 28 important features regarding the

development of the final predictive model are depicted.

concluded that themodel is quite accurate. It is neither overfitting
nor underfitting. The significance of the predictors in the RNN-
LSTM model is presented in Figure 3. The feature variable
importance showed that 1non-renal SOFA had an important
role. Other variables, such as creatinine on day 3, hypertension,
and diuretics, also showed marked effects. As the decision trees
algorithm has nodes that represent variables and conjunction that
connects the nodes, the performance of this algorithm mainly
depends on the number of nodes and tree size (31). We explored
different ways to find the optimal performance of the decision
trees algorithm by adjusting the number of nodes (Figure 4). We
found that the optimal number of nodes that could minimize

the decision trees’ misclassification error rate was 10, where the
complexity parameter was 0.018. Using this number of nodes,
the decision trees’ structure was pruned. Among these variables,
1non-renal SOFA had a crucial role in the prediction of the
occurrence of AKD. If 1non-renal SOFA < 1, delta creatinine
played an important role in the next decision. If 1non-renal
SOFA> 1, whether used diuretics or not was important. If1non-
renal SOFA> 1 and patients did not receive diuretics, he/she was
more likely to be diagnosed with AKD soon (Figure 5).

In logistic regression, twenty-eight variables were included
in the LASSO regression analysis and narrowed down to 10
features in the LASSO regressionmodel (Figure 6). Next, amodel
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FIGURE 4 | Contribution of 28 variables in predicting the occurrence of patients with sepsis-associated AKD.

FIGURE 5 | Optimized decision tree for the classification of acute kidney disease (AKD)/non-AKD of patients.

integrating age, combined with hypertension, diabetes mellitus,
CKD, delta non-renal SOFA, AKI stage, delta creatinine, delta
urine output, diuretics, and nephrotoxic drugs was established
using the training dataset. Based on this model, a nomogram
was plotted to predict the probability of the occurrence of AKD
patients (Figure 7). The calibration curve was described using the
bootstrap method for both, the training and validation datasets
(Figure 8A). The apparent line and a bias-corrected line only
slightly deviated from the ideal line, indicating a good agreement
between the prediction and reality. The DCA curve was plotted to

perform a clinical application of this nomogram. In the training
dataset, clinical intervention guided by this nomogram provided
a greater net benefit when the threshold probability was within
0.01 and 0.71 (Figure 8B).

Model Performance
In the training dataset, we evaluated the discrimination of
three models. RNN-LSTM was well-discriminated in the
external validation dataset (AUROC: 1), which was greater
than decision trees and logistic regression (AUROC: decision
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FIGURE 6 | Clinical feature selection using the Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression. (A) Optimal parameter (lambda)

selection in the LASSO logistic regression. The black vertical lines were drawn at the optimal values by using the minimum criteria and the one SE of the minimum

criteria (the 1-SE criteria). (B) LASSO coefficient profiles of the 28 features. A coefficient profile plot was produced against the log (lambda) sequence.

FIGURE 7 | Nomogram developed based on the training dataset with the incorporation of age, combined with hypertension, diabetes mellitus, chronic kidney disease

(CKD), delta non-renal Sequential Organ Failure Assessment (SOFA), acute kidney injury (AKI) stage, delta creatinine, delta urine output, diuretics, and renal toxic drugs.
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FIGURE 8 | Calibration curves (A) and decision curve analysis (B) for nomogram.

FIGURE 9 | The area under the receiver operating characteristic (AUROC) curve of the RNN-LSTM, decision trees, and logistic regression. (A) Training dataset; (B)

Validation dataset.

trees 0.954, logistic regression 0.728; Figure 9A). In the
validation dataset, among RNN-LSTM, decision trees, and
logistic regression algorithms, the RNN-LSTM algorithm
showed the highest performance with an AUROC of 1.000,
followed by the decision trees with an AUROC of 0.872.
Logistic regression had the least predictive accuracy, with
an AUROC of 0.717. All machine learning models, except
the logistic regression model, showed good discrimination
ability in the training and validation datasets. In the
training and validation datasets, the RNN-LSTM algorithm
achieved the best performance among the four models
(Figure 9B).

DISCUSSION

In the present study, a total of 209 patients from BFH
were included, with 55.5% of them diagnosed as having
AKD. Using the data from BFH and MIMIC III records,
we successfully developed and validated machine learning
models to predict the occurrence of AKD in patients
with AKI.

Since the diagnostic criteria for AKD were released in
ADQI-16, several investigations have been undertaken on the
epidemiology of AKD. Kellum et al. reported the incidence
rate of AKD as 36.2% in ICU patients (4). Federspiel et
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al. showed the incidence rate of sepsis-associated AKD as
32.4% in critically ill patients (5). Peerapornratana et al.
reported the incidence rate of sepsis-associated AKD in patients
dying within 7 days was 33.6% (161/479) from the first day
of being diagnosed with AKI (11). Our studies showed an
AKD diagnosis rate of 55.5%. This higher rate could be
attributed to the exclusion of patients with an AKI duration of
<3 days.

Ostermann et al. suggested that nephrotoxic drugs increase
the risk of renal function impairment (32). Drugs are
among the main causes of AKI. Its pathogenesis included
acute tubular necrosis, tubular obstruction by crystals or
casts, and interstitial nephritis induced by drugs and their
metabolites (33). Our study shows that nephrotoxic drugs
increase the incidence of AKD, possibly because they deteriorate
renal function.

There has been a controversy about whether the application
of diuretics can improve renal function in recent years. A
Phase II Randomized Blinded Controlled Trial of the Effect of
furoSemide in Critically Ill Patients With eARly Acute Kidney
Injury (SPARK-RCT) study showed that diuretics improved
neither the recovery rate of AKI nor the prognosis of the
patients (34). The study of Zhao et al. reported that administering
diuretics improved renal function in patients on the MIMIC
III database (35). Our research shows that the use of diuretics
may be related to the low incidence of AKD. The effective
use of diuretics can reflect the recovery of the patients’
renal function, but it may not change it. More research is
needed to further clarify the role of diuretics in improving
renal function.

There are some studies on the prediction of AKD in
hospitalized patients with AKI. Zhao et al. used multivariable
logistic regression analysis with the LASSO method to select
features and build a nomogram (36). The model displayed good
predictive power with an AUROC of 0.834 (95% CI:0.773–0.895)
in the training dataset and an AUROC of 0.851 (95% CI:0.753–
0949) in the validation dataset. Yan et al. also established a
prediction model using multivariable logistic regression analysis
(37). The 8-variable model showed good discrimination and
calibration in predicting AKD stage 2–3 with the AUROC being
0.85 (95% CI:0.83–0.87). Xiao et al. established a prediction
model usingmultivariable logistic regression analysis. Thismodel
showed a large AUROC (0.879 ± 0.009, 0.879 ± 0.011) and had
stable sensitivity (81 and 82%) and specificity (81 and 80%) in
derivation cohort and validation dataset, respectively (38). In
our study, the AUROCs of the logistic regression model were
0.728 (training dataset) and 0.717 (validation dataset), which
were lower than the above studies. This may be due to differences
in the study population. A study by Tuan et al. studied sepsis-
associated AKI patients, however, they predicted progression
to chronic kidney disease rather than AKD (39). Therefore,
to our knowledge, this is the first study to use longitudinal
data to predict the occurrence of AKD with the application of
machine learning.

To identify AKD patients, an important strength of our study
was the use of new criteria of sepsis-associated AKI, and this
method would overcome some inherent weaknesses of using

hospital discharge data (40, 41). The delta non-renal SOFA
contains only 5 simple variables recorded in clinical routines.
Therefore, if implemented, the delta non-renal SOFA will not
require manual input of additional variables as the model is
based on variables routinely collected. In our study, for predicting
the occurrence of AKD, the delta non-renal SOFA score had
high discriminatory power. The delta non-renal SOFA is simple
for calculation and easy to use and has robust discrimination
and calibration. To predict the occurrence of AKD patients
with sepsis, ICU physicians could use the delta non-renal SOFA
and improve clinical decision-making at the bedside. Moreover,
the predictor variables that we used were quite universally
obtained in the emergency department. After further validation
and recalibration, the delta non-renal SOFA appeared to have
the potential to help emergency department clinicians triage
decisions and ICU placement.

Limitations
The study has the following limitations. First, we chose to analyze
the patients admitted to the ICUwith sepsis. There were certainly
patients who had been diagnosed with sepsis before or after the
ICU admission, but we limited our study population to those who
fulfilled sepsis-3 criteria during their 1st day in ICU. Second, we
have a limited number of patients and a small sample size, but we
conducted an external validation by using the data of 509 sepsis-
associated AKI patients from the MIMIC III database, and the
results indicated that the calibration of delta non-renal SOFA was
relatively well with accordance of occurrence of AKD. Finally,
we prepared our dataset from the retrospective database, and the
outcomes of sepsis-associated AKI patients could have changed
over time due to the update of treatment guidelines and advances
in treatment and diagnostic technology.

CONCLUSION

Machine learning could be applied to the predictive AKD, and it
is where the RNN-LSTM model works the best. The non-renal
SOFA plays an important role in predicting the AKD.
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