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Abstract: Cisplatin is a widely used and highly effective cancer chemotherapeutic agent. 
One of the limiting side effects of cisplatin use is nephrotoxicity. Research over the  
past 10 years has uncovered many of the cellular mechanisms which underlie cisplatin-
induced renal cell death. It has also become apparent that inflammation provoked by injury 
to renal epithelial cells serves to amplify kidney injury and dysfunction in vivo. This 
review summarizes recent advances in our understanding of cisplatin nephrotoxicity and 
discusses how these advances might lead to more effective prevention. 
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1. Introduction 

Cisplatin (cis-diamminedichloroplatinum(II), CDDP) is an antineoplastic drug used in the treatment 
of many solid-organ cancers, including those of the head, neck, lung, testis, ovary, and breast. While 
toxicities include ototoxicity, gastrotoxicity, myelosuppression, and allergic reactions [1,2], the main 
dose-limiting side effect of cisplatin is nephrotoxicity [3–5]. The nephrotoxicity of cisplatin has been 
recognized since its introduction over 25 years ago. Yet, in spite of intense efforts over the ensuing 
decades to find less toxic but equally effective alternatives, cisplatin continues to be widely prescribed. 
It remains as a standard component of treatment regimens for head and neck cancers [6], testicular 
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cancer [7], small-cell [8] and non-small cell lung cancer [9], ovarian [10,11] and cervical cancer [12], 
bladder cancer [13] and others [14]. Cisplatin is available as a generic drug in the United States, 
making the tracking of sales and use difficult. However, a search of the ClinicalTrials.gov database 
returned 543 active treatment trials involving cisplatin as an indication of its ongoing wide clinical use.  

Cisplatin nephrotoxicity can present in a number of ways (Table 1). However, the most serious and 
one of the more common presentations is acute kidney injury (AKI) which occurs in 20–30% of 
patients. This review focuses on the mechanisms of cisplatin-induced acute kidney injury. We will 
briefly discuss the clinical features of cisplatin-induced AKI followed by a more detailed discussion of 
the responsible cellular mechanisms, with a particular emphasis on the role of inflammation in organ 
dysfunction. We will conclude with a consideration of mechanistically-targeted preventive measures.  

Table 1. Renal manifestations of cisplatin treatment. 

Acute kidney injury (20–30%) [15,16]] 
Hypomagnesemia (40–100%) [17–21] 
Fanconi-like syndrome [22–26] 
Distal renal tubular acidosis  [27] 
Hypocalcemia  [28,29] 
Renal salt wasting  [22,30–36] 
Renal concentrating defect [22,34,37–40] 
Hyperuricemia  [41] 
Transient proteinuria  [42] 
Erythropoietin deficiency [43] 
Thrombotic microangiopathy  [44] 
Chronic renal failure [15,45,46] 

2. Clinical Characteristics of Cisplatin Nephrotoxicity 

Cisplatin was first shown to inhibit cell division in 1965 [47]. By 1969, cisplatin was found to have 
anti-tumor effects in animal models [48]. The first report of nephrotoxicity in animal studies was 
in 1971 [49], which demonstrated histopathologic changes of acute tubular necrosis along with 
azotemia. Early clinical use of cisplatin saw dose-related cisplatin-induced acute renal failure in 14  
to 100% of patients, with the incidence varying with the cumulative dose [15,16]. The incidence of 
renal insufficiency in more recent experience using saline hydration and diuresis, is in the range  
of 20–30% of patients [50]. Typically, the onset of renal insufficiency begins several days after the 
dose of cisplatin, as revealed by increases in the serum creatinine and blood urea nitrogen 
concentrations. The urine output is usually preserved (non-oliguric) and the urine may contain glucose 
and small amounts of protein, indicative of proximal tubular dysfunction. Hypomagnesemia is also 
common, particularly after repeated doses of cisplatin, even in the absence of a fall in the glomerular 
filtration rate. Recovery of renal function usually occurs over a period of 2–4 weeks, though more 
protracted courses, as well as lack of recovery are reported. Progressive and permanent nephrotoxicity 
can result with successive treatment courses despite preventative measures [51,52].  

A number of risk factors for cisplatin nephrotoxicity have been identified (Table 2). Nephrotoxicity 
increases with the dose and frequency of administration and cumulative dose of cisplatin [15]. High 
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peak plasma free platinum concentration has been correlated with nephrotoxicity [53], and one study 
has suggested glomerular filtration rate and plasma magnesium concentrations decreased after cisplatin 
doses higher than 50 mg/m2 body surface area, but were unchanged if the dose was below 20 mg/m2 
[50]. Other patient variables have been found to associate with increased risk of nephrotoxicity, 
including female sex, older age, smoking, and hypoalbuminemia [54,55]. In general, pre-existing renal 
dysfunction increases the risk for AKI. In the specific case of cisplatin, however, there are limited data 
on the incidence of nephrotoxicity in populations with chronic kidney disease since many trials 
exclude patients with renal insufficiency [56]. Diabetes decreases the risk of cisplatin nephrotoxicity in 
animal models [57], but clinical studies have not found any impact of diabetes on nephrotoxicity in 
humans [58,59]. Patients with a certain polymorphism in the OCT2 gene, which regulates platinum 
transport into kidney cells, may also be at lower risk of nephrotoxicity [60,61]. 

Table 2. Risk factors for cisplatin nephrotoxicity. 

Increased risk 
Dose 
Frequency 
Cumulative dose 
Older age 
Female sex 
Smoking 
Hypoalbuminemia  
Pre-existing renal insufficiency (limited data in humans) 
Decreased risk 
Diabetes (uncertain in humans) 
OCT2 polymorphisms 

3. Mechanisms of Cisplatin Nephrotoxicity 

3.1. Accumulation of Cisplatin in Kidney Cells 

Cisplatin is cleared by the kidney by both glomerular filtration and tubular secretion [62]. Cisplatin 
concentrations within the kidney exceed those in blood suggesting an active accumulation of drug by 
renal parenchymal cells. Previous studies using kidney slices [63], cultured renal epithelial cells [64] 
and isolated perfused proximal tubule segments [65] have provided evidence for basolateral-to-apical 
transport of cisplatin. Studies in recent years have identified two different membrane transporters 
capable of transporting cisplatin into cells: Ctr1 and OCT2. Ctr1 is a copper transporter which was also 
shown to mediate cisplatin uptake into mammalian cells [66], including ovarian cancer cells [67]. Ctr1 
is highly expressed in adult kidney and the protein localizes to the basolateral membrane of the 
proximal tubule [68]. Downregulation of Ctr1 expression in kidney cells in vitro decreased both 
cisplatin uptake and cytotoxicity, suggesting that Ctr1 is an important cisplatin uptake mechanism in 
these cells [68]. The role of Ctr1 in cisplatin nephrotoxicity in vivo has not been examined. In addition, 
the organic cation transporter OCT2 (SLC22A2) transports cisplatin [69–72]. Cisplatin was shown to 
inhibit the uptake of other OCT2 substrates, consistent with the view that these substrates share a 
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common transport pathway. Likewise, cimetidine, an OCT2 substrate, reduced cisplatin uptake and 
cytotoxicity in vitro [68–70] and cisplatin nephrotoxicity in vivo [61]. Two recent observations point to 
an important role for OCT2 in mediating renal cisplatin uptake and toxicity. First, knockout of the 
OCT2 gene significantly reduced urinary cisplatin excretion [60] and nephrotoxicity [60,61]. Second, a 
nonsynonymous single-nucleotide polymorphism (SNP) in the OCT2 gene (rs316019) was associated 
with reduced cisplatin-induced nephrotoxicity in patients [60,61]. The relevance of these findings to 
the possible prevention of cisplatin nephrotoxicity is discussed later.  

3.2. Biotransformation of Cisplatin in the Kidney 

Studies in rats and mice indicate that cisplatin undergoes metabolic activation in the kidney to a 
more potent toxin. This process begins with the formation of glutathione conjugates in the circulation, 
perhaps mediated by glutathione-S-transferase [73,74]. As the glutathione-conjugates pass through the 
kidney, they are cleaved to cysteinyl-glycine-conjugates by gamma glutamyl transpeptidase (GGT) 
expressed on the surface of the proximal tubule cells [75,76]. The cysteinyl-glycine-conjugates are 
further metabolized to cysteine-conjugates by aminodipeptidases, also expressed on the surface of the 
proximal tubule cells [75]. The cysteine-conjugates are transported into the proximal tubule cells, 
where they are further metabolized by cysteine-S-conjugate beta-lyase to highly reactive thiols [75–77].  

3.3. Cellular Targets of Cisplatin 

Platinum compounds are believed to mediate their cytotoxic effects through their interaction with 
DNA (Figure 1). In an aqueous environment, the chloride ligands of cisplatin are replaced by water 
molecules generating a positively charged electrophile. This electrophile reacts with nucleophilic sites 
on intracellular macromolecules to form DNA, RNA, and protein adducts [78]. Cisplatin binds to DNA 
leading to the formation of inter- and intrastrand cross-links, thereby arresting DNA synthesis and 
replication in rapidly proliferating cells [79]. The finding that cells deficient in DNA repair are more 
sensitive to cisplatin-induced cell death supports the concept that cisplatin mediates its anti-tumor 
effects through DNA damage. However, the primacy of nuclear DNA damage as the cause of 
cisplatin-induced cell death has been challenged. In fact, only a small amount of cellular platinum 
(<1%) is bound to nuclear DNA and there is a poor correlation between the sensitivity of cells to 
cisplatin-induced cell death and the extent of DNA platination [80]. Moreover, Mandic et al. [81] used 
enucleated cells to demonstrate that cisplatin-induced apoptotic signaling occurs independently of 
nuclear DNA damage.  

Several lines of evidence suggest that mitochondrial DNA, or other mitochondrial targets, are 
perhaps more important than nuclear DNA damage in mediating cisplatin-induced cell death [82]. 
Cisplatin is hydrolyzed to generate a positively charged metabolite which preferentially accumulates 
within the negatively charged mitochondria. Thus, the sensitivity of cells to cisplatin appears to 
correlate with both the density of mitochondria [83] and the mitochondrial membrane potential [84]. 
This observation may explain the particular sensitivity of the renal proximal tubule to cisplatin 
toxicity, as this segment exhibits one of the highest densities of mitochondria in the kidney [85]. A 
comparison of cisplatin-sensitive and cisplatin-resistant ovarian cancer cells revealed a lower 
mitochrondrial membrane potential as well as less damage to mitochondrial DNA in the latter [84]. 
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Moreover, depletion of mitochondrial DNA by growth of cells in ethidium bromide rendered cells 
highly resistant to cisplatin [83]. Finally, mitochondrial DNA may be more susceptible than nuclear 
DNA to cisplatin-induced damage, due to less efficient DNA repair mechanisms [86]. Taken together, 
these observations point to mitochondrial DNA as an important target in cisplatin toxicity.  

Figure 1. Pathways of cisplatin-induced epithelial cell death. Cisplatin enters renal 
epithelial cells via the OCT2 and, to a lesser extent, Ctr1 transporters. Cisplatin causes 
damage to nuclear and mitochondrial DNA and production of reactive oxygen species 
(ROS) which lead to activation of both mitochondrial and non-mitochondrial pathways of 
apoptosis and necrosis.  

 

Mitochondrial energetics are also disrupted by cisplatin and may contribute to nephrotoxicity. Fatty 
acids are the major source of energy for the proximal tubule, the primary site of cisplatin kidney injury. 
Cisplatin inhibits fatty acid oxidation in mouse kidney and in proximal tubule cells in culture through a 
reduction in PPAR-α mediated expression of genes involved in cellular fatty acid utilization [87,88]. 
Agonists of PPAR-α reduce cisplatin nephrotoxicity in vivo [87,89]. Cisplatin also affects 
mitochondrial respiratory complexes and function. Exposure of cultured proximal tubule cells to 
cisplatin in vitro inhibited mitochondrial complexes I to IV of the respiratory chain and, as a result, 
decreased intracellular ATP levels [90]. Cisplatin treatment in vivo also resulted in mitochondrial 
dysfunction as evidenced by a decline in membrane electrochemical potential, a substantial decrease in 
mitochondrial calcium uptake and depletion of mitochondrial antioxidant defense systems [90,91].  

3.4. Apoptotic Pathways of Cisplatin Cytotoxicity 

The mechanisms of cisplatin-induced nephrotoxicity are complex and involve multiple pathways 
and molecules (Figure 1) [92,93]. The cellular pathways of cisplatin injury to kidney cells have been 
examined primarily in vitro using freshly isolated or cultured renal tubular epithelial cells. In vitro, low 
concentrations of cisplatin preferentially result in apoptotic cell death while at higher concentrations 
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necrosis ensues [94,95]. In vivo administration of nephrotoxic doses of cisplatin produces a large 
increase in both necrosis and apoptosis in the kidney [96–98]. Several apoptotic pathways have been 
implicated in cisplatin-induced renal epithelial cell death, including the extrinsic pathway activated 
through death receptors, such as TNF receptors or Fas, the intrinsic mitochondrial pathway and the 
endoplasmic reticulum stress pathway. Evidence that death receptor pathways may be activated by 
cisplatin include observations that TNFR1 and Fas-deficient renal epithelial cells are resistant to 
cisplatin-induced cell death [99], that cisplatin increases the activity of caspase 8 [100] and that 
inhibition of caspase 8 reduces cisplatin-induced cell death in vitro [101]. As will be discussed 
below, TNF-α stimulates an inflammatory response in vivo which exacerbates cisplatin 
nephrotoxicity [99,102,103]. The relative importance of TNF-α directly engaging TNF receptors on 
renal epithelial cells to induce apoptosis versus its role in promoting inflammation is not clear. 
Additional studies using tissue-specific deletions of TNF receptors will be needed to address this issue. 
In contrast, there is a large body of evidence indicating that cisplatin activates the intrinsic 
mitochondrial pathway of apoptosis. Thus, exposure of renal epithelial cells to cisplatin results in the 
translocation of Bax to mitochondria, activation of caspase 2, release of cytochome c, AIF, 
SMAC/Diablo, Omi/HtrA2 and endonuclease G from mitochondria and activation of 
caspase 9 [95,104–111]. Caspases are a family of cell death proteases that play an essential role in the 
execution phase of apoptosis in cisplatin induced renal tubular epithelial cell death in vitro and 
in vivo [109,112–114]. Activation of caspases 3, 8 and 9 occur as early as 12 hours after cisplatin 
treatment of renal epithelial cells in vitro [113] and inhibition of caspase activity suppresses cisplatin 
induced cell death [109,113–115]. Both p53 dependent expression of caspases 6 and 7 [114] and 
p53-independent activation of caspases through Bax/Bak mediated release of cytochrome C [109] 
contribute to cisplatin induced tubular epithelial cell death. The ER stress pathway involves activation 
of caspase 12 and Ca2+ dependent phospholipase A2 and pharmacological inhibition of these enzymes 
reduces cisplatin-induced apoptosis [116–118]. Finally, autophagy has recently been shown to 
participate in cisplatin-induced cell injury. Autophagy is a cellular process of degradation of damaged 
organelles, protein aggregates and other macromolecules in the cytoplasm. Treatment of renal 
epithelial cells with cisplatin causes the rapid expression of autophagic proteins and the formation of 
autophagosomes [119–121]. Inhibition of autophagy resulted in accelerated apoptosis indicating a 
protective role for autophagy in the cellular response to cisplatin [119,121]. 

Cell cycle regulators also play an important role in tubular cell damage [122,123]. Shortly after AKI 
many normally quiescent kidney cells enter the cell cycle. Control of the cell cycle is determined by 
the sequential activation and inhibition of the cyclin-dependent kinases (e.g., cdk2). p21, a cyclin 
dependent kinase inhibitor, is upregulated in kidney after cisplatin treatment and plays a protective role 
against toxicity. Thus, overexpression of p21 inhibits cisplatin-induced apoptosis in vitro while mice 
lacking the p21 gene are more sensitive to cisplatin nephrotoxicity in vivo [97,123,124]. The protective 
effects of p21 are due to its inhibition of cdk2, a cell cycle-associated kinase primarily active during 
late G1 through S phases [124,125]. Presumably, by inhibiting progression through the cell cycle, p21 
allows time for cells to repair cisplatin-induced DNA damage. 

p53 has gained attention as a major mediator of cisplatin-induced cell death. The p53 tumor 
suppressor induces cell cycle arrest or apoptosis in response to DNA damage, oncogene activation, and 
hypoxia [126]. Cisplatin treatment activates p53 in kidney in vivo [127] and renal epithelial cells 
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in vitro [100,115,128]. Moreover, pharmacologic or genetic inhibition of p53 transcriptional activity 
reduced cisplatin-induced caspase activation and apoptosis in vitro [100,115,128], and cisplatin-induced 
apoptosis and renal injury in vivo [127,129]. Two targets of p53 transcriptional regulation, p53 
up-regulated modulator of apoptosis-alpha (PUMA-α) and p53-induced protein with a death domain 
(PIDD), may mediate p53 actions in cisplatin cell death. PUMA-α is a proapoptotic Bcl-2 family 
protein which is induced by cisplatin in a p53-dependent manner [107]. Activation of p53 by cisplatin 
also induces PIDD, which then activates caspase 2, leading to mitochondrial release of AIF [100]. p53 
may translocate to mitochondria during cell stress where it has certain non-transcriptional actions, such 
as maintenance of mitochondrial DNA copy number and production of reactive oxygen 
species [130,131]. However, the specific role of mitochondrial p53 in cisplatin nephrotoxicity is not 
known. The mechanism of p53 activation by cisplatin may involve DNA damage and oxidative 
stress [132,133]. DNA fragmentation in response to cisplatin is mediated by DNAse I and 
endonuclease G [134,135]. DNase I may introduce initial ssDNA breaks after being passively 
translocated to nuclei. After the initial DNA damage produced by DNase I or cisplatin, DNA becomes 
more susceptible to EndoG digestion [135].  

Histone acetylation may be a target of cisplatin injury in kidney cells. Histone deacetylase inhibitors 
are being developed as anti-cancer agents. At high concentrations, these agents, such as 
suberoylanilide hydroxamic acid (SAHA) and Trichostatin A, induce apoptosis in renal epithelial 
cells [136]. However, in lower doses they appear to be protective against cisplatin-induced cell death 
in vitro [137,138]. Histone deacetylase inhibitors might, however, exacerbate the inflammatory 
response seen in cisplatin nephrotoxicity. For example, histone deacetylases, in conjunction with the 
transcriptional repressor, activating transcription factor 3 (ATF3), inhibited the transcription of 
inflammation-related genes during renal ischemic injury [139]. The effects of histone deacetylase 
inhibitors on cisplatin nephrotoxicity in vivo have not been reported.  

Cellular stress induced by cisplatin also activates MAPK pathways (ERK, p38 and JNK). Inhibition 
of p38 MAPK, ERK or JNK with specific pharmacologic or genetic inhibitors reduced apoptosis, 
caspase activation, inflammation and renal injury [140–144]. Cisplatin-induced production of reactive 
oxygen species has also been implicated in its direct cellular toxicity [96,145,146]. In this regard, 
cisplatin injury can be ameliorated by free radical scavengers [147,148], iron chelators [145], 
superoxide dismutase [146], catalase [149], selenium and Vitamin E [150] and heme oxygenase-1 
induction [96].  

In summary, cisplatin-induced renal cell death involves multiple pathways including oxidant stress, 
activation of intrinsic and extrinsic apoptotic cascades and endonucleases (Figure 1). Unfortunately, 
many of these same pathways contribute to the cytotoxic actions of cisplatin on tumor cells. Therefore, 
strategies intended to reduce cisplatin renal injury may have the unintended consequence of reducing 
the anti-tumor actions of cisplatin. The design of preventive strategies must carefully consider this risk.  

4. Inflammation in Cisplatin Nephrotoxicity 

There is a growing recognition of the importance of inflammation, in addition to direct cellular 
toxicity, in the pathogenesis of cisplatin nephrotoxicity. Over the past 10 years, a number of the 
mediators of inflammatory renal injury have been identified (Figure 2). 



Toxins 2010, 2  
 

 

2497

Figure 2. Immune mechanisms of cisplatin nephrotoxicity. Cisplatin-induced injury to 
renal epithelial cells causes release of DAMPs, which activate TLR4. Activation of TLR4 
results in the production of a variety of chemokines and cytokines, including TNF-α. These 
chemokines and cytokines upregulate adhesion molecules and attract inflammatory cells, 
such as neutrophils and T cells, into the region of injury. Tissue resident dendritic cells act 
to reduce kidney injury, at least in part by producing the anti-inflammatory cytokine IL-10. 
Treg cells also reduce kidney injury although the mechanism is still unknown. Dendritic cells 
may enhance the number or activity of Treg cells, though this has not been demonstrated.  

 

4.1. Cytokines  

TNF-α is the prototypical inflammatory cytokine and plays a central role in many infectious and 
inflammatory diseases. Anti-TNF therapies are widely used for certain inflammatory diseases such as 
psoriasis, rheumatoid arthritis and inflammatory bowel disease. An increase in renal expression of 
TNF-α was demonstrated in a mouse model of cisplatin nephrotoxicity by Kelly et al. [151] and 
Deng et al. [152]. To address the functional relevance of TNF-α in the pathogenesis of cisplatin-induced 
acute renal failure, renal function and renal histology were examined in mice treated with cisplatin in 
the presence or absence of TNF-α inhibitors and also in TNF-α knockout mice [102]. Treatment with 
TNF-α inhibitors reduced cisplatin-induced renal dysfunction and also reduced histologic evidence of 
injury. TNF knockout mice also sustained less renal injury than wild type mice and had markedly 
higher survival rates following cisplatin injection [102]. These results, which have been confirmed by 
a number of laboratories [99,153], establish an important role for TNF-α in the pathogenesis of 
cisplatin nephrotoxicity.  

TNF-α can be produced by a variety of immune and non-immune cells. To determine the source of 
TNF which resulted in cisplatin nephrotoxicity, Zhang et al. [154] created chimeric mice in which the 
bone marrow was ablated and replaced with donor bone marrow cells from either wild-type or from 
TNF-α knockout mice. Chimeras with kidneys of wild-type animals developed significant renal failure 
after cisplatin treatment regardless of the immune cell source. Chimeras with kidneys of TNF-α 
knockout mice showed significantly less renal dysfunction, renal histologic injury, and urine and 
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serum TNF-α levels; again regardless of the immune cell source. These results indicate that a 
substantial portion of circulating and urinary TNF-α is derived from non-immune cells, probably renal 
epithelial cells themselves, after cisplatin administration. The production of TNF-α after cisplatin 
administration is highly dependent upon reactive oxygen species, NFκB activation and activation of 
p38 MAPK. DMTU, a hydroxyl radical scavenger, salicylate (inhibitor of IKK) and p38 inhibitors, 
reduced both TNF-α production and nephrotoxicity in mice treated with cisplatin [98,142]. 

The biological activities of TNF-α are mediated by two functionally distinct receptors, TNFR1 
(p55) and TNFR2 (p75). Many of the cytotoxic and proinflammatory actions of TNF-α are mediated 
by TNFR1 [155,156]. However, studies in mice deficient in either TNFR1 or TNFR2 revealed that the 
nephrotoxic effects of cisplatin, at least those mediated by TNF-α, are signaled through TNFR2 rather 
than TNFR1 [103].  

The expression of a number of inflammatory cytokines and chemokines is increased in the kidney 
after cisplatin injury. However, evidence for a functional role for many of these cytokines is lacking. 
For example, Edelstein’s group [157,158] determined that the expression of IL-1β, IL-18, CX3CL1 
and IL-6 were increased in cisplatin nephrotoxicity. In addition, deletion of caspase 1, which is 
responsible for the formation of active IL-1β and IL-18, reduced cisplatin kidney injury and neutrophil 
infiltration in vivo [159]. However, inhibition or genetic deletion of these cytokines did not reduce 
cisplatin nephrotoxicity, leaving the mechanism by which caspase 1 contributes to cisplatin injury 
uncertain. Likewise, IFN-γ expression is increased in cisplatin nephrotoxicity, but neutralizing 
antibodies to IFN-γ provided no protection against renal injury [160]. It is interesting that many of 
these cytokines are upregulated in a TNF-dependent fashion [102]. It may be that these individual 
downstream cytokines each have minor roles in cisplatin nephrotoxicity which are difficult to 
demonstrate experimentally while inhibition of the upstream TNF-α produces more dramatic effects 
due to the cumulative actions of multiple downstream cytokines.  

Cytokines can also exert anti-inflammatory actions. IL-10 is an anti-inflammatory cytokine that 
suppresses the activation of leukocytes and the production of proinflammatory cytokines and 
chemokines [161]. Deng et al. [152] demonstrated that the injection of exogenous IL-10 inhibits the 
upregulation of TNF-α and ICAM-1 expression and the influx of neutrophils into the kidney in 
response to cisplatin. We have recently determined that endogenous production of IL-10 is an 
important defense mechanism against cisplatin nephrotoxicity. IL-10 deficient mice were more 
susceptible to cisplatin nephrotoxicity and exhibited greater influx of neutrophils and higher 
expression of proinflammatory cytokines than wild type mice [160]. At least part of this effect was due 
to IL-10 production by dendritic cells.  

In addition to their roles in the pathogenesis of cisplatin nephrotoxicity, cytokines may also have 
diagnostic value for this disorder. The levels of several pro-inflammatory cytokines, including TNF-α, 
IL-6, IL-2, IP-10, MCP-1 and KC, are increased in the urine of cisplatin-treated mice [162]. We have 
determined that elevations in IP-10, KC and G-CSF are detectable in the urine as early as six hours 
after cisplatin treatment, long before the serum creatinine or urea nitrogen levels increase [163]. 
Likewise, increases in urinary KC, IL-2, MCP-1, GM-CSF and IL-8 levels were noted after three days 
of low-dose cisplatin treatment in dogs [164]. Measurement of urinary cytokines may allow detection 
of early cisplatin toxicity and may be useful endpoints in trials of preventive strategies.  
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4.2. TLR Receptors  

Toll like receptors (TLRs) are a family of pattern recognition receptors which detect components, 
such as RNA, DNA or proteins, of foreign organisms [165]. They play a pivotal role in host immunity 
to infection by sensing the invasion of organisms and initiating both innate and adaptive immune 
responses. In addition to detecting foreign invaders, TLRs also detect and respond to certain 
endogenous molecules, termed “alarmins” or damage-associated molecular pattern molecules 
(DAMPs), associated with tissue injury [166]. LPS, an agonist of TLR4, can induce AKI when 
administered at high doses [167,168]. More recent studies determined that low doses of LPS, 
insufficient to cause renal injury, can exacerbate kidney injury induced by other insults, including 
cisplatin [169–171]. This synergistic effect of LPS and cisplatin was dependent on both TLR4 and 
TNF-α and raised the possibility that TLR4 was involved in the response to both agents [171]. This 
view was confirmed by Zhang et al. who demonstrated that cisplatin-treated wild-type mice incurred 
significantly more renal dysfunction, histologic damage, and leukocyte infiltration in the kidney than 
similarly treated mice with a targeted deletion of TLR4 [162]. Levels of cytokines, including TNF-α, 
in serum, kidney, and urine were also significantly higher in cisplatin-treated wild-type mice compared 
with cisplatin-treated TLR4 KO mice. Activation of p38, which is critical for cisplatin-induced TNF-α 
production [142], was significantly blunted in TLR4 KO mice. Using bone marrow chimeric mice, 
they also determined that renal parenchymal TLR4, rather than myeloid TLR4, mediated the 
nephrotoxic effects of cisplatin. Based on these findings, TLR4 appears to be a sensor for 
cisplatin-induced epithelial injury. Once activated, TLR4 on renal parenchymal cells may activate p38 
MAPK pathways, leading to increased production of inflammatory cytokines, such as TNF-α and 
subsequent kidney injury. The ligand responsible for TLR4 activation in cisplatin nephrotoxicity is 
unknown. The nuclear protein HMGB1 has been shown to activate TLR4 in various pathologic 
settings [166,172]. However, cisplatin actually increases binding of HMBG1 to DNA and inhibits its 
release from cells [173]. Other putative DAMPs include gp96, HSP60, HSP70 and β-defensin-2 [162]. 
The roles of these other DAMPs in cisplatin nephrotoxicity have not been reported. The possible clinical 
implications of TLR4 signaling in terms of preventing cisplatin nephrotoxicity will be discussed later.  

Other TLR receptors, such as TLR2 and TLR9 have been implicated in tissue injury [174–177]. The 
possibility that TLR9 may be involved in cisplatin nephrotoxicity is particularly intriguing given recent 
evidence that TLR9 responds to mitochrondrial DAMPs [178] and the previously discussed  
cisplatin-induced injury to mitochondria. However, in preliminary studies from our laboratory TLR9 
deficient mice were not protected from cisplatin renal injury [179]. The impact of TLR2 on cisplatin 
nephrotoxicity has not been reported. 

4.3. Immune Cells  

4.3.1. Neutrophils  

Cisplatin administration causes an increase in kidney neutrophil content [102,151,157,162,180]. 
Moreover, maneuvers which decrease cisplatin nephrotoxicity, such as inhibition of TNF-α or TLR4 
signaling [98,102,103,162], inhibition of ICAM-1 [151] or administration of IL-10 [152], are 
associated with a decrease in renal neutrophil content. However, Faubel et al. [157] demonstrated that 
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depletion of neutrophils using an anti-neutrophil antibody had no effect on cisplatin-induced renal 
dysfunction or tubular necrosis even though renal neutrophil infiltration was effectively abolished. 
These results suggest that infiltrating neutrophils are not essential for cisplatin-induced renal injury and 
may be a reflection of the severity of injury rather than its cause.  

4.3.2. Macrophages  

Macrophages have been implicated in the pathogenesis of ischemic AKI [181,182]. However, their 
role in cisplatin nephrotoxicity is uncertain. Treatment of peritoneal macrophages in vitro with 
cisplatin induces a pro-inflammatory phenotype characterized by increased production of nitric oxide 
and pro-inflammatory cytokines and activation of NFκB [183,184]. These attributes could contribute 
to an inflammatory response in the kidney. Lu et al. reported a 2-fold rise in kidney macrophages after 
cisplatin administration [158]. They also determined that the influx of macrophages was critically 
determined by CX3CL1 (fractalkine), a potent chemoattractant for macrophages. Nonetheless, 
inhibition of macrophage infiltration using either a CX3CL1 antibody or CX3CL1 deficient mice, or 
depletion of macrophages using liposomal clodronate, did not prevent cisplatin-induced renal 
dysfunction [158]. The lack of effect of CX3CL1 inhibition and macrophage depletion in cisplatin 
kidney injury, contrasts with the beneficial effect of these maneuvers in ischemic renal 
injury [181,182] and points to insult-specific pathways of AKI.  

4.3.3. T Cells  

T cells have been shown to contribute to ischemic AKI [185]. To evaluate the possible role of 
T cells in cisplatin nephrotoxicity, Liu et al. [186] administered cisplatin to T cell deficient mice. The 
T cell deficient mice sustained less renal dysfunction and tubular injury and had better survival than 
the T cell replete mice. It was determined that the harmful effects of T cells were mediated by CD4 
T cells and to a lesser extent CD8 T cells.  

4.3.4. Treg Cells  

Treg cells are a class of CD4 T cells (CD4+CD25+FoxP3+) which suppress effector and cytotoxic 
T lymphocyte responses. They also downmodulate the function and/or proliferation of other immune 
cells, such as macrophages, dendritic cells, B cells, NK cells and neutrophils [187]. Recent work from 
the Rabb [188] and Okusa [189] laboratories has demonstrated that Treg cells reduce the severity of 
ischemic AKI and speed its recovery. Lee et al. [190] recently examined the role of Tregs in cisplatin 
nephrotoxicity. When CD4+CD25+ T cells were adoptively transferred to T cell deficient (nu/nu) mice, 
cisplatin-induced renal dysfunction and mortality were reduced. In contrast, the transfer of 
CD4+CD25− cells did not improve renal function. In addition, transfer of CD4+CD25+ Treg cells to 
normal mice reduced cisplatin-induced renal injury while depletion of endogenous Treg cells with a 
CD25 antibody exacerbated injury. These results indicate that endogenous Treg cells play a protective 
role against cisplatin-induced kidney injury. The mechanism whereby Treg cells reduce cisplatin 
nephrotoxicity remains to be determined. However, since Treg cells were protective in T cell deficient 
mice, at least part of the protection was independent of effects on other T cells.  
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4.3.5. Dendritic Cells  

Dendritic cells are sentinels of the immune system and under steady state conditions induce 
tolerance by various mechanisms including production of TGF-β [191] or IL-10 [192] and induction of 
Treg cells via the ICOS-ICOS-ligand pathway [193]. In response to pathogens or products of tissue 
injury, dendritic cells mature and initiate immunity or inflammatory diseases [194,195]. In the kidney, 
dendritic cells form an extensive network throughout the tubulointerstitial compartment [182,196]. 
Dendritic cells had been shown to produce TNF-α during ischemic renal injury [197] and were 
presumed to be pathogenic in this disorder. CD11c-DTR transgenic mice express the simian diphtheria 
toxin receptor in dendritic cells driven by the promoter for CD11c, a dendritic cell-specific cell surface 
marker [194]. Injection of diphtheria toxin to these mice results in depletion of dendritic cells. Using 
this system, Tadagavadi and Reeves [180] examined the role of dendritic cells in cisplatin 
nephrotoxicity. Mice depleted of dendritic cells before or coincident with cisplatin treatment but not at 
later stages, experienced more severe renal dysfunction, tubular injury, neutrophil infiltration and 
greater mortality than nondepleted mice. Studies involving mixed bone marrow chimeras demonstrated 
that the worsening of cisplatin nephrotoxicity in dendritic cell depleted mice was not a result of the 
dying or dead dendritic cells themselves. After cisplatin treatment, expression of MHC class II 
decreased and expression of inducible co-stimulator ligand increased on renal dendritic cells. These 
results demonstrated that resident dendritic cells reduce cisplatin nephrotoxicity and its associated 
inflammation. Subsequent studies determined that the production of the anti-inflammatory cytokine 
IL-10 by dendritic cells was responsible for a portion of the protective effects of dendritic cells [160]. 
It remains to be determined if some of the protective effects of dendritic cells are mediated via 
Treg cells.  

5. Prevention of Cisplatin Nephrotoxicity 

Volume expansion with sodium chloride has been the primary means to reduce cisplatin 
nephrotoxicity [198]. Although many hydration regimens include the use of either mannitol or 
furosemide, there is no good evidence that diuretics provide any added benefit [199,200]. In fact, one 
comparative trial found greater nephrotoxicity in patients who received saline plus mannitol compared 
with saline alone [51]. Hypertonic (3%) saline has also been advocated [17]. However, subsequent 
studies showed decreases in GFR despite the use of 3% saline [201,202]. Recently published clinical 
guidelines recommend prehydration with 0.9% saline and avoidance of diuretics [40].  

Amifostine (2-(3-aminopropylamino)ethylsulfanyl phosphonic acid) is approved by the U.S. Food 
and Drug Administration for use in reducing cumulative nephrotoxicity of repeated cisplatin dosing in 
patients with advanced ovarian cancer [203]. Amifostine may derive its protective effects by providing 
a thiol group to normal versus malignant cells [204,205]. Data are limited regarding the use in 
amifostine in tumors other than ovarian carcinoma [203]. 

Unfortunately, even with aggressive hydration, renal toxicity still occurs. This has encouraged the 
development of more effective preventive strategies. These strategies can be organized according to 
putative mechanisms (Table 3). In each case, it is important to consider how the preventive strategy 
might affect the desired anti-tumor activity of cisplatin. Renal toxicity from cisplatin derives from the 
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uptake and activation of platinum within the proximal tubule cell. Therefore, maneuvers which 
differentially reduce cisplatin uptake, or activation by the kidney relative to tumor cells, should reduce 
nephrotoxicity without impairing anti-tumor responses. In this regard, certain formulations of micellar 
cisplatin have reduced kidney excretion but good tumor penetration [206,207]. OCT2 mediates 
cisplatin uptake into kidney cells, but not into tumor cells. Cimetidine, an OCT2 substrate, reduced 
cisplatin nephrotoxicity in mice [208]. In a small trial in humans, the combination of cimetidine and 
verapamil preserved renal function during cisplatin treatment [209]. Additional studies using 
cimetidine, or other OCT2 substrates such as metformin, are warranted.  

Table 3. Experimental strategies to prevent cisplatin nephrotoxicity. 

Reduced renal cisplatin accumulation or activation  
OCT2 inhibitors, e.g., cimetidine or metformin [61,208] 
Ctr1 inhibitors, e.g., copper [68] 
Micellar/liposomal cisplatin [206,207] 
Gamma-glutamyl transpeptidase inhibitors [76,210] 
Glutathione transferase inhibitors [74] 
Anti-oxidants   
Amifostine [203] 
BNP7787 [211] 
N-acetyl cysteine [212] 
Superoxide dismutase  [23,146] 
Catalase  [149] 
Selenium and Vitamin E [150] 
Heme oxygenase-1 induction [96] 
Iron chelators, e.g., Desferoximine [145] 
Allopurinol plus ebselen [213] 
Milk thistle extract (silymarin) [214] 
Cannabidiol [215] 
Lycopene [216] 
Anti-apoptosis  
p53 inhibitors, e.g., pifithrin [100,115,127–129] 
HDAC inhibitors [137,138] 
Caspase inhibitors [113] 
p21agonists/CDK2 inhibitors  [123,124] 
Anti-inflammation  
TNF-α antagonists [102] 
TLR4 antagonists [162] 
p38 inhibitors [142] 
JNK inhibitors [141] 
Salicylates [98] 
PPAR-α ligands, e.g., fibrates [217] 
PPAR-γ ligands, e.g. rosiglitazone [218] 
Alpha lipoic acid [219] 
IL-10 [152] 
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Many agents have been reported that interrupt the cell death machinery in cisplatin-treated kidney 
cells (Table 3). Unfortunately, many of these same pathways are responsible for the cytotoxic actions 
of cisplatin in cancer cells. One potential exception are histone deacetylase inhibitors. These agents are 
in clinical development for cancer treatment but also appear to reduce cisplatin cytotoxicity 
in vitro [137,138]. The effects of these agents on cisplatin nephrotoxicity in vivo need to be explored.  

Inflammation contributes to cisplatin nephrotoxicity in vivo. A number of anti-inflammatory 
substances reduce cisplatin nephrotoxicity in animal models (Table 3). For the most part, the effects of 
these agents on tumor responses to cisplatin have not been examined. Our laboratory has shown that 
inhibitors of TNF-α reduce cisplatin nephrotoxicity [102]. Although TNF-α was named for its ability 
to induce hemorrhagic necrosis of tumors [220], there is increasing evidence that TNF-α is produced 
by cancer cells and acts as an endogenous tumor promoter [221–223]. These observations raise the 
possibility that anti-TNF agents might reduce cisplatin nephrotoxicity without reducing, and perhaps 
even enhancing, tumor responses. We have also demonstrated a role for TLR4 in cisplatin 
nephrotoxicity [162]. Relatively little is known about the role of TLR4 in tumor growth or response to 
chemotherapy. The literature includes examples of TLR4 having both pro-tumor and anti-tumor 
activities [224]. An interesting recent study found that the release of HMGB1, a TLR4 agonist, from 
dying tumor cells stimulated dendritic cells to initiate an adjuvant anti-tumor immune response in a 
TLR4 dependent fashion [225]. Accordingly, tumor-bearing TLR4 deficient mice had reduced 
responses to chemotherapy and radiation therapy compared to WT mice [225]. In addition, women 
with breast cancer who carried a TLR4 loss of function polymorphism (Asp299Gly) were found to 
have a 50% increase in the frequency of metastasis compared to women with the normal allele [225]. 
These findings raise concerns that inhibition of TLR4 may interfere with the chemotherapeutic and 
immune response to cisplatin.  

6. Summary 

Nephrotoxicity is a serious and dose-limiting toxicity of cisplatin. Cisplatin nephrotoxicity is the 
composite result of the transport of cisplatin into renal epithelial cells, injury to nuclear and 
mitochondrial DNA, activation of a multiple cell death and survival pathways and initiation of a robust 
inflammatory response. Although this scheme presents many possible therapeutic targets, single 
interventions in animal models have generally provided only incomplete protection. Moreover, the 
impact of many interventions on the chemotherapeutic efficacy of cisplatin has not been adequately 
examined. Moving forward, combinatorial strategies which target multiple mechanisms, such as 
reducing cisplatin uptake and reducing inflammation, may offer the best chance for clinically 
meaningful prevention. Any proposed strategy, however, must be carefully studied in tumor-bearing 
animals to ensure that the chemotherapeutic efficacy of cisplatin is not compromised.  
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