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Abstract

The origin and expansion of biological diversity is regulated by both developmental trajectories1,2 

and limits on available ecological niches3–7. As lineages diversify an early, often rapid, phase of 

species and trait proliferation gives way to evolutionary slowdowns as new species pack into ever 

more densely occupied regions of ecological niche space6,8. Small clades such as Darwin’s 

finches demonstrate that natural selection is the driving force of adaptive radiations, but how 

microevolutionary processes scale up to shape the expansion of phenotypic diversity over much 

longer evolutionary timescales is unclear9. Here we address this problem on a global scale by 

analysing a novel crowd-sourced dataset of 3D-scanned bill morphology from >2000 species. We 

find that bill diversity expanded early in extant avian evolutionary history before transitioning to a 

phase dominated by morphospace packing. However, this early phenotypic diversification is 

decoupled from temporal variation in evolutionary rate: rates of bill evolution vary among lineages 

but are comparatively stable through time. We find that rare but major discontinuities in phenotype 

emerge from rapid increases in rate along single branches, sometimes leading to depauperate 

clades with unusual bill morphologies. Despite these jumps between groups, the major axes of 

within-group bill shape evolution are remarkably consistent across birds. We reveal that 

macroevolutionary processes underlying global-scale adaptive radiations support Darwinian9 and 

Simpsonian4 ideas of microevolution within adaptive zones and accelerated evolution between 

distinct adaptive peaks.
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The role of adaptive radiations as the source of much of the world’s biological diversity has 

been widely emphasised10,11. Studies of small clades have provided insights into the role of 

natural selection as a diversifying force, but cannot illuminate the processes that shape the 

diversity and discontinuities of radiations over much longer evolutionary timeframes. 

Indeed, at large taxonomic scales, the diversification of clades11,12 and traits13 shows no 

evidence of the predicted slowdowns in evolutionary rates, despite there being numerous 

examples in small clades3,14–16. This apparent paradox is potentially resolved by G. G. 

Simpson’s model, in which major jumps to new adaptive zones (“quantum evolution”) can 

occur unpredictably throughout clade history. These jumps give rise to rapid lineage 

expansion into previously unoccupied niche space as sub-clades continue to radiate within 

distinct adaptive zones and subzones4. Simpson’s models introduced the concept of ‘mega-

evolution’—diversification over large temporal and spatial scales—unifying microevolution 

with other factors such as ecological opportunity and evolutionary constraints that shape the 

macroevolutionary trajectories of radiating lineages. However, while phylogenetic studies 

involving thousands of species have demonstrated heterogeneity in rates of phenotypic 

evolution13,17, it is unclear whether the processes outlined by Simpson play an important 

role in large-scale adaptive radiations. This is because previous studies have been unable to 

specifically assess the macroevolutionary dynamics of ecologically relevant traits. Here we 

study the evolution of an important ecological trait (bill shape) across an entire Class of 

organisms (birds) to elucidate the processes shaping the accumulation of phenotypic 

diversity within a global-scale adaptive radiation.

Our approach is based around a novel data set describing avian bill shape. The avian bill is 

closely associated with species’ dietary and foraging niches16,18,19 and represents a highly-

adaptable ecological trait known to play a key role in classic avian adaptive 

radiations16,18,20. We took 3D scans of museum study skins comprising >2000 species 

(>97% of extant genera) representing the full range of bill shape diversity. We landmarked 

bills (Extended Data Fig. 1) using a bespoke crowd-sourcing website, www.markmybird.org, 

and quantified the bill shape morphospace of extant birds using Procrustes superimposition 

and Principal Components Analyses (PCA, see Methods). The first eight PC axes explain 

>99% of the total variation in bill shape (Fig. 1). PC1 (58% of overall shape variation) 

describes the volumetric aspect ratio from elongated (e.g. sword-billed hummingbird, 

Ensifera ensifera) to stout bills (e.g. large ground finch, Geospiza magnirostris) and captures 

the range of shape variation encompassed by standard linear measurements (length, width 

and depth). Variation in these bill dimensions may relate to fine scale division of the dietary 

or foraging niche among closely related species, but cannot explain the diversity of shapes 

observed among extant birds. More complex aspects of shape (42% of total variation) are 

explained by the remaining PCs (Fig. 1), which retain high phylogenetic signal (Extended 

Data Table 1). Importantly, although these higher shape axes explain a low proportion of 

shape variance, they capture large differences in ecologically relevant aspects of bill shape. 

The narrow (long tail) distributions of higher shape axes, compared to the broad distribution 

of PC1 (Extended Data Fig. 2, Extended Data Table 1), suggest that the majority of species 

have relatively simple bill shapes and diversify in densely packed regions of bill 

morphospace.
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We tested an important prediction of Simpson’s model by evaluating how niche expansion 

and niche packing have contributed to the accumulation of bill shape disparity throughout 

avian evolutionary history. We estimated multivariate disparity through time using ancestral 

state estimates derived from rate heterogeneous models of trait evolution (see Methods)13. 

In 1 million year time slices, we calculated disparity as the sum of the variances21 from the 

first eight shape axes. We compared observed disparity through time with two null models—

constant-rate (Brownian motion) and rate heterogeneous trait evolution—that are unbiased 

with respect to niche filling processes (see Methods). Relative to these null expectations, we 

find that the filling of avian bill morphospace through time shows a striking dominance of 

niche expansion early in avian history, followed by a more recent transition towards niche 

packing (Fig. 2a-b, Extended Data Fig. 2). Our data includes only extant taxa due to the poor 

preservation of bills in the avian fossil record22, although we acknowledge that some extinct 

taxa had bills that may lie outside the range of extant diversity (e.g. Phorusrhacidae, 

Gastornithidae, Dromornithidae). This can result in underestimates of disparity particularly 

if these morphologies arise early in clade history22–24. Our analyses are therefore 

conservative with respect to transitions from bill morphospace expansion to filling and 

consistent with recent studies of avian skeletal material22. The transition in the mode of 

niche filling is consistent with a process of ever-finer divisions of niche space and would be 

expected to correspond to slowdowns in rates of bill evolution. However, the switch from 

niche expansion to niche packing does not map onto temporal trends in the rate of bill shape 

evolution. Plotting evolutionary rates through time reveals an initial low rate followed by a 

moderate (two to four-fold) increase that is coincident with the divergence of many non-

Passerine orders (Fig. 2c, Extended Data Fig. 3, 4). Thereafter average rates dip and then 

rise gradually with less than 1.5-fold total variation over ~80 million years of evolutionary 

history, contrasting sharply with >250-fold variation in evolutionary rate among individual 

lineages (Fig. 3).

The disjunction between rates of evolution and the accumulation of bill shape disparity 

suggests that temporal trends in evolutionary rate are not necessarily indicative of the 

underlying mode of niche filling. This decoupling could arise if some clades diverge rapidly 

within regions of morphospace that are occupied by other clades, but where the respective 

clades occur in allopatry. To test this idea, we mapped rates of bill evolution onto the avian 

phylogeny (Fig. 3, Extended Data Fig. 3-5). We find several instances of clades exhibiting 

exceptionally high rates of evolution consistent with speciational or phyletic evolution 

within adaptive subzones (Fig. 3). Some of the fastest rates of bill evolution arise in island 

radiations of passerine birds, where ecological divergence has been closely linked to 

ecological opportunity (e.g. Malagasy vangas16, Galapagos finches18, Hawaiian 

honeycreepers20), suggesting that lineages radiating on isolated island archipelagos can 

explore morphological space independently of the global avifauna. Notably high rates of bill 

evolution occur in several large species-rich clades that have high speciation rates, including 

the Psittaciformes, the Furnariidae, and the Passeroidea. However, these clades occupy 

regions of morphospace that overlap with other more slowly evolving clades and so, while 

rapid divergence among close relatives within a subzone leads to locally high rates, they do 

not contribute uniquely to the global expansion of morphospace. In contrast, some large 
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(Anseriformes) and some smaller clades (Alcidae, Bucerotiformes) that exploit more 

unusual ecological resources have also evolved rapidly.

Next, we find evidence for several notable instances of exceptionally high rates of evolution 

along single branches (Extended Data Table 2). Such instances indicate unusually large 

jumps in bill phenotype and many of the most extreme shifts (e.g. Phoenicopteridae, 

Musophagidae, Pelecanidae, and Caprimulgiformes; Fig. 3) occur towards the base of the 

avian radiation, consistent with the idea of early, rapid quantum evolution into new adaptive 

zones. In some cases (e.g. Pelecanidae and Ciconiidae), the evolution of extreme bill shapes 

is associated with a subsequent slowdown in the rate of bill shape evolution (Fig. 3), 

suggesting that ancestral shifts towards a highly specialised bill phenotype may often 

constrain further opportunities for either bill evolution or speciation25. In contrast, some 

rapid jumps result in speciose clades occupying more densely packed regions of 

morphospace. For instance, the Hirundinidae diverge from other Sylvoidea but converge on a 

swift-like aerial insect hawking form. These latter types of shift do not appear to be 

restricted to any particular time periods or regions of the avian phylogeny. Similarly, the 

Trochiliformes diverge rapidly away from the Apodiformes towards a range of bill 

phenotypes that opened up additional opportunities for continued diversification, consistent 

with the idea of rapid speciation driven by ecological opportunity following the invasion of 

an unoccupied adaptive zone4,8.

Major phenotypic shifts early in the avian adaptive radiation followed by limited divergence 

within sub-clades, implies a disconnect between mega-evolutionary radiations on a global 

scale and adaptive radiations within smaller constituent clades. Although the average 

phenotypes (morphospace centroids) of some higher taxa diverge from one another 

(Extended Data Fig. 6, 7), it is unclear whether the primary axes of bill shape variation 

within sub-clades parallel the major axes of variation across birds as a whole (i.e. higher 

PCs), or whether evolution within clades occurs along axes of variation that are distinct from 

the major global axes (i.e. lower PCs). We explored these ideas by quantifying the variances 

and covariances (termed P matrices, see Methods) of bill shape axes within higher taxa 

(families, superfamilies and orders)26,27. We find that shape variation within higher taxa is 

explained by a single significant eigenvector of P, with the exception of the Psittaciformes 

(two significant eigenvectors). In contrast, the number of significant eigenvectors across all 

birds combined is three, suggesting that there is low dimensional divergence within clades 

but high dimensional divergence between clades. We then asked whether the dominant 

eigenvector within each sub-clade (Pmax) was consistent across higher taxa. We find that bill 

shape (i.e. PC) axes 1 and 2—those that explain the majority of variation across birds as a 

whole—also consistently load most heavily onto Pmax within higher taxa (Extended Data 

Fig. 7). This suggests that bill shape evolution within higher taxa tends to fall back to limited 

pathways irrespective of the position of the clade in morphospace

The low dimensionality and consistency of bill shape variation within clades, and high 

dimensionality among clades, demonstrates striking discontinuities between how phenotypic 

disparity accumulates in the early stages of major radiations, versus how disparity 

accumulates as younger clades evolve within an already mature and ecologically diverse 

radiation. This early expansion of morphospace has parallels with observations of peak 
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disparity early in clade history in palaeontological datasets of a wide range of metazoan 

taxa28. The earliest known fossil assemblages of the ancestors of modern birds, dating from 

the Early Cretaceous, were functionally and ecologically depauperate29. It is likely that the 

rise of modern birds from the late Cretaceous onwards occurred in a rapidly changing 

world30, coinciding with extensive ecological opportunity. Our results imply that this 

dynamic adaptive landscape may have driven Simpsonian mega-evolution across adaptive 

zones, later giving way to smaller scale fine-tuning of the bill as avian diversity expanded 

across the globe.

Methods

Data sampling

We measured 2,028 species, representing 2,028 of 2,091 genera across 194 families. 

Specimens were obtained primarily from the avian skin collection at the Natural History 

Museum, Tring, and also from the Manchester Museum. Study skins, rather than skeletal 

material, were used because they are generally much better represented in museum 

collections with more species and specimens available than in skeletons, and secondly 

because the rhamphotheca (the keratinous sheath surrounding the fused premaxilla, maxilla 

and nasal bones) is often absent from skeletonised specimens. This is the portion of the bill 

that interacts directly with the environment and is thus the subject of selection. Where 

available, one mature male per species was selected for scanning. This was necessary to 

achieve the taxonomic sampling required within a reasonable time frame and because males 

are generally better represented in the collections than females. Care was taken to select 

specimens that were undamaged, with all the landmarks visible and unobstructed (see 

below). When undamaged males were unavailable, females were preferentially chosen over 

unsexed specimens. Some species (e.g. Strigiformes, Podargidae, and others) have bills that 

are obscured by protruding feathers or rictal bristles that ‘shade’ the bill from the scanner. 

For specimens where this was an issue, or for specimens that were not represented in the 

skins collections, specimens were chosen from the skeletons collection at Tring.

3D scanning and processing

3D scans of the bills were taken using white or blue structured light scanning (FlexScan3D, 

LMI Technologies, Vancouver, Canada). The use of 3D scans provides a more complete and 

nuanced estimate of bill diversity than standard linear measures (length, width, depth) that 

reflect only the relative proportions of the bill and effectively assume that bills are no more 

than proportional variations on a cone shape. For bills of lengths > 5 cm, a R3X white-light 

scanner (calibration boards 10 – 25 mm, resolution 0.075 mm) was used, and for bills of 

lengths < 3 cm a MechScan white-light macro scanner (calibration boards 1.3 – 4 mm, 

resolution 0.010 mm) was used. For bills intermediate between these lengths, a pre-

calibrated HDI blue-light scanner (resolution 0.080 mm) was used. In some cases, larger 

bills (e.g. those with a high aspect ratio, such as hummingbirds) were scanned on the higher 

resolution scanner. In order to fully capture 3D geometry, approximately 5 - 25 scans per bill 

were obtained, and aligned and combined in the FlexScan software before being exported 

as .ply files. Scans were imported into Geomagic Studio (3D Systems, Rock Hill, SC, USA), 

automatically decimated to approximately 500,000 faces, and cleaned to remove mesh errors 
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(holes, reversed normals, high aspect ratio spikes). In some specimens, it was necessary to 

remove feathers or scanning artefacts that had obstructed portions of the geometry by 

manual cleaning of the mesh. Following cleaning, meshes were exported as .obj files.

Landmark choice

Landmark-based geometric morphometrics (GM) is a method for analysing variation in 

geometric shape based on the positions of equivalent homologous points (landmarks) placed 

on every specimen in the study31,32. While homologous in this context is usually taken to 

mean developmentally homologous, in practice the key to landmark selection is that the 

points chosen must be easily identifiable, such that they can be accurately placed and 

repeatable within and between specimens32. This is difficult to do on the rhamphotheca 

because, other than the tip of the bill, it lacks any obvious landmarks, especially as the 

nostrils are not exposed in many bird species. We therefore opted to identify four true 

landmarks: 1) the tip of the beak; and the posterior margin of the keratinous rhamphotheca, 

along the 2) midline dorsal profile; 3) left; and 4) right tomial edges. Three semilandmark 

curves joined point 1 to points 2, 3, and 4 to represent the dorsal profile, and the left and 

right tomial edges respectively (Extended Data Fig. 1).

Crowdsourcing

In order to facilitate landmarking of such a high number of species, a crowdsourcing 

website, www.markmybird.org, was developed to allow members of the public to participate 

in the research by placing landmarks on to the bill scans. After registration, volunteers were 

required to landmark two training bills with easily identifiable (shoebill, Balaeniceps rex) 

and more challenging (brown-chested alethe, Alethe poliocephala) landmarks. Instructions 

were shown to all users for every landmark, with links to more detailed instructions 

provided. Bills were assigned to users by randomly selecting a bill from the 100 scans most 

recently uploaded. To account for the fact that different users will always place homologous 

landmarks in slightly different places33, each bill was marked by three to four different 

users.

Quality control and landmark averaging

Custom R scripts were used to check for common mistakes that may not have been caught 

by real-time error checks (confusing left and right, large asymmetries in landmark position, 

incorrect order of semilandmarks, and semilandmarks that deviated from the correct curve 

due to user failure to rotate the bill and assess their landmark placement in three 

dimensions). If any landmark configuration failed these tests, the data was manually checked 

and if necessary removed with the bill made re-available for landmarking. Finally, the three/

four repetitions for each bill were averaged to find the mean shape between users, and tested 

to ensure that all users had placed the landmarks within an acceptable range (Procrustes 

distance < 0.2) of one another. The average bill shapes were then passed forward for 

geometric morphometric (GM) analysis. Using ANOVA approaches for assessing 

measurement error in geometric morphometrics33, we found that repeatability was 

consistently high among users when comparing among PC axes (see below; Extended Data 

Table 2).
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Geometric morphometrics

All GM analysis was performed in the R package Geomorph34. First, landmark 

configurations were subjected to a Generalised Procrustes Analysis (GPA) to remove the 

effects of size and translational and rotational position on the landmark configurations. This 

is a common first step in GM analyses as it removes all the geometric information from the 

landmark coordinates that is not related to shape31. During alignment, symmetry was 

enforced so that slight user-introduced differences in the left/right positions of landmarks 

were removed. Semilandmarks were slid to minimise bending energy35. The Procrustes 

aligned coordinates were then assessed using PCA to identify the major axes of shape 

variation within bird bills, which were plotted as morphospaces. PC scores for the first eight 

axes are available as supplementary material. As morphospaces are projections of 

multidimensional Kendall’s shape space into two-dimensional tangent space, they may be 

prone to distortions the further one moves from the central coordinates of the morphospace. 

In other words, extreme bill morphologies plotting at the edges of morphospace have the 

potential to distort the projection such that Procrustes distances at the edges of a 

morphospace are not equivalent to those at the centre of a morphospace. To assess the extent 

to which projected tangent space differed from the underlying Kendall’s shape space, the 

Procrustes aligned coordinates were analysed using tpsSmall 1.3036. We found no evidence 

of distortion: distance in tangent was very tightly correlated with Procrustes distance 

(uncentred correlation: 0.999; regression through the origin slope: 0.985; root mean squared 

error < 0.001). Similarly, Procrustes distances were consistently close to tangent distances 

(minimum Procustes D: 0.024, minimum Tangent d: 0.024; mean Procustes D: 0.194, mean 

Tangent d: 0.192; maximum Procustes D: 0.525, maximum Tangent d: 0.501).

Warps of the associated shape changes with each PC were generated by transforming the 

landmarks of the bill closest to the average shape (rusty-fronted barwing, Actinodura 
egertoni) to landmarks representing the extremes of a given PC when all other PCs = 0, and 

interpolating the surface in between.

To assess any possible distortion of PCA by the underlying phylogenetic non-independence 

among species, we also ran a phylogenetic PCA37,38. As with the standard PCA, the first 

eight PCs accounted for >99% of total shape variance. We found that the first two pPCs did 

not correlate with the first two original PCs—pPC1 was more closely correlated with PC2 

and pPC2 was more closely correlated with PC1. The remaining PCs and pPCs were closely 

correlated and retained the same order in terms of the proportion of variance explained. We 

also re-ran rate variable models on the first eight pPCs (see below). For this analysis we 

allowed the pPCs to be correlated because a property of pPCA is that the axes are not 

expected to be orthogonal. The multivariate results are similar regardless of the choice of 

PCA or pPCA (Extended Data Fig. 3). Recently identified problems inherent with using 

PCA (or pPCA) that can lead to misidentifying macroevolutionary models are expected to 

arise when individual PCs are analysed, particularly when the variance explained is 

distributed fairly evenly across multiple PCs39. Because we use a multivariate approach 

these problems are minimized.
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Phylogenetic framework

We base our analyses on the phylogenetic tree distributions from www.birdtree.org11. For 

both ‘Hackett’ and ‘Ericson’ backbones, we sampled 10,000 ‘stage 2’ trees (i.e. those 

containing all 9,993 species) from www.birdtree.org, which were pruned to generate tree 

distributions for the 2,028 species in our dataset. We also generated similar tree distributions 

using ‘stage 1’ trees from the same source, which contain only the subset of species placed 

using genetic data. Of the 2028 species in the full dataset, 1,627 (80%) were represented in 

stage 1 trees. Based on these distributions, we used TreeAnnotator40 to generate maximum 

clade credibility (MCC) trees, setting branch lengths equal to ‘Common Ancestor’ node 

heights. In addition, we constructed a composite of the Jetz et al. trees and the genomic 

backbone tree of Prum et al.41 (Extended Data Fig. 4) by grafting sub-clades of the Stage 2 

Hackett MCC tree onto nodes in the Prum et al. phylogeny at positions where the two trees 

could be sensibly combined (see Supplementary Material for node matching data and R code 

to combine the trees). This process resulted in a composite tree combining the genus level 

resolution afforded by the Jetz et al. tree with the branching topology and age estimates of 

the Prum et al. backbone, which are notably younger than those in the Jetz et al. trees.

Phylogenetic signal

We calculated the phylogenetic signal of bill shape by estimating Pagel’s λ using the R 

package MOTMOT42. λ can vary between 0 and 1, with a value of 0 indicating no 

phylogenetic signal and a value of 1 indicating similar levels of phylogenetic covariance as 

expected under a BM model.

Models of trait evolution

Univariate variable rates models were estimated using the software BayesTraits (available 

from http://www.evolution.rdg.ac.uk/) using default priors and a single-chain Markov chain 

Monte Carlo (MCMC) run for at least 1 billion (1,000,000,000) iterations. From each chain 

we sampled parameters every 100,000 iterations and final parameter estimates for each 

model were based on 5,000 post-burn in samples. Uncorrelated multivariate models were 

estimated using the same approach. At each iteration in the MCMC chain, the multivariate 

models fit a single branch length transformation to the tree across all trait (i.e. PC) axes. An 

uncorrelated multivariate model is justified because PC axes are inherently orthogonal, 

however this may limit inference of some forms of rate change. Specifically, the 

uncorrelated multivariate model is informative with respect to changes in the variances 

among clades and shifts in the morphospace centroids of clades (i.e. single branch shifts) but 

cannot detect cases where variances and centroids are similar but covariances among clades 

differ. We summarised the results of each run by calculating (i) the mean rate and (ii) the 

probability of a rate shift (branch or clade) over all posterior samples for each node in the 

tree. It is often challenging to pinpoint the precise location of rate shifts in the tree, 

particularly when such shifts involve clades of species with short internode intervals at their 

base. In such cases it becomes difficult to assign the location of a shift to a single node and 

the inference of a rate shift is then often distributed across two or more nested nodes in the 

phylogeny. To account for this, we also summarised our results using a second approach in 

which the posterior probability for a particular rate shift was calculated as the sum of the 
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probability of a shift having occurred on a focal node or on either of the nodes immediately 

descending from it. We focus on the multivariate analyses because bill shape is a high 

dimensional trait. In the main text (Fig. 2, 3) we report results from the stage 2 Hackett tree 

but found comparable results regardless of tree choice (Extended Data Fig. 3, 4).

We checked for biases in rate estimates across the phylogeny by comparing our observed 

multivariate rate estimates of bill shape evolution to results generated using simulated data. 

Using the stage 2 Hackett MCC tree, we generated 10 null multivariate data sets (simulated 

under BM) and estimated rates using runs of 200 million iterations and 1,000 post-burn 

samples. We found that on average branch-specific rates derived from simulated data sets 

were uncorrelated with observed rates of bill shape evolution (Spearman’s rho = 0.03; p = 

0.34), indicating that our results are unlikely to be affected by underlying biases in rate 

estimation.

In addition to BayesTraits we compared the fit of three single process models (Brownian 

motion [BM], early burst [EB] and Ornstein-Uhlenbeck [OU]), fit using the ‘fitContinuous’ 

function and default settings in the R package Geiger v2.043, as well as alternative 

formulations of the BAMM model44 that differed in their handling of temporal rate 

variation (time constant [T constant], time variable [T var] and time flip [T flip]). The 

BayesTraits, BAMM and single process models are not fitted in common a framework with 

consistent likelihood calculations. We therefore compared the fit of the alternative models 

within each shape axis by calculating the likelihood of a BM model fit to the mean rate-

transformed Jetz et al. trees derived from each model. In the absence of support for 

alternative models (Extended Data Table 3), and because BAMM does not currently allow 

analyses of multivariate data, we focus our interpretation on analyses using BayesTraits.

Disparity and rates through time

Estimating ancestral disparity—We estimated ancestral values for each component 

axis of bill shape variation using a maximum likelihood approach implemented in the R 

package phytools38. We estimated ancestral states using the mean rate-transformed trees for 

each component axis to account for unequal rates of evolution across the tree and among 

shape axes. To generate estimates of ancestral disparity through time, we took time slices at 

1 million year intervals starting at the root of the tree. For each time slice we extracted 

ancestral state estimates for each component axis for the lineages in the phylogeny existing 

at that particular time point. We then quantified multivariate disparity in trait values by 

calculating the sum of the variances across all 8 trait axes21. Unlike other disparity metrics, 

the sum of the variances is expected to be independent of richness and sensitive to changes 

in both expansion and packing of trait space, thus providing an indication of the relative 

strength of these two patterns19.

Null models of morphospace filling—We generated two alternative null models of 

morphospace filling based on BM models of trait evolution to assess whether the observed 

patterns of bill shape disparity through time were distinct from unbiased patterns of disparity 

accumulation. In the first we assumed that trait variation accumulates at a constant rate 

(‘CR’) that is homogeneous with respect to time and also to a lineage’s position in the 
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phylogeny. In the second we relaxed these assumptions of rate constancy and instead 

simulated traits using the mean rate-transformed trees for each axis, thereby providing a null 

model of disparity accumulation incorporating variable rates (‘VR’) of trait evolution. For 

each model we simulated 500 replicate data sets and used these to calculate two sets of null 

disparity through time curves using identical approaches to those describe above. 

Irrespective of whether evolutionary rates are fixed to be constant or allowed to vary, an 

important feature of both null models is that the underlying balance between morphospace 

expansion and packing is expected to be effectively equal and constant over time. This is due 

to the inherently non-directional nature of trait change simulated using the BM model. 

Consequently, any deviation in the observed rate of disparity accumulation compared to the 

null rates suggests that one process (either expansion or packing) has dominated over the 

other.

Summarising evolutionary rates through time—For each 1 million year time slice, 

we calculated the mean rate of evolution across all branches present at that time point. We 

repeated this procedure for each tree in the posterior distribution to generate a distribution of 

average rate estimates in 1 million year intervals.

Estimation of phenotypic variance-covariance (P) matrices

We examined the consistency of bill shape evolution within and among avian clades using 

Bayesian estimates of phenotypic variance-covariance matrices (P matrices) of bill shape 

within higher taxa (families, superfamilies and orders)26,27. First, we estimated the number 

of independent axes (i.e. eigenvectors of P) that are required to adequately explain the total 

trait variance in P in each higher taxon. We then tested whether the dominant eigenvector of 

bill shape variation (Pmax) is consistent among clades. Pmax is the first principal component 

of P and an estimate of the major axis of phenotypic variation. We estimated phenotypic 

variance-covariance matrices for higher taxa containing ≥20 sampled species. Posterior 

distributions of variance-covariance matrices were generated using Bayesian MCMC 

MANOVA models implemented in the R package MCMCglmm27. We used weak uniform 

priors and ran each model for 80,000 iterations with a burn-in of 40,000 and sampling that 

produced 1,000 estimates of the posterior distribution. Based on these distributions we used 

a set of Bayesian matrix quantification approaches26 to extract information on (i) centroid 

position, (ii) subspace orientation, (iii) individual trait loadings onto and variance explained 

by Pmax, and (iv) number of significant eigenvectors associated with each P.

Data availability

Scan and landmark data that support the findings of this study have been deposited in the 

NHM Data Portal with the identifier doi:10.5519/0005413. All other data analysed during 

this study are included as source and supplementary information files.
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Extended Data

Extended Data Figure 1. Positions of landmarks and semilandmarks.
The image shows a 3D scan of a shoebill (Balaeniceps rex) bill marked up with four fixed 

landmarks (numbered red points) and three semi-landmark curves along the dorsal profile 

(from points 1 to 2) and tomial edges (left from point 1 to 3 and right from point 1 to 4). 

Each curve consists of 25 semi-landmarks (black points).
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Extended Data Figure 2. Morphospace density through time.
Plots show the filling of avian bill morphospace through time (n = 2028 species) for PCs a,1; 

b, 2; c, 3; d, 4; e, 5; f, 6; g, 7; and h, 8. Densities were calculated in 1 million year time 

slices based on univariate rate heterogeneous models of trait evolution using a stage 2 

Hackett MCC tree from www.birdtree.org. The scale runs from low density (blue) to high 

density (red), indicating the extent of niche packing through time in different regions of bill 

morphospace. For each axis the frequency distribution of PC scores among species is also 

shown (grey bars).
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Extended Data Figure 3. Comparison of multivariate rates of bill shape evolution and disparity 
through time for alternative datasets.
The plot shows estimates of the mean relative multivariate rate of bill shape evolution for 

four alternative versions of the avian phylogeny and also when using phylogenetic Principal 

Components (pPCs) (see Methods). Shown below are plots comparing estimates of disparity 

and rates through time derived from each dataset. For stage 2 trees n = 2028 species and for 

stage 1 trees n = 1627 species.
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Extended Data Figure 4. Multivariate rates of bill shape evolution for a composite tree based on 
the Prum et al. backbone.
The avian phylogeny coloured according to estimates of the mean relative multivariate rate 

of bill shape evolution. Grey triangles show the stem branch of clades with support for 

whole clade shifts in evolutionary rate. Coloured circles show rate shifts on individual 

internal branches (colour indicates the rate estimate). The relative size of triangles and 

circles indicates the posterior probability (PP) of a rate shift. Filled and open triangles 

distinguish between shifts on the focal node (filled) and shifts that occur either at the focal 

node or on one of the two immediate daughter nodes (open).
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Extended Data Figure 5. Phylogenetic mapping of univariate rates of bill shape evolution.
The plots shows the avian phylogeny of all taxa included in the study (n = 2028 species) 

with branches coloured on a common scale across panels according to estimates of the 

univariate rate of bill shape evolution. a, PC1, b, PC2, c, PC3, d, PC4, e, PC5, f, PC6, g, 

PC7, h, PC8.
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Extended Data Figure 6. Morphospaces of avian higher taxa.
Pairwise scatterplots of PCs 1 and 2, 3 and 4, 5 and 6, and 7 and 8 showing focal higher taxa 

(non-passerines, purple; passerines, green) against total avian morphospace (grey). Values in 

parentheses show the number of species sampled.
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Extended Data Figure 7. Morphological subspaces of the P of avian higher taxa.
The figure shows representations of P for avian higher taxa with ≥20 species sampled. First 

column: distribution of species values on each of the first eight raw PCs showing variation in 

morphospace centroid for each higher taxon. Second column: two-dimensional subspace for 

each taxon with non-passerine (purple) and passerine (green) subspaces. The x- and y-axes 

follow the global leading (Pmax) and secondary eigenvectors. Third column: percentage of 

total variance explained and individual PC loadings onto each taxon specific Pmax. Inset: 
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three-dimensional subspace for all non-passerines (purple) and passerines (green). Values in 

parentheses show the number of species sampled.

Extended Data Table 1
Variance, repeatability and phylogenetic signal of PC 
axes.

The table shows individual and cumulative variance values, kurtosis values, scores of among 

user repeatability (R) and repeatability after averaging (Rn), and maximum likelihood 

estimates and 95% confidence intervals of Pagel’s λ for the first eight PC’s of bill shape. λ 
was estimated using two different tree topologies based on the Hackett and Ericson 

backbone trees taken from www.birdtree.org.

PC axis Variance (%) Cumulative (%) Kurtosis R Rn Stage 2 Hackett λ Stage 2 Ericson λ

1 57.8 57.8 −0.487 0.998 1.000 0.949 (0.931-0.964) 0.954 (0.936-0.968)

2 29.0 86.8 0.795 0.913 0.976 0.758 (0.704-0.806) 0.760 (0.706-0.808)

3 6.2 93.1 1.381 0.967 0.991 0.851 (0.813-0.882) 0.861 (0.824-0.892)

4 2.8 95.9 7.370 0.987 0.997 0.878 (0.845-0.906) 0.873 (0.838-0.903)

5 1.8 97.7 1.867 0.977 0.994 0.897 (0.863-0.924) 0.888 (0.851-0.917)

6 0.9 98.6 2.122 0.945 0.985 0.822 (0.774-0.863) 0.816 (0.766-0.858)

7 0.4 99.0 6.426 0.953 0.987 0.803 (0.756-0.843) 0.803 (0.756-0.843)

8 0.3 99.2 3.452 0.938 0.983 0.805 (0.752-0.848) 0.794 (0.739-0.840)

Extended Data Table 2
Summary of major single-lineage bill evolutionary rate 
shifts.

Table shows fold-change rate of evolution and posterior probability (PP) for major (PP > 0.7 

and fold-increase > 10) ancestral single-lineage shifts in rate of bill shape evolution.

Order Family Genera N Fold-increase PP

PHOENICOPTERIFORMES Phoenicopteridae Phoeniconaias, Phoenicoparrus, Phoenicopterus 3 45.2 1.000

APODIFORMES Trochilidae Discosura, Lophornis, Sephanoides 3 38.5 0.999

PELECANIFORMES Threskiornithidae Bostrychia, Cercibis, Eudocimus, Geronticus, 
Lophotibis, Mesembrinibis, Nipponia, 
Phimosus, Platalea, Plegadis, Pseudibis, 
Thaumatibis, Theristicus, Threskiornis

14 29.6 0.989

PASSERIFORMES Dendrocolaptidae Campylorhamphus, Drymornis, Lepidocolaptes 3 23.5 0.994

PASSERIFORMES Paradisaeidae Parotia, Pteridophora 2 22.2 0.992

PASSERIFORMES Melanocharitidae Oedistoma, Toxorhamphus 2 21.4 0.914

PASSERIFORMES Platysteiridae Batis, Platysteira 2 20.1 0.990

PICIFORMES Ramphastidae Andigena, Aulacorhynchus, Pteroglossus, 
Ramphastos, Selenidera

5 18.9 0.988

ANSERIFORMES Anatidae Lophodytes, Mergellus, Mergus 3 18.4 0.974

ACCIPITRIFORMES Accipitridae Helicolestes, Rostrhamus 2 18.0 0.980

PASSERIFORMES Hirundinidae Alopochelidon, Atticora, Cheramoeca, 
Delichon, Eurochelidon, Haplochelidon, 
Hirundo, Neochelidon, Notiochelidon, 
Petrochelidon, Phedina, Progne, Psalidoprocne, 

19 14.8 0.783
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Order Family Genera N Fold-increase PP

Pseudhirundo, Pseudochelidon, Pygochelidon, 
Riparia, Stelgidopteryx, Tachycineta

PASSERIFORMES Fringillidae Loxioides, Telespiza 2 13.0 0.842

MUSOPHAGIFORMES Musophagidae Corythaeola, Corythaixoides, Crinifer, 
Musophaga, Ruwenzorornis, Tauraco

6 11.5 0.838

PASSERIFORMES Timaliidae Jabouilleia, Rimator 2 11.5 11.1

Extended Data Table 3
Comparison of trait models.

The table shows delta likelihood values for alternative models of trait evolution within each 

shape axis and for different tree topologies. Values were generated by calculating the 

likelihoods of a BM model fit to the mean rate-transformed trees derived from each model.

Tree PC axis BayesTraits BAMM (T var) BAMM (T flip) BAMM (T constant) OU EB BM

Stage 2 Hackett 1 0 45.0 171.2 284.5 635.4 630.8 635.4

2 0 85.3 171.0 280.3 591.4 496.7 591.4

3 0 48.6 177.1 319.7 595.3 534.0 595.3

4 0 46.0 156.2 292.2 876.3 830.0 876.3

5 0 65.1 169.2 294.5 598.9 557.4 598.9

6 0 41.6 121.8 276.0 703.6 631.8 703.6

7 0 65.1 170.2 289.3 805.3 718.8 805.3

8 0 56.4 134.3 281.2 826.8 725.1 826.8

Stage 2 Ericson 1 0 71.3 166.5 302.2 623.6 618.8 623.6

2 0 82.8 172.5 286.4 575.1 483.4 575.1

3 0 51.2 164.3 338.7 583.6 529.3 583.6

4 0 65.5 157.0 283.7 875.0 824.7 875.0

5 0 59.1 172.6 310.9 625.8 577.1 625.8

6 0 50.2 128.5 261.3 710.8 636.7 710.8

7 0 58.6 159.2 297.1 805.7 720.7 805.7

8 0 69.9 154.1 333.7 831.3 728.2 831.3

Stage 1 Hackett 1 0 56.8 134.7 227.2 479.5 473.6 479.5

2 0 59.8 149.8 243.1 483.8 398.0 483.8

3 0 26.4 135.5 271.1 493.5 439.2 493.5

4 0 40.5 128.4 237.4 714.7 675.2 714.7

5 0 52.0 136.7 278.4 478.6 439.8 478.6

6 0 22.6 95.7 219.2 579.5 517.6 579.5

7 0 26.3 135.1 238.4 670.7 586.1 670.7

8 0 29.1 103.4 232.2 675.3 570.4 675.2

Stage 1 Ericson 1 0 69.7 132.5 248.7 486.4 479.6 486.4

2 0 59.4 143.3 239.7 488.2 400.3 488.2

3 0 21.8 136.4 275.2 502.7 447.2 502.7

4 0 32.5 132.1 245.3 721.8 679.5 721.8

5 0 53.8 130.3 275.0 482.9 442.3 482.9
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Tree PC axis BayesTraits BAMM (T var) BAMM (T flip) BAMM (T constant) OU EB BM

6 0 23.9 90.3 233.9 583.7 519.5 583.7

7 0 34.9 132.3 243.6 669.7 585.1 669.7

8 0 29.5 101.1 244.4 676.4 569.8 676.4

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank Mark Adams, Hein van Grouw, and Robert Prys-Jones from the Bird Group at the NHM, Tring and 
Henry McGhie at the Manchester Museum for providing access to and expertise in the collections; Shai Meiri of 
Tel Aviv University for providing a sample of study skins; Simon Stone of MechInovation Ltd. for providing 
training and advice on 3D scanning; Matthew Groves, Jamie McLaughlin, Mike Pidd of HRI Digital for the 
construction of www.markmybird.org; Andrew Beckerman for advice on analysing P matrices; Emily Rayfield, 
Alex Pigot, Arne Mooers, and Alex White for providing valuable comments on pre-submission drafts of the 
manuscript. Finally, we are indebted to the wonderful volunteer citizen scientists at www.markmybird.org for 
generously giving up their time to help build the database of bird bill shape and contribute to our understanding of 
avian evolution. This work was funded by the European Research Council (grant number 615709 Project 
‘ToLERates’) and by a Royal Society University Research Fellowship to GHT (UF120016).

References

1. Bright JA, Marugan-Lobon J, Cobb SN, Rayfield EJ. The shapes of bird beaks are highly controlled 
by nondietary factors. Proc Natl Acad Sci U S A. 2016; 113:5352–5357. DOI: 10.1073/pnas.
1602683113 [PubMed: 27125856] 

2. Lamichhaney S, et al. Evolution of Darwin's finches and their beaks revealed by genome 
sequencing. Nature. 2015; 518:371–375. [PubMed: 25686609] 

3. Phillimore AB, Price TD. Density-dependent cladogenesis in birds. PLoS Biol. 2008; 6:e71.doi: 
10.1371/journal.pbio.0060071 [PubMed: 18366256] 

4. Simpson, GG. Tempo and mode in evolution. Columbia University Press; 1944. 

5. Ezard TH, Purvis A. Environmental changes define ecological limits to species richness and reveal 
the mode of macroevolutionary competition. Ecol Lett. 2016; doi: 10.1111/ele.12626

6. Price, T. Speciation in birds. 1st edn. Roberts and Co; 2008. 

7. Price TD, et al. Niche filling slows the diversification of Himalayan songbirds. Nature. 2014; 
509:222–225. [PubMed: 24776798] 

8. Losos, JB., Mahler, DL. Evolution Since Darwin: The First 150 Years. Bell, MA.Futuyma, 
DJ.Eanes, WF., Levinton, JS., editors. Sinauer Associates; 2010. p. 381-420.

9. Reznick DN, Ricklefs RE. Darwin's bridge between microevolution and macroevolution. Nature. 
2009; 457:837–842. DOI: 10.1038/nature07894 [PubMed: 19212402] 

10. Alfaro ME, et al. Nine exceptional radiations plus high turnover explain species diversity in jawed 
vertebrates. Proc Natl Acad Sci U S A. 2009; 106:13410–13414. DOI: 10.1073/pnas.0811087106 
[PubMed: 19633192] 

11. Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and 
time. Nature. 2012; 491:444–448. DOI: 10.1038/nature11631 [PubMed: 23123857] 

12. Hedges SB, Marin J, Suleski M, Paymer M, Kumar S. Tree of life reveals clock-like speciation and 
diversification. Mol Biol Evol. 2015; 32:835–845. DOI: 10.1093/molbev/msv037 [PubMed: 
25739733] 

13. Venditti C, Meade A, Pagel M. Multiple routes to mammalian diversity. Nature. 2011; 479:393–
396. DOI: 10.1038/nature10516 [PubMed: 22012260] 

Cooney et al. Page 20

Nature. Author manuscript; available in PMC 2017 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.markmybird.org
http://www.markmybird.org


14. Etienne RS, et al. Diversity-dependence brings molecular phylogenies closer to agreement with the 
fossil record. Proc Biol Sci. 2012; 279:1300–1309. DOI: 10.1098/rspb.2011.1439 [PubMed: 
21993508] 

15. Rabosky DL, Glor RE. Equilibrium speciation dynamics in a model adaptive radiation of island 
lizards. P Natl Acad Sci USA. 2010; 107:22178–22183. DOI: 10.1073/pnas.1007606107

16. Jonsson KA, et al. Ecological and evolutionary determinants for the adaptive radiation of the 
Madagascan vangas. Proc Natl Acad Sci U S A. 2012; 109:6620–6625. DOI: 10.1073/pnas.
1115835109 [PubMed: 22505736] 

17. Rabosky DL, et al. Rates of speciation and morphological evolution are correlated across the 
largest vertebrate radiation. Nat Commun. 2013; 4:1958.doi: 10.1038/ncomms2958 [PubMed: 
23739623] 

18. Grant, PR. Ecology and evolution of Darwin's finches. 2nd edn. Princeton University Press; 1999. 

19. Pigot AL, Trisos CH, Tobias JA. Functional traits reveal the expansion and packing of ecological 
niche space underlying an elevational diversity gradient in passerine birds. Proc Biol Sci. 2016; 
283doi: 10.1098/rspb.2015.2013

20. Lovette IJ, Bermingham E, Ricklefs RE. Clade-specific morphological diversification and adaptive 
radiation in Hawaiian songbirds. Proc Biol Sci. 2002; 269:37–42. DOI: 10.1098/rspb.2001.1789 
[PubMed: 11788034] 

21. Kraft NJB, Valencia R, Ackerly DD. Functional traits and niche-based tree community assembly in 
an amazonian forest. Science. 2008; 322:580–582. [PubMed: 18948539] 

22. Mitchell JS. Extant-only comparative methods fail to recover the disparity preserved in the bird 
fossil record. Evolution. 2015; 69:2414–2424. [PubMed: 26257156] 

23. Finarelli JA, Goswami A. Potential Pitfalls of Reconstructing Deep Time Evolutionary History 
with Only Extant Data, a Case Study Using the Canidae (Mammalia, Carnivora). Evolution. 2013; 
67:3678–3685. [PubMed: 24106995] 

24. Slater GJ. Iterative adaptive radiations of fossil canids show no evidence for diversity-dependent 
trait evolution. P Natl Acad Sci USA. 2015; 112:4897–4902.

25. Ricklefs RE. Small clades at the periphery of passerine morphological space. Am Nat. 2005; 
165:651–659. DOI: 10.1086/429676 [PubMed: 15937745] 

26. Robinson MR, Beckerman AP. Quantifying multivariate plasticity: genetic variation in resource 
acquisition drives plasticity in resource allocation to components of life history. Ecol Lett. 2013; 
16:281–290. DOI: 10.1111/ele.12047 [PubMed: 23301600] 

27. Hadfield JD. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The 
MCMCglmm R Package. J Stat Softw. 2010; 33:1–22. [PubMed: 20808728] 

28. Hughes M, Gerber S, Wills MA. Clades reach highest morphological disparity early in their 
evolution. Proc Natl Acad Sci U S A. 2013; 110:13875–13879. DOI: 10.1073/pnas.1302642110 
[PubMed: 23884651] 

29. Mitchell JS, Makovicky PJ. Low ecological disparity in Early Cretaceous birds. P Roy Soc B-Biol 
Sci. 2014; 281

30. Brusatte SL, O'Connor JK, Jarvis ED. The Origin and Diversification of Birds. Curr Biol. 2015; 
25:R888–898. DOI: 10.1016/j.cub.2015.08.003 [PubMed: 26439352] 

31. Klingenberg CP. Visualizations in geometric morphometrics: how to read and how to make graphs 
showing shape changes. Hystrix. 2013; 24:15–24.

32. Zelditch, M. Geometric morphometrics for biologists : a primer. Elsevier Academic Press; 2004. 

33. Fruciano C. Measurement error in geometric morphometrics. Dev Genes Evol. 2016; 226:139–158. 
[PubMed: 27038025] 

34. Adams DC, Otarola-Castillo E. geomorph: an r package for the collection and analysis of 
geometric morphometric shape data. Methods Ecol Evol. 2013; 4:393–399.

35. Gunz, P., Mitteroecker, P., Bookstein, FL. Modern Moprhometrics in Physical Anthropology. Slide, 
DE., editor. Kluwer Academic/Plenum Publishers; 2004. p. 73-98.

36. tpsSmall, testing amount of shape variation, version 1.30. Department of Ecology and Evolution, 
State University of New York at Stony Brook; 2014. 

Cooney et al. Page 21

Nature. Author manuscript; available in PMC 2017 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



37. Revell LJ. Size-Correction and Principal Components for Interspecific Comparative Studies. 
Evolution. 2009; 63:3258–3268. [PubMed: 19663993] 

38. Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). 
Methods Ecol Evol. 2012; 3:217–223.

39. Uyeda JC, Caetano DS, Pennell MW. Comparative Analysis of Principal Components Can be 
Misleading. Systematic Biology. 2015; 64:677–689. [PubMed: 25841167] 

40. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian Phylogenetics with BEAUti and the 
BEAST 1.7. Molecular Biology and Evolution. 2012; 29:1969–1973. [PubMed: 22367748] 

41. Prum RO, et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA 
sequencing. Nature. 2015; 526:569–573. DOI: 10.1038/nature15697 [PubMed: 26444237] 

42. Thomas GH, Freckleton RP. MOTMOT: models of trait macroevolution on trees. Methods Ecol 
Evol. 2012; 3:145–151. DOI: 10.1111/j.2041-210X.2011.00132.x

43. Pennell MW, et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models 
to phylogenetic trees. Bioinformatics. 2014; 30:2216–2218. DOI: 10.1093/bioinformatics/btu181 
[PubMed: 24728855] 

44. Rabosky DL. Automatic Detection of Key Innovations, Rate Shifts, and Diversity-Dependence on 
Phylogenetic Trees. Plos One. 2014; 9

Cooney et al. Page 22

Nature. Author manuscript; available in PMC 2017 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. Bird bill morphospace density plots.
PC axes 1-8 are shown as pairwise scatterplots, along with warps representing the change in 

bill shape (n = 2028 species) along each axis in dorsal and lateral views. Each axis is labeled 

with the proportion of variance explained and estimates of phylogenetic signal (Pagel’s λ). 

The colour scale refers to the number of species in 20 bins with minimum and maximum 

richness of a, 1-23 b, 1-72 c, 1-64, and d, 1-98 species, respectively.
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Figure 2. Morphospace filling through time.
a, Accumulation of multivariate disparity through time in 1 million time slices (thick black 

line: observed data; thin black line: after LOESS smoothing; blue lines: constant rate null 

model; red lines: variable rate null model). b, Comparison of slopes (estimated in 5 million 

year windows) of the LOESS-smoothed observed data and null models. Differences in slope 

above and below zero indicate dominance of morphospace expansion versus morphospace 

packing respectively. Shading indicates 95% confidence intervals. c, Mean relative rates of 

evolution with 95% confidence intervals (grey) through time.
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Figure 3. Multivariate rates of bill shape evolution.
The avian phylogeny (n = 2028 species) coloured by estimates of the mean relative 

multivariate rate of bill shape evolution. Grey triangles show the stem branch of clades with 

support for whole clade shifts in evolutionary rate. Coloured circles show rate shifts on 

individual internal branches (colour indicates the rate estimate). The relative size of triangles 

and circles indicates the posterior probability (PP) of a rate shift. Triangles distinguish shifts 

on the focal node (filled) and shifts at the focal node or on one of its two daughter nodes 

(open).

Cooney et al. Page 25

Nature. Author manuscript; available in PMC 2017 August 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Methods
	Data sampling
	3D scanning and processing
	Landmark choice
	Crowdsourcing
	Quality control and landmark averaging
	Geometric morphometrics
	Phylogenetic framework
	Phylogenetic signal
	Models of trait evolution
	Disparity and rates through time
	Estimating ancestral disparity
	Null models of morphospace filling
	Summarising evolutionary rates through time

	Estimation of phenotypic variance-covariance (P) matrices
	Data availability

	Extended Data
	Extended Data Figure 1
	Extended Data Figure 2
	Extended Data Figure 3
	Extended Data Figure 4
	Extended Data Figure 5
	Extended Data Figure 6
	Extended Data Figure 7
	Extended Data Table 1
	Extended Data Table 2
	Extended Data Table 3
	References
	Figure 1
	Figure 2
	Figure 3

