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ARTICLE INFO ABSTRACT

Available online 11 June 2014 We describe SILIRID (Simple Ligand-Receptor Interaction Descriptor), a novel fixed size descriptor characterizing
protein-ligand interactions. SILIRID can be obtained from the binary interaction fingerprints (IFPs) by summing
up the bits corresponding to identical amino acids. This results in a vector of 168 integer numbers corresponding
to the product of the number of entries (20 amino acids and one cofactor) and 8 interaction types per amino acid
(hydrophobic, aromatic face to face, aromatic edge to face, H-bond donated by the protein, H-bond donated by
the ligand, ionic bond with protein cation and protein anion, and interaction with metal ion). Efficiency of
SILIRID to distinguish different protein binding sites has been examined in similarity search in sc-PDB database,
a druggable portion of the Protein Data Bank, using various protein-ligand complexes as queries. The perfor-
mance of retrieval of structurally and evolutionary related classes of proteins was comparable to that of state-
of-the-art approaches (ROC AUC = 0.91). SILIRID can efficiently be used to visualize chemogenomic space cov-
ered by sc-PDB using Generative Topographic Mapping (GTM): sc-PDB SILIRID data form clusters corresponding
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to different protein types.
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1. Introduction

Nowadays, a comparison of protein-ligand binding sites is widely
used to predict new targets or new ligands using protein-ligand (PL)
complexes as search queries [1-3]. Efficiency of this procedure clearly
depends on computer representation of the binding sites (BSs). The
simplest BS representation as amino acid sequence is, unfortunately, in-
sufficient because protein families with identical folds may have very
low sequence similarity. More appropriate approaches encode BSs by
surface [4,5], mesh [6], cloud-of-atoms [7] or graphs [8-13].

The interaction fingerprint (IFP) approach [14] represents an alter-
native way to encode protein-ligand complexes. Generally, an IFP en-
codes a presence (1) or an absence (0) of interactions of the ligand
with specified amino acids of the binding site, thus forming a binary
string (bitstring). Each amino acid of the binding site is described by
one same number of interaction types (hydrophobic, hydrogen donor,
hydrogen acceptor, etc.), thus all complexes of the given protein could
be described by IFPs of the same length. Therefore, they can be easily
compared using similarity measures. IFPs directly characterize the bind-
ing modes rather than the ligand structure and, hence, they may be sim-
ilar for the PL-complexes containing ligands with different scaffolds.

Typically, the IFP length depends on the binding site size which
limits their application to one protein's family. Therefore, some efforts
have been made to construct binding site independent IFP [15]. The
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most common approach consists in the binning of geometrical patterns
of interactions resulting in either a fixed size vector or a vector which
size depends on the training set. For example, atom-pair based interac-
tion fingerprint (APIF) by Pérez-Nueno et al. [16] encodes a quadruple
forming by interacting atom pairs of the ligand and the protein. APIF
has a fixed size of 294 bits for any protein corresponding to six possible
combinations of PL interaction types and seven distance bins [16]. In
FuzCav cavity fingerprint by Weill and Rognan [17], a BS is represented
by the 4833-integer vector in which each component registers the
count of unique pharmacophoric triplets (three properties and three re-
lated distances) occurring at binned inter-feature distances. Recently, it
has been shown [18] that IFP for a given class of protein can be predicted
directly from 2D structure of ligands.

Here, we describe a new type of binding site size independent IFP —
Simple Ligand-Receptor Interaction Descriptor (SILIRID) which is a vec-
tor constructed from binding site dependent IFP. It has been demon-
strated that this approach could efficiently be used for the binding site
comparison and analysis of PL-interactions.

2. Method

SILIRIDs are calculated from the IFP described by Marcou and
Rognan [19] and stored in the sc-PDB database (version 2011) [20].
Every IFP consists of 8 bits per amino acid: hydrophobic, aromatic face
to face, aromatic edge to face, hydrogen bond donated by the protein,
hydrogen bond donated by the ligand, ionic bond with protein cation


http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2014.05.004&domain=pdf
http://dx.doi.org/10.1016/j.csbj.2014.05.004
mailto:varnek@chimie.u-strasbg.fr
http://dx.doi.org/10.1016/j.csbj.2014.05.004

34 V. Chupakhin et al. /| Computational and Structural Biotechnology Journal 10 (2014) 33-37

and protein anion, and metal ion. The length of this IFP depends on the
size of the biding site.

Preparation of SILIRID vectors from IFP by merging bitstrings for a
given type of amino acid is shown in Fig. 1. Here, two bitstrings corre-
sponding to VAL18 and VAL64 are transformed into a vector based on
integer numbers; similar operation is performed for PHES8O and
PHES82. Amino acids which do not interact with the ligand (all bits are
zero) must also be taken into account. Co-factors are also considered
as an additional 8 bit entry. At the second step, bitstrings of 21 entries
(20 amino acids and cofactor) are concatenated into one vector. For
any protein, the order of the amino acids in SILIRID is fixed according
to the lipophilicity and pKa of the amino acids. Thus, any binding site
is described by a fixed length 21 + 8 = 168 dimensional vector. SILIRIDs
for the whole sc-PDB were generated using in-house script.

Similarity between SILIRIDs was calculated using the Jaccard index
using R-package vegdist [21]:

2d,
: _ J
Jaccard index = 4 dy
Here, dj = M , Where x;, are i-th components of SILIRIDs
2 (X + i) i

describing, respectively, PL complexes j and k.

The ROCR package [22] for R statistical environment [23] was used to
plot ROC curves and to perform ROC AUC calculation.

Notice that obtaining SILIRID from 3D structure and comparison of
SILIRIDs corresponding to different binding sites are very fast. Thus, cal-
culations of SILIRID based pairwise similarities for ~9000 sc-PDB entries
take around 15 min on standard Linux station, 64 bit, single core, Intel
i5, using standard 64 bit R statistical environment.

SILIRID vectors extracted from the sc-PDB database are available for
download at https://github.com/chupvl/silirid.

3. Results and discussion
3.1. Ability of SILIRID to detect similar binding sites

SILIRID efficiency in alignment-free binding site comparison has
been investigated for three protein classes: kinases, serine-proteases
and nuclear receptors. Every studied protein class was treated as class
1 and all other PL-complexes in sc-PDB as class 2. Within each class,
sub-classes 1a and 1b have been selected using either EC number (en-
zyme classification) or Structural Classification of Proteins (SCOP) or
both (Table 1) and additionally manually cleaned. Protein family 1a is
a sub-class of 1b, which, in turn, is a sub-class of 1 (see Fig. 2). This
setup allows us to study the ability of SILIRID to retrieve proteins of
the given class and sub-classes in similarity search using PL complexes
of 1a proteins as query. Thus, the ability of a CDK2 binding site encoded
by SILIRID has been tested to retrieve binding sites of other CDK2 (class
1a), similar binding sites of serine-threonine protein kinases (class 1b),
and those of protein kinases (class 1).

Table 1
Classes and subclasses of proteins used for similarity search studies. The number of entries
from the sc-PDB database is shown in parenthesis.

Class1a  CDK2 kinase (123) Androgen receptor (29)
Class 1b  Serine-threonine NA

kinase (488)
Protein kinase (754)

Trypsin (78)
Trypsin-like fold (378)
Class 1

Nuclear receptor (282)  Serine protease (417)

For a given protein family 1a, each representative has been used as
query. Therefore, in order to characterize the results of similarity search,
the average ROC curves have been plotted and corresponding ROC AUC
values have been calculated.

Similarity search results reported in Fig. 3 and Table 2 show that
SILIRID efficiency to compare protein binding sites is similar to that of
the state-of-the-art approaches. Thus, SILIRID-based similarity search
with trypsin as queries to retrieve trypsin-like fold proteins among all
sc-PDB entries resulted in average ROC AUC = 0.95 which is similar to
the values obtained with SiteAlign [12] (ROC AUC = 0.88) and BSAlign
[9] (0.91). Similarly, with CDK2 as queries, we achieved average ROC
AUC = 0.81 to retrieve protein kinases, which is similar to the value ob-
tained by SiteAlign (ROC AUC = 0.76). Androgen receptor queries re-
trieve nuclear receptor entries with average ROC AUC = 0.92 that is
also similar to the SiteAlign results (0.98).

Some PL-complexes were found dissimilar to the query. Most of
them represent a case of allosteric binding. For example, 2PIV (andro-
gen receptor) as query poorly retrieves androgen receptors (ROC
AUC = 0.56), because the ligand (3,5,3’-triiodothyronine) is bound
not to the steroid-binding site of the receptor, but to the periphery co-
activator binding site. Similar situation was detected for 2QPY, also an
androgen receptor complex. Weak retrieval rate (ROC AUC = 0.58)
with 3QHW used to query CDK2 and protein kinase space can be ex-
plained by errors of the semi-automatic algorithm of sc-PDB construc-
tion which mistakenly treats a small part of the protein disconnected
from its main part as a ligand, thus leading to erroneous IFP and
SILIRID calculations.

Discrimination power of SILIRID can be related to the difference in
the binding patterns for different protein families. Fig. 4 is a median
frequency distribution of the SILIRID components for trypsin and
thrombin — functionally and structurally similar protein families and
CDK2 — as an example of the distinct protein family both structurally
and functionally. Significant difference of the component occurrences
corresponding to particular interactions reflects the fact that one contri-
bution of the same amino acid in PL binding varies as a function of pro-
tein family. For example, according to median bit count, serine is
important as hydrogen bond donor for thrombin only (Fig. 4), but not
for trypsin and CDK2. On the other hand, serine as H-bond acceptor is
equally important for trypsin and CDK2, but not for thrombin. Leucine
in turn is equally important as H-bond acceptor and H-bond donor for
CDK2, but it doesn't exhibit these binding models in cases of thrombin
and trypsin. CDK2 realizes hydrophobic interactions with ligands most-
ly via leucine, phenylalanine, lysine and isoleucine, whereas trypsin via
cysteine and serine.
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Fig. 1. SILIRID generation workflow: IFP bits corresponding to the same amino acids are concatenated resulting in a numerical vector with fixed size (168), which corresponds to the prod-

uct of the number of amino acids plus cofactor (21) and the number of interaction types (8).
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Average ROC AUC for similarity search corresponding to setup described in Fig. 2 and
Table 1. In the brackets minimum and maximum ROC AUC values are given.

Class 1b

Class 1

Query Class 1a

CDK2 0.98 (0.58-0.99)
Androgen receptor 0.91 (0.58-0.95)
Trypsin 0.99 (0.95-1.00)

0.81 (0.54-0.88)

0.95 (0.93-0.97)

0.81 (0.54-0.88)
0.92 (0.68-0.96)
0.92 (0.89-0.94)

Class 1a Class 2
Class 1b Class 2
Class 1 Class 2

Fig. 2. Setup of protein classes and subclasses used for SILIRID comparison in similarity
search experiments. See Table 1 for details.

3.2. Visualization of SILIRID-based chemogenomic space using Generative
Topographic Mapping

SILIRIDs can efficiently be used to visualize chemogenomic space of
studied PL-complexes. For this purpose we used Generative Topographic

Class 1a

Class 1b

Mapping (GTM), a probabilistic variant of the self-organizing Kohonen
map, which projects the objects in N-dimensional vector space onto
two-dimensional space [24,25]. GTM is an unsupervised method de-
scribing the hidden structure of data represented by SILIRID vectors.
This type of study has a special interest for structure-based drug design
helping to find similarities and relationships between protein families
[26].

In this study, GTM has been built on the raw SILIRID descriptors for
417 serine proteases, 304 asparagine proteases, 253 phosphorylases,
241 tyrosine kinases, 488 serine/threonine kinases and 282 nuclear re-
ceptors. On the map shown in Fig. 5 nuclear receptors and proteases
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Fig. 3. ROC for classification results. CDK2 was used as query to retrieve various protein families, such as class 1a — CDK2 entries itself, class 1b — serine-threonine protein kinases, and class
1 — protein kinases. Androgen receptor (AR) entries were used to retrieve just two classes: class 1a — androgen receptor themselves and class 1 — all nuclear receptors. Trypsin: class
1a — trypsin, class 1b — trypsin-like fold, class 1 — serine proteases. ROC AUC averaged according to true positive rate and the standard deviation boxplot was added for every curve.
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Fig. 4. SILIRID: median vector component frequency for trypsin, thrombin and CDK2 in the form of cumulative histogram with percent. Components with zero values for all entries were
removed. Components were grouped according to interaction type: hydrophobic, AFE — aromatic face to edge, HBD — hydrogen bond (protein donor), HBA — hydrogen bond (protein

acceptor), IPA — ionic interaction (protein anion).

form distinct and non-overlapping clusters. Tyrosine and serine/
threonine kinases produce highly overlapping clusters which also over-
lap with phosphorylases clusters; these protein families share similar
functional property of transferring of phosphate group to the protein
or chemical substrate. Fig. 5 clearly reveals an efficacy of SILIRIDs to en-
code major functional properties of different protein families.

There are, nevertheless, several zones where some of these main
clusters do overlap (e.g., zones 1-4, Fig. 5). Typically, they gather PL-
complexes either containing similar ligands, or representing examples
of allosteric binding, or characterizing atypical binding modes (see de-
tails in Supplementary material).

3.3. Pose retrieval

The question arises whether SILIRIDs are able to retrieve correct
binding poses in docking experiments. In order to investigate this ques-
tion one PL-complex per protein for CDK2, androgen receptor and tryp-
sin families (PDB IDs: TW0X, 2AX8 and 2UUK, correspondingly) was
considered. In each complex, extracted ligand was re-docked with

GOLD v5.1 [27] to generate 100 conformations with diverse orientation
within binding site. Both IFP and SILIRID calculated for X-ray structure
were compared with those calculated for each generated conformer in
order to retrieve the best pose. RMSD less than 2.0 A for a top-one
scored conformer was considered as success. In these calculations, IFP
displayed good retrieval rate for all proteins. On the other hand, with
SILIRID the correct poses have been retrieved only for the androgen re-
ceptor. Thus, SILIRID can hardly be used to retrieve the correct binding
pose, and, therefore, cannot be recommended for postprocessing of
the virtual screening results, a common practice of IFP usage. This draw-
back of SILIRID can be explained by the fact that they, unlike IFP, implic-
itly describe protein-ligand interactions which, in most cases, is not
sufficient to determine exact ligand binding mode.

4. Conclusions
Here, we introduced SILIRID (Simple Ligand-Receptor Interaction

Descriptor), a novel fixed vector characterizing protein-ligand interac-
tions. It can be produced from 3D structure of PL complex through the
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Fig. 5. Generative Topographic Mappings of various protein families: serine and aspartate proteases, serine/threonine and tyrosine protein kinases, phosphorylases and nuclear receptors
extracted from sc-PDB. Composition of zones 1-4 is given in Supplementary material and discussed in Section 3.2. The following parameters have been used: map resolution 25 x 25, radial

basis function network with grid 5 x 5 and width factor 1.0, regularization coefficient 0.1.
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step of generation of binary interaction fingerprints. It has been demon-
strated that SILIRIDs well distinguish different protein binding sites and,
therefore, they can be particularly useful to map protein-ligand com-
plexes to the functional family using similarity search or data analysis
methods. SILIRID can also be used as a fast method to detect groups
within collections of binding sites. The short length of SILIRID allows
easy to percept visualization of the ligand—protein interactions for spe-
cific protein families as well as individual PL-complexes.
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