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Objective: Single, large-scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease.
This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve
understanding of pathogenic mechanisms associated with single, large-scale mtDNA deletions in skeletal muscle.
Methods: We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43
years) with characterized single, large-scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal
muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle
fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion
level and copy number by quantitative polymerase chain reaction.
Results: We have defined 3 “classes” of single, large-scale deletion with distinct patterns of mitochondrial deficiency,
determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory
chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first
time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class.
Interpretation: Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and com-
plex IV deficiency are modulated by the deletion of complex-specific protein-encoding genes. Furthermore, removal of
mt-tRNA genes impacts specific complexes only at high deletion levels, when complex-specific protein-encoding genes
remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations.
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Single, large-scale deletions of mitochondrial DNA

(mtDNA) are a common cause of adult mitochondrial

disease, accounting for approximately 16% of all adult

mtDNA mutations and with an estimated prevalence of

1.5/100,000.1 Phenotypically, single large-scale mtDNA

deletions are associated with several clinical syndromes

including Pearson syndrome,2 Kearns–Sayre syndrome,3

and chronic progressive external ophthalmoplegia (CPEO).4
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A recent prospective study noted ptosis, ophthalmoplegia,

muscle weakness, exercise intolerance, and hearing loss as

the most common symptoms present at onset.5

Although a specific deletion encompassing 4,977bp

is commonly reported,6 single, large-scale mtDNA dele-

tions vary in size (between 1.3 and 10kb), removing a

number of genes encoding both mt-tRNAs and structural

mRNAs.7–11 They are typically mutational events that

occur during the replication/repair of the mitochondrial

genome and are invariably heteroplasmic in human tis-

sues - a condition where both mutated and wild-type

mtDNA genomes coexist in the same cell. In postmitotic

tissues, such as skeletal muscle, the proportion of deleted

to wild-type mtDNA must exceed a reported threshold

(50–90%)9–13 for the expression of a biochemical defect,

leading to a marked mosaicism between different fibers

and well-described cytochrome c oxidase (COX)-defi-

cient, ragged-red fibers.13

Since they were first described,14 several groups

have tried to understand the pathogenesis of single,

large-scale mtDNA deletions and pinpoint the factors

driving disease progression. However, the different

mtDNA deletion sizes and phenotypic heterogeneity

linked with these mutations have led to conflicting

results. Larger mtDNA deletions have been associated

with more severe disease and earlier disease onset.15–19

Whereas a highly significant,20 significant,15,16,21,22

weak,18,23 or no24 correlation has been reported between

the percentage of COX-deficient fibers and the degree of

mtDNA heteroplasmy, most studies found no correlation

between the biochemical defects and the nature of the

deletion (the number of protein-encoding genes and the

complexes affected by the deletion) or deletion size

alone.4,15,20,22,25 Interestingly, a higher proportion of

COX-deficient ragged-red fibers was found in patients

with deletions encompassing the 3 mtDNA-encoded

COX genes,26,27 whereas an isolated complex I deficiency

was reported in patients with smaller mtDNA deletions

removing only complex I genes.26

There are limitations to these studies, which

account for the variability in their findings. Respiratory-

deficient muscle fibers were selected based on the sequen-

tial COX/succinate dehydrogenase histochemistry, which

only assesses complex IV function. Therefore, fibers

exhibiting high levels of deficiency involving other respi-

ratory chain complexes might be missed. Despite few

exceptions,16,17,19,26 patients were also often evaluated as

one group, without discriminating deletions of different

sizes and locations. Such an analysis cannot determine

whether the nature of the deletion influences biochemical

and clinical profiles.

In this study, we combined quantitative immuno-

fluorescent28 and molecular genetic techniques to investi-

gate the interplay between the nature of the pathological

mtDNA deletion and its consequential mitochondrial

respiratory chain profile, the threshold for respiratory

chain deficiency, and the metabolic profile based on skel-

etal muscle fiber type.

Materials and Methods

Cohort Clinical Characteristics
Vastus lateralis needle biopsies were obtained from 23 patients

referred to the National Health Service (NHS) Highly Special-

ised Mitochondrial Service in Newcastle with a clinical and

molecular diagnosis of mitochondrial disease due to a single,

large-scale mtDNA deletion in muscle. All biopsies had previ-

ously been characterized to determine the precise size and level

of the deletion through mapping mtDNA deletion breakpoints

and assessing levels of mtDNA heteroplasmy (or deletion level)

in muscle homogenates (Table 1). Ethical approval was granted

by the Newcastle and North Tyneside 1 and National Research

Ethics Committees (reference 2002/205 “Role of Mitochondrial

Abnormalities in Disease”) and by the University of Texas

Southwestern Institutional Review Board (study ID: STU

092010-077, “Exercise Adaptations in Mitochondrial Myopa-

thy: Therapeutic Implications”), and informed consent was

obtained from each participant.

Oxidative Phosphorylation Quadruple
Immunofluorescence
Oxidative phosphorylation (OXPHOS) quadruple immunofluo-

rescence was carried out on transversely orientated frozen mus-

cle sections (10mm) according to an established and validated

protocol.28 Briefly, the sections were incubated with a cocktail

of primary antibodies (COX-I, porin, NDUFB8, and laminin)

followed by incubation with the secondary antibodies (Alexa

Fluor 488, 546, biotinylated IgG1 and 750) and subsequently

with streptavidin 647. A no-primary antibody control (only

labeled with laminin) was processed for each muscle sample.

The z scores for porin (porin_z), NDUFB8

(NDUFB8_z), and COX-I (COX-I_z) from individual fibers

were derived28 and used to infer porin levels (porin_z<23

standard deviations [SD], very low; 23 SD< porin_z<22SD,

low; 22 SD< porin_z<12 SD, normal; 12

SD< porin_z<13 SD, high; porin_z>13 SD, very high)

and both NDUFB8 and COX-I levels (z>23 SD, normal;

23 SD> z>24.5 SD, intermediate positive; 24.5

SD> z>26 SD, intermediate negative; z<26 SD, negative).

Fiber Typing Immunofluorescence
Fiber typing immunofluorescence was carried out on transverse

muscle sections of 20lm thickness, as previously described.29

The sections were incubated with the primary antibody cocktail

(mouse IgG2b BA-F8 [to identify type I fibers, in a 1:100 dilu-

tion], mouse IgG1 SC-71 [type IIa, 1:100], mouse IgM 6H1

[type IIx, 1:15; Developmental Studies Hybridoma Bank, Iowa
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TABLE 1. Clinical Information of Patients Included in This Study

Patient Age,

yra

Gender Clinical

Information

mtDNA

Breakpoints

mtDNA

Deletion

Level

Class I: complexes I

and IV equally downregulated

P1 21 F CPEO, myopathy,

cerebellar ataxia,

short stature (KSS)

8482–13460 87%

P2 22 F CPEO 8543–15672 7%

P3 25 M CPEO, myopathy 8569–14603 78%

P4 29 F CPEO 8929–13301 53%

P5 36 F CPEO, myopathy 8577–12983 78%

P6 43 F CPEO, myopathy 8482–13460 73%

P7 44 F CPEO, myopathy 9486–13723 81%

P8 48 F CPEO, myopathy 9498–13739 39%

Class II: complex I more

affected than complex IV

P9 25 F CPEO 13039–15661 66%

P10 26 F CPEO, myopathy 10747–15598 71%

P11 26 F CPEO, myopathy,

deafness, diabetes

10946– 15587 83%

P12 39 M CPEO, myopathy 11262– 15375 81%

P13 40 F CPEO, myopathy,

bulbar weakness,

muscle atrophy,

pigmentary retinopathy

12113–14421 90%

P14 47 F CPEO 12112– 14412 70%

P15 50–57 M CPEO, diabetes 12112– 14412 59%

P16 59 F CPEO 12211–15556 38%

Class III: complex IV slightly

more affected than complex I

P17 28 F CPEO, myopathy 6341–13989 33%

P18 31–34 M CPEO, myopathy 5772–12916 36%

P19 39 F CPEO 7130–14628 28%

P20 41 F CPEO, myopathy 6742–13223 19%

P21 59 M CPEO, myopathy 6002–11221 15%

P22 63 M CPEO 7128–13992 35%

P23 74 F CPEO 7205–12090 34%

aAge when biopsied.

CPEO 5 chronic progressive external ophthalmoplegia; F 5 female; KSS 5 Kearns–Sayre syndrome; M 5 male.
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City, IA], and rabbit IgG laminin [1:50] in 5% normal goat

serum [NGS]) followed by incubation with the secondary anti-

body cocktail (anti-IgG2b Alexa Fluor 488, anti-IgG1 Alexa

Fluor 546, anti-IgM Alexa Fluor 647, antirabbit Alexa

Fluor750, all diluted 1:200 in 5% NGS). The sections were

stored at 48C for mtDNA preservation, before imaging. To

assess the fiber type profile, muscle fibers were visually classified

into either type I or type II fibers, based on the presence of

myosin heavy chain isoforms.

Image Acquisition
Fluorescent images were acquired at 320 magnification using a

Carl Zeiss (Oberkochen, Germany) Axio Imager M1 and Zen

2011 (blue edition) software equipped with a motorized stage,

a monochrome digital camera (AxioCam MRm), and 488nm

(COX-I or type I), 546nm (porin or type IIa), 647nm

(NDUFB8 or type IIx), and 750nm (laminin) wavelength filter

cubes. Images were recorded as zvi files and processed by Zen

2011 (blue edition) software using the stitching function.

Selection and Isolation of Single Skeletal
Muscle Fibers for Molecular Genetic Analysis
An outline of the single fiber approach is shown in Figure 1.

Following assessment of the OXPHOS deficiency, we noted

that patients with single large-scale mtDNA deletions exhibited

distinct mitochondrial respiratory chain profiles. There was

either an equal and simultaneous loss of COX-I (complex IV)

and NDUFB8 (complex I), a more pronounced loss of complex

I over complex IV, or the opposite, a slightly more pronounced

involvement of complex IV over complex I. Therefore, patients

were grouped on the basis of that profile, into classes I to III,

respectively. Next, 2 patients were selected from each class for

further molecular investigations by single fiber analysis based

on quality of biopsies and number of fibers available to analyze.

Four serial sections were collected from patient skeletal muscle

biopsies for OXPHOS and fiber type immunofluorescence pro-

tocols. Subsequent to immunofluorescent staining, OXPHOS

and fiber type serial sections were aligned and fibers were man-

ually matched across sections to provide a mitochondrial respi-

ratory chain and fiber type profile for each individual myofiber.

Selection of muscle fibers for laser microdissection and molecu-

lar genetic analysis was carried out as shown in Figure 1D.

Muscle fibers were categorized according to the level of complex

I and complex IV deficiency into groups (referred to as

OXPHOS groups): double-positive, intermediate, or double-

negative for both complexes I and IV. Subsequently, equal num-

bers (minimum of 10 fibers whenever possible) of type I and

type II fibers were randomly selected from each group. Fiber

typing sections were dehydrated through an ethanol gradient,

and selected muscle fibers were microdissected using the PALM

Microbeam system (Zeiss), as described.30

Real-Time PCR
In 20 patients (of 23), the level of mtDNA deletion (ie, muta-

tion load) was determined using an established and previously

validated duplex MT-ND1/MT-ND4 TaqMan real-time poly-

merase chain reaction (PCR) assay,31 as their mtDNA deletions

preserve the MT-ND1 site but encompass MT-ND4. A standard

curve consisting of a 10-fold serial dilution of plasmid contain-

ing MT-ND1 and MT-ND430 was loaded in triplicate on each

plate. Single fiber lysate stocks were diluted 1:5 in nuclease-free

water and loaded in triplicate onto 3 replicate plates. Absolute

copy numbers of MT-ND4 and MT-ND1 were determined by

comparing the average sample Cq against the standard curve.

Deletion level was calculated as [1 2 (MT-ND4: MT-ND1) *

100]. Total mtDNA copy number was represented by the MT-

ND1 copy number and wild-type mtDNA copy number by

MT-ND4 copy number. New primers and probes were designed

to evaluate deletion levels of patients where MT-ND4 primer

binding sites were preserved. Primers and probes were designed

for MT-CYB (forward nt14926–14945; reverse nt14987–

14966; probe nt14947–14964) for P9 and P16, and for MT-

COI (forward nt6186–6207; reverse nt6249–6229; probe

nt6208–6224) for P21 using Primer Express software (Thermo

Fisher Scientific, Waltham, MA). These substituted MT-ND4

primers and probes in the aforementioned protocol.

Statistical Analysis
OXPHOS statistical analyses were carried out using a newly

developed website (http://research.ncl.ac.uk/mitoresearch/) and

R version 3.3.2.32 For comparison of deletion levels, copy num-

ber, and threshold between fiber groups, the Mann–Whitney U

and paired t tests were applied to assess the difference between

respiratory-normal fibers (OXPHOS group 1) and either the

respiratory-intermediate (OXPHOS group 2) or respiratory-

negative fibers (OXPHOS groups 3).

Results

Genes Affected by the mtDNA Deletion
Modulate the Mitochondrial Respiratory Chain
Profile
Previous results from our group have shown that patients

harboring single, large-scale mtDNA deletions show

FIGURE 1: Design of the molecular study. (A) Patients were first classified into different classes (I–III) according to their mito-
chondrial respiratory chain profile, and then 2 patients from each class were selected for single fiber analysis based on their
biopsy size. (B) Four serial muscle sections were taken from each patient’s biopsies for oxidative phosphorylation (OXPHOS)
and fiber type analysis. (C) The OXPHOS section was sequentially incubated with all primary and secondary antibodies (green
5 COX-I, red 5 porin, purple5 NDUFB8), whereas the no primary control section was inbubated only with laminin antibody and
all secondary antibodies. The fiber type section was incubated with antibodies detecting type I (green) and type II (red 5 IIa,
purple 5 IIx) myosin heavy chain. The OXPHOS and fiber type serial sections were manually overlaid to match fibers across sec-
tions. (D) Fibers were then selected for microdissection, with careful consideration of the OXPHOS group (1–3) and fiber type.
CI 5 complex I; CIV 5 complex IV; Int 5 intermediate.
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decreased levels of both complex I and complex IV, in

line with a disorder of generalized mitochondrial transla-

tion.28 However, as there seemed to be some differences

between patients in the degree of complex I and complex

IV declines, we decided to investigate a larger group of

patients. We performed quadruple immunofluorescence

on skeletal muscle biopsies from 23 genetically character-

ized patients (Figs 2A, 3A, and 4A), and identified 3 dis-

tinct mitochondrial respiratory chain profiles (see Fig 2B,

3B, and 4B); consequently, patients were further catego-

rized into 1 of 3 classes: class I (P1–P8), with equal and

simultaneous downregulation of both complex I and

complex IV; class II (P9–P16), with an early and more

pronounced loss of complex I over complex IV; and class

III (P17–P23), with slightly more severe complex IV

deficiency than complex I deficiency. mtDNA deletion

level varied across the whole group of patients (see Table

1 and Figs 2B, 3B, and 4B), regardless of the class, sug-

gesting that, unlike the magnitude of deficiency, the

mitochondrial respiratory chain profile is not influenced

by the proportion of mutated mtDNA species.

To explore the underlying pathological processes

determining the mitochondrial respiratory chain profiles,

we then examined the nature of the mtDNA deletions

more closely (ie, the size of the deletion, the number of

genes affected (both protein-coding and tRNAs), and the

respiratory chain complexes affected by the deletion). Inter-

estingly, the mtDNA deletion sizes segregated by the dele-

tion class; the smallest deletions were identified in patients

from class II and the largest deletions in patients from class

III (data not shown). We then analyzed each class of patient

based on the precise molecular defect as determined by

mtDNA breakpoint mapping (see Table 1 and Figs 2C,

3C, and 4C). In all patients from class I, individual

mtDNA deletions consistently removed 5 to 6 tRNA genes,

4 to 5 complex I genes, and 1 complex IV gene; complex

III and V genes were occasionally removed. By contrast, in

class II, deletions only removed 3 to 4 tRNA genes, 3 to 4

complex I genes, and occasionally 1 complex III gene; all

complex IV genes were preserved, offering a compelling

explanation for the earlier onset of complex I deficiency

seen in the respiratory chain profiles of all 8 patients. In

class III, deletions removed 6 to 8 tRNA genes, 2 to 4

complex I genes, 2 complex V genes, and all complex IV

genes. Removal of all mtDNA genes encoding complex IV

subunits by these deletions could explain the slightly greater

deficiency of complex IV over complex I in all 7 patients.

Interestingly, Patients P4, P5, P6, and P7 (class I) and both

P21 and P23 (class III) all have 5 tRNA genes removed,

suggesting that the number of tRNA genes removed by the

deletion is not a determinant of mitochondrial respiratory

chain profile classification.

Increasing mtDNA Deletion Level Is Associated
with the Severity of Complex I and Complex IV
Deficiency
An association between genotype and mitochondrial

respiratory chain phenotype having been established, 2

patients from each class (class I: P2, P8; class II: P13,

P15; and class III: P17, P18) were selected for further

single cell investigations based on the size of the biopsy

available (see Fig 1). The OXPHOS immunofluorescence

assay was repeated together with fiber typing in serial sec-

tions, to account for any variability between oxidative

(type I) and glycolytic (type II) fibers. Single muscle

fibers (n 5 75–164) with varying degrees of complex I

and IV deficiency were then selected for laser microdis-

section and the proportion of mutated mtDNA in each

myofiber was determined by real-time PCR.

In all 6 patients, mtDNA deletion level was increased

in fibers with higher levels of OXPHOS deficiency (Table

2). Fibers positive for both complex I and complex IV

immunoreactivity (OXPHOS group 1), deemed

respiratory-”normal,” harbored variable deletion loads, as

previously reported.9 In contrast, fibers classed as negative

for both complex I and complex IV consistently showed

the highest mtDNA deletion levels, with a notably narrow

range of deletion level (see Table 2). The difference in dele-

tion level between double-positive and double-negative

fibers was statistically significant both within the individual

patients when comparing the groups of fibers (p< 0.0001,

Mann–Whitney U test), and as a patient cohort when

FIGURE 2: The mitochondrial respiratory chain profile and genotype from patients with single, large-scale mtDNA deletions
grouped in class I, showing both complexes I and IV equally affected. (A) The quadruple immunofluorescence (white 5 laminin
[750nm], purple 5 NDUFB8 [647nm], green 5 COX-I [488nm], red 5 porin [546nm]) was performed on 10mm sections and high-
lights (asterisks) the presence of fibers with both complex I and IV affected; scale bars measure 50mm. (B) Graphs show com-
plex I and IV expression profile from patients: P1 (n 5 1,448 fibers analyzed), P2 (n 5 1,261), P3 (n 5 631), P4 (n 5 1,228), P5
(n 5 388), P6 (n 5 853), P7 (n 5 609), and P8 (n 5 1,309). DL indicates the mtDNA deletion load (proportion of deleted over
wild-type mtDNA) determined in muscle homogenates. Each dot represents an individual muscle fiber color coded according
to its mitochondrial mass (blue 5 very low, light blue 5 low, beige 5 normal, orange 5 high, red 5 very high). Thin black dashed
lines indicate the standard deviation limits for the classification of fibers; lines next to x- and y-axes indicate the levels of
NDUFB8 and COX-I, respectively (beige 5 normal, light beige 5 intermediate(1), light blue 5 intermediate(2), blue 5 negative).
Bold dashed lines indicate the mean expression level of normal fibers. (C) Location and size of the mtDNA deletion from indi-
vidual patients (inside arc 5 P1 to outside arc 5 P8).
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FIGURE 3: The mitochondrial respiratory chain profile and genotype from patients with single, large-scale mtDNA deletions
grouped in class II, showing a more pronounced involvement of complex I over complex IV. (A) The quadruple immunofluores-
cence (white 5 laminin, purple 5 NDUFB8, green 5 COX-I, red 5 porin) was performed on 10mm sections, and highlights (aster-
isks) the presence of fibers with a more pronounced loss of complex I; scale bars measure 50mm. (B) Graphs show complex I
and IV expression profile from patients: P9 (n 5 322 fibers analyzed), P10 (n 5 579), P11 (n 5 1,804), P12 (n 5 272), P13
(n 5 737), P14 (n 5 606), P15 (n 5 546), and P16 (n 5 283). DL indicates the mtDNA deletion load (proportion of deleted over
wild-type mtDNA) determined in muscle homogenates. Each dot represents an individual muscle fiber color coded according
to its mitochondrial mass (blue 5 very low, light blue 5 low, beige 5 normal, orange 5 high, red 5 very high). (C) Location and
size of the mtDNA deletion from individual patients (inside arc 5 P9 to outside arc 5 P16).



FIGURE 4: The mitochondrial respiratory chain profile and genotype from patients with single, large-scale mtDNA deletions
grouped in class III, showing a more pronounced involvement of complex VI over complex I. (A) The quadruple immunofluores-
cence (white 5 laminin, purple 5 NDUFB8, green 5 COX-I, red 5 porin) was performed on 10mm sections, and highlights (aster-
isks) the presence of fibers with a more pronounced loss of complex IV; scale bars measure 50mm. (B) Graphs show complex I
and IV expression profile from patients: P17 (n 5 1,400 fibers analyzed), P18 (n 5 764), P19 (n 5 841), P20 (n 5 283), P21
(n 5 1,333), P22 (n 5 730), and P23 (n 5 1579). DL indicates the mtDNA deletion load (proportion of deleted over wild-type
mtDNA) determined in muscle homogenates. Each dot represents an individual muscle fiber color coded according to its mito-
chondrial mass (blue 5 very low, light blue 5 low, beige 5 normal, orange 5 high, red 5 very high). (C) Location and size of the
mtDNA deletion from individual patients (inside arc 5 P17 to outside arc 5 P23).



comparing the median deletion levels of each fiber group

(p< 0.0001, paired t test, n 5 6).

The remaining intermediate groups harbored median

deletion levels between those observed for normal and nega-

tive groups (see Table 2, “intermediate”). The range of dele-

tion levels in these fibers is large, as they encompass those

with slight biochemical deficiency (eg, complex I intermediate

and complex IV normal) to more severe deficiency (eg, com-

plex I negative and complex IV intermediate). These fibers

represent those cells in transition from “healthy” to fully

respiratory-negative and, therefore, offer valuable insight into

the changing genetic and biochemical status of fibers over this

phase. Patient 8 demonstrated a much larger number of inter-

mediate fibers with low levels of mtDNA deletion for reasons

that are not readily apparent.

Threshold Level for Complex I and Complex IV
Deficiency Is Regulated by the Position of the
mtDNA Deletion
To further investigate the relationship between the deletion

level and the extent of complex I and complex IV deficiency,

we plotted the inverted z scores of COX-I (blue dots) and

NDUFB8 (red dots) from each muscle fiber against its deletion

level (Fig 5); data transformation was essential to fit a logarith-

mic regression and model the data. Next, we determined the

threshold level for both complexes by deriving the deletion level

at z score (COX-I/NDUFB8) 5 23 SD using the regression

model. As illustrated in Figure 5, the individual thresholds for

both complex I and complex IV deficiency were shown to vary

according to the class of deletion. For class I deletions, the

threshold levels for both complex I and complex IV deficiency

were not significantly different in either P2 or P8. However, in

both patients tested with class II deletions, complex I displayed

a significantly lower threshold for biochemical deficiency than

complex IV (P13 and P15; average complex I thresh-

old 5 65.0%; average complex IV threshold 5 91.2%). Fur-

thermore, we observed the opposite finding in patients with

class III deletions, whereby complex IV showed a lower thresh-

old for deficiency (P17 and P18; average complex I thresh-

old 5 80.4%; average complex IV threshold 5 72.0%).

Increased Biochemical Deficiency Is Associated
with Increased Total and Decreased Wild-Type
mtDNA Copy Number
To determine whether mtDNA copy number played a

role in the distinct biochemical deficiency observed

TABLE 2. mtDNA Deletion Level, Total Copy Number, and Wild-Type Copy Number in Single Fibers from

Patients Selected for Molecular Investigations

Class I Class II Class III

P2 P8 P13 P15 P17 P18

Deletion level, median % (CV)

Normal 19.7 (88.7) 6.1 (159.2) 56.0 (48.5) 14.7 (84.8) 4.4 (143.0) 13.1 (98.8)

Intermediatea 78.2 (6.5)b 28.6 (86.6)c 91.2 (14.2)b 83.5 (19.5)b 78.2 (31.2)b 85.4 (39.1)c

Negative 89.2 (12.5)b 92.2 (21.5)b 95.2 (2.2)b 94.8 (17.0)b 96.4 (21.3)b 94.4 (5.3)b

Total copy number*, median (SD)

Normal 9.3 (45.9) 3.5 (3.2) 8.0 (8.3) 4.6 (3.3) 6.2 (3.2) 13.3 (25.2)

Intermediatea 10.5 (6.1) 4.3 (8.2) 14.2 (10.7)c 5.0 (7.9)c 12.0 (5.9)b 20.1 (27.7)

Negative 13.3 (20.9) 10.3 (15.9)b 16.0 (22.5)b 8.8 (9.0) 30.3 (22.1)b 38.5 (52.6)b

Wild type copy number*, median (SD)

Normal 6.3 (46.5) 3.1 (2.3) 3.9 (6.3) 2.9 (3.5) 5.7 (2.2) 11.4 (9.0)

Intermediatea 2.1 (1.8)c 1.9 (2.0)c 1.7 (2.2)b 1.1 (0.9)b 2.8 (1.8)b 3.1 (3.1)b

Negative 1.3 (1.7)b 0.7 (1.0)b 0.9 (0.3)b 0.4 (0.5)b 1.1 (1.9)b 2.4 (2.5)b

Mann–Whitney U test was used to assess the difference in mtDNA deletion level and copy number between OXPHOS groups. Fibers assessed (n 5 normal/

intermediate/negative): P2 (n 5 44/5/26), P8 (n 5 41/29/42), P13 (n 5 25/95/44), P15 (n 5 29/38/24), P17 (n 5 34/48/40), P18 (n 5 63/21/25).

*Total and wild type mtDNA copy number are presented as copies per square micrometer.
aFibers with intermediate levels of oxidative phosphorylation deficiency were grouped together in patients belonging to classes II and III.
bp� 0.0001.
cp� 0.05.

CV 5 coefficient of variation; SD 5 standard deviation.
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between classes of deletions, we determined total

mtDNA copy number, presented as copies per square

micrometer, using real-time PCR. As for analysis of the

deletion level, fibers were grouped according to the

extent of immunoreactive complex I and complex IV

deficiency. Total mtDNA copy number increased in line

with the severity of OXPHOS deficiency in all patients

(see Table 2, p< 0.0001, Mann–Whitney U test between

respiratory-normal fibers and respiratory-negative fibers,

n 5 6). This increase in copy number was threshold-

dependent, with high levels of total mtDNA when both

complexes were deficient (data not shown). P2 showed

minimal differences in total mtDNA copy number across

the different OXPHOS groups, but this patient had the

FIGURE 5: The thresholds for complex I and complex IV deficiency are modulated by the genes covered by the mtDNA dele-
tion. Graphs plot the inverted z score for NDUFB8 (red dots) and inverted z score for COX-I (blue dots) against the deletion
level from individual muscle fibers. In class I, the thresholds for complex I (CI) and complex IV (CIV) are not significantly differ-
ent in both patients (P2: CI threshold 5 74.5%, CIV threshold 5 71.0%; P8: CI threshold 5 55.5%, CIV threshold 5 56.8%). How-
ever, in class II, complex I has a lower threshold for deficiency (P13: CI threshold 5 62.7%, CIV threshold 5 90.6%; P15: CI
threshold 5 67.2%, CIV threshold 5 91.7%), whereas in class 3, complex IV has a lower deficiency threshold (P17: CI thresh-
old 5 81.9%, CIV threshold 5 74.1%; P18: CI threshold 5 78.9%, CIV threshold 5 69.8%). Red and blue dashed lines indicate
the 95% confidence interval of the fitted curves. Black dashed lines (2y 5 3) indicate the threshold for deficiency.
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lowest homogenate deletion level (7%) and had some

respiratory-normal fibers with high total mtDNA copy num-

ber. The median total mtDNA copy number for each patient

was not related to mtDNA deletion class. As opposed to total

copy number, wild-type mtDNA copy number was consis-

tently and significantly shown to decrease with increased levels

of OXPHOS deficiency in all patients (see Table 2,

p< 0.0001, Mann–Whitney U test between respiratory-

normal fibers and respiratory-negative fibers, n 5 6). Further-

more, this decrease in wild-type copy number was also

threshold-dependent, where fibers deficient in both complexes

had lower wild-type mtDNA copy number (data not shown).

Type II Fibers Accumulate OXPHOS Deficiency
to a Greater Extent Than Type I Fibers
To explore whether there was an effect of muscle fiber

type on OXPHOS deficiency, we investigated whether

there was predominance of one fiber type over the other

in these patients. There were no consistent findings; 3

patients showed a larger proportion of type I fibers (P2,

P8, and P17), whereas the others showed a predomi-

nance of type II fibers (P13, P15, and P18; data not

shown).

Next, we combined all the OXPHOS and fiber

type data to investigate whether type I or type II muscle

fibers showed different susceptibilities to accumulation of

respiratory chain deficiency; a classification of muscle

fibers in terms of OXPHOS deficiency, stratified by fiber

type, is depicted in Figure 6. With the exception of P18,

type II fibers were consistently shown to harbor higher

proportions of complex I and complex IV deficient fibers

than type I fibers in the same patient; the reason for this

difference with P18 is unknown. The genetic analysis of

individual muscle fibers revealed no consistent difference

in mtDNA deletion level or mtDNA copy number (total

or wild-type) between fiber types (data not shown). It is

noteworthy that the differences in the level of complex I

and complex IV deficiency observed in patients with dif-

ferent classes of mtDNA deletion were observed in both

type I and II fibers.

Discussion

Elucidating pathogenic mechanisms associated with sin-

gle, large-scale mtDNA deletions is challenging due to

the genetic heterogeneity. Using a recently validated qua-

druple immunofluorescent assay that allows accurate

assessment of complex I and complex IV protein levels

in individual muscle fibers,28 we demonstrate a clear link

between the nature (the number of protein-encoding

genes and the complexes affected by the deletion) of the

mtDNA deletion and the biochemical profile observed

within individual skeletal muscle fibers. By combining

immunofluorescent and quantitative molecular genetics

approaches, we show that the thresholds for the expres-

sion of both complex I and complex IV deficiency are

highly influenced by the number of protein-coding genes

for each complex included within the mtDNA deletion.

Mitochondrial Respiratory Chain Profiles
All patients with single, large-scale mtDNA deletions

assessed in this study showed a combined complex I and

IV deficiency, consistent with the removal of several mt-

encoded structural subunits and mt-tRNAs, as previously

reported.18,20,22,33 However, 3 distinct respiratory chain

profiles were observed, suggesting differential rates of

COX-I and NDUFB8 decline. On this basis, patients

were assigned to 1 of 3 classes: class I with equal and

simultaneous decrease of both complex I and IV; class II

with more pronounced loss of complex I than complex

IV; and class III with slightly higher involvement of com-

plex IV deficiency. In all 3 groups, a variable number of

mt-tRNA genes and complex I genes were removed.

However, the number of deleted complex IV genes dif-

fered between classes; in class I, only 1 (MT-CO3) com-

plex IV gene was removed, whereas in class II all

complex IV genes (MT-CO1, MT-CO2, and MT-CO3)

were preserved, potentially explaining the predominant

biochemical complex I deficiency associated with this

class of mtDNA deletion. Conversely, all complex IV

genes were removed in class III, where complex IV defi-

ciency is more severe than complex I deficiency. These

results explain many of the findings of previous reports

of isolated complex I or isolated complex IV deficiencies

measured biochemically14,15,18,33,34 in patients with

either small deletions compromising only complex I

genes (ie, class II deletions) or larger mtDNA deletions

that encompass all mtDNA-encoded complex IV genes

(ie, class III deletions), respectively.26 We did not have

any patients in whom only complex IV genes were

deleted.

mtDNA Deletion Level and OXPHOS Deficiency
COX-deficient muscle fibers in patients with single,

large-scale mtDNA deletions have been consistently

shown to accumulate high levels of mtDNA dele-

tions.27,35,36 Accordingly, we have shown that deletion

level increases with higher degrees of OXPHOS defi-

ciency across a total of 673 fibers from 6 patients.

Whereas the deletion level recorded in deficient fibers

was consistently high among all patients (>85%), the

mean deletion level recorded in 236 respiratory-normal

fibers was 22.6% (SD 5 23.4%), consistent with others

studies recording an average deletion level of 21 to

31%.9,12,13 The variable deletion levels of the
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respiratory-normal fiber groups recorded in the 6 patients

reported here (and others in previous studies) reflect their

different homogenate mtDNA deletion levels.

Pathological Threshold for OXPHOS Deficiency
In this study, we show for the first time that the thresh-

old required for the expression of a respiratory chain

deficiency is different for complex I and complex IV, and

is affected by the site of the deletion. For class I

deletions, where complex I and complex IV levels appear

to be equally affected, threshold levels for these com-

plexes are similar. However, for class II deletions, the

threshold level for complex I (63–67%) is considerably

lower than for complex IV (91–92%), observed alongside

a predominant complex I deficiency. For class III dele-

tions, complex IV deficiency occurs at a lower level of

mtDNA deletion (70–74%) than complex I deficiency

(79–82%), suggesting that the absence of 3 subunits of

FIGURE 6: Oxidative phosphorylation (OXPHOS) deficiency in different fiber types. OXPHOS and fiber type immunofluores-
cence were performed in serial sections, and both profiles were matched for each muscle fiber. Bar graphs show the percent-
age of fibers with normal (beige), intermediate(1) (light beige), intermediate(2) (light blue), and negative (blue) levels of
complex I and complex IV, in type I and type II (including type IIa, type IIx, and/or fibers coexpressing IIa and IIx). Fibers
counted (n 5 type I/type II fibers): P2 (n 5 325/118), P8 (n 5 494/277), P13 (n 5 324/331), P15 (n 5 89/163), P17 (n 5 464/253),
and P18 (n 5 37/176).
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complex IV has a greater effect on the assembly of the

complex IV holoenzyme than the loss of a variable num-

ber of complex I subunits on complex I assembly. A lack

of histochemical assays to specifically assess complex I

(NADH:ubiquinone oxidoreductase) activity has ham-

pered the investigation of complex I deficiency at a single

muscle fiber level, and therefore it is not surprising that

many studies documented high levels of deletion in

COX-normal ragged-red fibers.20,27 To overcome these

limitations, we took advantage of a newly developed

assay to quantify complex I and complex IV protein defi-

ciency in single fibers.

Pathogenesis of Single, Large-Scale mtDNA
Deletions
The pathogenic mechanisms associated with single, large-

scale mtDNA deletions have been long debated. The find-

ings of the current study highlight a more prominent role

for protein-encoding genes in the pathogenesis of single,

large-scale mtDNA deletions, as there is a clear link

between the deletion of genes encoding subunits of both

complexes I and IV and the respiratory chain dysfunction

at the cellular and tissue level. For instance, in class II dele-

tions, where only complex I and tRNAs genes are lost, the

threshold for complex IV is substantially higher. Interest-

ingly, this threshold of approximately 90% is similar to

those recorded in other mtDNA defects caused by patho-

genic variants in mt-tRNA genes,37–40 suggesting that com-

plex IV deficiency in this class of deletions occurs solely

due to a translational defect following removal of tRNA

gene sequences. These findings are in line with a report by

Hammans and colleagues, who also observed a relationship

between the location of mtDNA deletion and the biochem-

ical defect, and therefore the determinant role of mtDNA-

encoded COX genes when removed by the deletion.26 An

alternative theory suggested a translational defect as the pri-

mary driver of pathogenesis.10,41 However, if that were so,

removal of a greater number of mt-tRNA genes would

have an impact on the threshold. Consequently, we would

expect to find the lowest pathological threshold in class III

deletions (5–10 mt-tRNA genes deleted) followed by class I

deletions (5–6 mt-tRNA) and the highest pathological

thresholds in class II deletions (3–4 mt-tRNA), which does

not occur. Finally, in all patients, high levels of deletion are

associated with low levels of wild-type mtDNA and high

levels of total mtDNA, as previously observed,42 and con-

sistent with our hypothesis that haploinsufficiency of pro-

tein subunits is the cause of the biochemical defect.

Effect of Muscle Fiber Types
Although vastus lateralis normally has type II fiber pre-

dominance, there was no clear predominance of either

fiber type across patient biopsies. Studies on the meta-

bolic profile of muscle fibers in patients with OXPHOS

deficiency are sparse and sometimes contradictory, report-

ing either no fiber type predominance,21 a type I pre-

dominance,15,43–46 or a type II predominance.47

Interestingly, we found higher respiratory chain defi-

ciency in type II fibers over type I in 5 of 6 patients.

The underlying mechanisms behind this observation are

not currently fully understood. Our data collected from

single fibers do not provide further clarity, as there was

little difference in mtDNA deletion level or copy number

between fiber types. Nevertheless, it is important to high-

light that the single fibers analyzed consisted of only a

small fraction of all muscle fibers that were fiber typed

(50% in P15 and P18, <25% in remaining patients).

The fibers were selected on their OXPHOS immunofluo-

rescence profile, and therefore might not be representa-

tive of the biopsy.

Clinical Phenotypes
Although we have found clear differences in the bio-

chemical profile of the 3 different deletion classes, our

numbers at present do not allow us to infer much in

terms of clinical phenotypes. We have studied a limited

number of patients in detail and, except for 1 patient, all

had a CPEO phenotype. Previous studies from our

cohort have used statistical modeling to demonstrate that

a variety of outcome measures such as age at onset of

symptoms and progression of disease burden, as mea-

sured by the Newcastle Mitochondrial Disease Adult

Scale, are significantly correlated (p< 0.05) with the size

of the deletion, the mtDNA deletion level in skeletal

muscle, and the position of the mtDNA deletion within

the genome.16 With this new information about the pres-

ence of different biochemical profiles associated with dif-

ferent deletions, it will be of interest to determine

whether there is any link between the biochemical defect

and the clinical phenotype.

Conclusions
This work represents the largest study performed in sin-

gle muscle fibers from patients with single, large-scale

mtDNA deletions in which a combination of quantita-

tive molecular genetics and immunofluorescent techni-

ques were applied to improve our understanding of the

molecular pathogenesis of the focal respiratory chain defi-

ciency detected in patient muscle. We show a clear rela-

tionship between the mtDNA genes removed by the

deletion and (1) the mitochondrial respiratory chain pro-

file of muscle fibers in patients with CPEO and (2) the

threshold for complex I and complex IV deficiency. This

study has yielded important insights into the mechanisms
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underlying single large-scale mtDNA deletions, as we

demonstrate that the removal of protein-encoding genes

is directly linked to the expression and severity of the

consequential respiratory chain deficiency. Furthermore,

specific complexes of the respiratory chain are measurably

impacted by tRNA gene removal only when their respec-

tive protein-encoding genes are unaffected.
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