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A B S T R A C T

Mycotoxins are naturally produced secondary metabolites or low molecular organic compounds produced by
fungus with high diversification, which cause mycotoxicosis (food contamination) in humans and animals. T-2
toxin is simply one of the metabolites belonging to fungi trichothecene mycotoxin. Specifically, Trichothecenes-2
(T-2) mycotoxin of genus fusarium is considered one of the most hotspot agricultural commodities and carci-
nogenic compounds worldwide. There are well-known examples of salmonellosis in mice and pigs, necrotic en-
teritis in chickens, catfish enteric septicemia and colibacillosis in pigs as T-2 toxic agent. On the other hand, it has
shown a significant reduction in the Salmonella population's aptitude in the pig intestinal tract. Although the
impact of the excess Fusarium contaminants on humans in creating infectious illness is less well-known, some
toxins are harmful; for example, salmonellosis and colibacillosis have been frequently observed in humans. More
than 20 different metabolites are synthesized and excreted after ingestion, but the T-2 toxin is one of the most
protuberant metabolites. Less absorption of mycotoxins in intestinal tract results in biotransformation of toxic
metabolites into less toxic variants. In addition to these, effects of microbiota on harmful mycotoxins are not
limited to intestinal tract, it may harm the other human vital organs. However, detoxification of microbiota is
considered as an alternative way to decontaminate the feed for both animals and humans. These transformations
of toxic metabolites depend upon the formation of metabolites. This study is complete in all perspectives
regarding interactions between microbiota and mycotoxins, their mechanism and practical applications based on
experimental studies.
1. Introduction

Fungal biochemical or metabolic pathways yield various metabolites
or compounds and intermediates that don't play significant role in the
physiochemical properties and these metabolites are refer as secondary
metabolites. These compounds or metabolites have wide range of
adverse effects on biological system such as potent poison known as
mycotoxins. The mycotoxin-producing fungi genera are these such as
Penicillium, Alternaria, Aspergillus, Fusarium, Phomopsis, Cephalosporium,
Emericella, Trichoderma, Myrothecium, Neopetromyces, Trichothecium,
Claviceps, Byssochlamys, and also Neotyphodium.

Mycotoxins have been categorized as specialized low molecular
weight organic compounds or secondary metabolites or all-natural items
of microfungi or molds or filamentous fungi (Pathogenic fungi), espe-
cially fungi belongs to category Penicillium, Fusarium and Aspergillus
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[1]. The huge number of about>300mycotoxins have been reported that
show toxicological impacts and significant effects in animals and plants.
Previous agriculture toxicological surveys forecasted that around world's
25% of agriculture products were annually infected with mycotoxins [2,
3]. Considering that the exploration of first ever reported mycotoxin
aflatoxin was recognized in year 1965 as feed and food commodities. At
early age of mycotoxins research, aflatoxin have been considered as
primary human health hazards due to having potential carcinogenic,
mutagenic and genotoxic effects. Mycotoxins effect human health badly
in many ways. These effects may be both acute and chronic that provoke
many health issues including cancer, loss of immunity, gangrene, aber-
rations in normal metabolism and severe respiratory problems [4].

Recent studies put awareness related to different mycotoxins that
show negative physiological impacts on intestinal microbiota, suscepti-
bility of intestinal anatomy and alter the intestinal cellular permeability
(T. Li).
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[5]. The intestinal permeability or mucosal barrier feature are related to
luminal epithelial integrity, luminal pathogens allergen translocation,
and non-specific inflammatory feedback and additionally
hyper-activation of natural immune system. The most primary high-
lighted and well-studied example of mycotoxin includes trichothecene,
deoxynivalenol and mediated intestinal permeability dysfunction that
have demonstrated as pro-inflammatory and immunomodulatory effects
[6]. Nonetheless, most recently in vitro and in vivo studies described that
mycotoxin have negative impact on gut permeability. Previous research
findings were ineludibly revealed that mycotoxin studies have deliber-
ately addressed at concentration prevailed and higher manifestation due
to its potential agriculture commodities and medical relevancies [7].

The mycotoxins production is closely undergoing the metabolic
pathway that utilized the primary metabolites such as fatty acid and
amino acid. Mycotoxins biosynthesis and contamination of feed and
food, goods and agricultural exposure are based upon ecological factors
particularly commercial or physiochemical properties of substrate, tem-
perature and humidity [8]. Among all of the above statedmycotoxins, the
most important mycotoxins are T-2 toxins that have potential worldwide
health hazards particularly in agriculture [8]. T-2 have ring structure of
by-products substances that are termed as trichothecenes. T-2 toxins are a
large group member of chemically derived and manufactured toxic
substances produced by fungal taxonomical genera such as Stachybotrys,
Myrothecium, and Fusarium [9]. There are naturally taking place more
than 20 isomeric compounds synthesized by fusarium types like fusaron
X, T-2 toxins, nivalenol deoxynivalenol, diacetoxyscirpenol and HT-2
toxin. This review is most likely to elaborate and talk about the impact
of T-2 toxins on intestinal tract immune-modulatory effects and micro-
biota [10].

2. Chemical structure of T-2 toxins

T-2 mycotoxin as a stable organic and water insoluble compound has
a low molecular weight (MW 466.52) and some organic solvents like
ether, petroleum exceptionally soluble in chloroform, dimethyl sulph-
oxide, acetone, methanol, ethanol, ethyl-acetate and propylene glycol
[11]. It shows high resistant to UV light and high temperature (>151.5
�C) [5, 12]. It remained activated during food processing and heat ster-
ilization through autoclaving. The inactivation of T-2 toxic takes place by
heating it between 200 �C and 210 �C for 30–40 min or via absorbing
method by NaOCl sodium hypochlorite and (NaOH) sodium hydroxide
for a minimum of 4 h [13]. T-2 toxin can be purified by few microbes
including molds and mildews [6, 12]. These basic structure of T-2 is
tetracyclic, accompanied by a sesquiterpenoid 12, 13 epoxytri-choth
ec-9-ene ring framework [14]. The chemical composition was depicted
by a hydroxyl (OH) at the C-3 placement, acetyloxy (- OCOCH3) groups at
C-4 as well as C-15 orders, hydrogen atom at C-7 position as well as an
Figure 1. T-2 Toxin and i
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ester connected isovaleryl [OCOCH2CH(CH3)2] at the C-8 position
(Figure 1) [15].

In this figure, chemical structure of T-2 toxin is explained. A tetracyclic
sesquiterpenoid ring system containing 12, 13 epoxytrichothene ring is
present in its structure. T-2 toxins mainly contain epoxy ring in their
chemical structure. These epoxy rings are attached with many acetyl and
hydroxyl groups that are present in its side chains as shown above in these
figures. These side chainsmolecules mainly show biological activity of T-2
toxins that make themmore toxic. Although 12, 13 epoxy rings show toxic
behavior [16]. Mycotoxins work by inhibiting protein synthesis that ul-
timately damage the macrophage system and increase sensitivity for other
endotoxins. In this way, they inhibit clearance of particles in lungs and
cause respiratory syndromes. Although, the primary mechanism of action
of T-2 toxins is to modify the DNA templates to alter the transcription
process or inhibit the protein synthesis by impairing the translation pro-
cess. In such cases these toxins have to react directly or indirectly with
enzymes or proteins [17]. Both T-2 toxins and DON enter in cells via
endocytosis, by crossing the plasma membrane. These lipophilic nonpolar
molecules get dissolve in lipid bilayer and ultimately dissolve in lipid
bilayer and enters in cytoplasmic region of the host.

3. Physiochemical properties and toxic effects of T-2 toxins

3.1. Occurrence of T-2 toxins

In tropical as well as subtropical regions, the global incidence of T-2
toxin and its associated mycotoxins have been predominantly reported.
Sultry (warm and humid) climate facilitates the Fusarium spp. infection in
plants. On the other hand, inadequate and improper handling, carrying
and storage conditions of grain with high moisture can be principal cause
of T-2 contamination [18, 19]. For this reason, one of the most critical
factors that show impact and enhance the T-2 toxic manifestation is
weather conditions, dampness and grain handling (13–22 %) [3]. T-2
toxin has been generated at the temperature between 0 and 32 �C, and
maximum synthesis occurs at temperatures <15 �C [20]. The optimum
temperature of F. sporotrichosis, among Fusarium spp., for T-2 toxin syn-
thesis is comparatively low with other spp (6–12 �C). Even it can syn-
thesize mycotoxin at freezing conditions under snow cover in field and at
storage places [21].

3.2. Poisoning of the T-2 toxin

The trichothecene family includes vast range of mycotoxins, along
with T-2 is one of themost studied and earlier reported toxins with intense
lethality and high rate of toxicity as compare to the other members. The
deleterious and toxic effects of T-2 determined by different factors that
includes the exposure time; lethal dose concentration and administration,
ts chemical structure.
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the age, gender and health status of person as well as co-occurrence of
other toxins [22, 23]. Feeding on grain, hay and straw, being out during
winter along with co-occurrence with F. poae along with F. sporotrichiella
typically results in toxication. Therefore, F. poae and F. sporotrichiella are
considered as main causative agents of alimentary toxic aleukia. This
condition mainly refers for humans and is characterized by diarrhea,
vomiting, skin inflammation and sometimes results in death.

The toxins synthesized and excreted by fungi (T-2 and diacetoxy-
scirpenol) have local allergic or irritating effects and cause some fatal
diseases including necrosis and ulceration in GIT, heart, kidney, brain,
hemorrhagic inflammation, and dystrophy in liver. Damaging effects are
also provoked in hemorrhagic diathesis and blood vessel walls [24]. The
induction of cytotoxic and deteriorative effects on immature Leydig cells
(TM3) in mouse model are other toxic effects [25]. The alteration of
different organs (thymus, kidney, spleen, and liver) metabolism have
been reported in Wistar rats after constant and long-term exposure with
T-2 toxin [26].

The proposal of glutathione disulfide and 3-hydroxybutyrate with
their increased elevation T-2 toxin induced the oxidative stress in body
organ systems and generated the free radicals. Furthermore, the urinary
l-methylmalonate and 1-ethyl nicotinamide diminution can arise
throughout cysteine biosynthesis [27]. T-2 contaminant induced dysre-
gulation of citrate and succinate in urine and also decreased the level of
fumarate inside the liver, abided by an elevated level of NADþ in rats
after exposure with T-2. Previous studies revealed that T-2 decrease the
rate of the tricarboxylic acid (TCA) cycle. The concise illustration can
look at Figure 2, suggesting the T-2 toxin safe design and toxic flow down
pattern [28].

This figure demonstrate two behaviors of T-2 toxins. In general
terms, toxic effects of T-2 toxins on agriculture, cattle and humans
results in enhanced mortality rate. Reactive oxygen species such as
silver ions, copper ions, zinc ions and many more are responsible for
its toxic mechanism. When T-2 toxins react with reactive species, they
ultimately transform into apoptosis that cause death in cattle and
humans. On the other hand, prophylaxis by using herbal strategies
results in decontamination of environment and many more therapies.
All these therapeutic strategies favors in survival of agriculture, cattle
and humans [29].
Figure 2. Toxic and safe design schem
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3.3. Severe toxicological effects

As detail discussed earlier, the toxic effects can be found out through
multifarious route of exposure. Due to distinctive physiochemical nature,
it has most efficient absorptive and deleterious properties among its
family members that might be taken in straight employing the skin [23].
The primary illustrative signs and symptoms of T-2 toxicity include
emesis, vomiting, loss of appetite, skin blistering and weight loss.

Experiments were designed to review acute poisoning levels in
diverse speculative versions including mice, pigeons and rats that pro-
vided the T-2 toxic substance utilizing unique exposure paths viz intra-
tracheal, intravenous, intraperitoneal, subcutaneous and also intragastric
[30]. It was perceived that rats administered with the T-2 toxin revealed
the elevated level of serotonin and tryptophan in brain that produced a
surge in dopamine and as a result 3,4-dihydroxyphenylacetic acid levels
declined [21]. Furthermore, it's reported that the dopamine concentra-
tion was enhanced, and level of epinephrine was reduced in response to
induced toxins. This sequel action shows that T-2 generates and improves
the production of indole amine levels inside the brain that results in
alteration of animal feeding patterns. So, it was concluded that uptake of
T-2 toxin disturb the feeding pattern in animals by disturbing the gut
microbiota [31].

Nevertheless, HT-2 and T-2 mycotoxin combined effects in laboratory
animals fed an industrial commodity would indeed not be found. If the
elevated levels were amongst 250–2000μg/kg body weight [32]. In a
research, the acute poisoning was investigated; a rabbit model demon-
strated histopathological and pathological adjustments inside the bone
marrow as well as lymphocytes and gastrointestinal system. In contrast,
subacute poisoning validated catarrhal gastritis with the issues of a
stubborn belly lining infection, hypertrophy as well as adrenal cortex
emaciation [33].

3.4. Persistent toxicological effects

In female rats which were imperiled to the T-2 toxin identified via a
boost in serotonin and tyrosine level in the cerebellar area. Besides,
cortical tryptophan titer was elevated and suggesting that different mode
of T-2 toxin activity varies in terms of chronic impacts than it performs in
atic illustration of T-2 toxin [24].
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regards to acute behavior of administration [34]. However, a severe
treatment of T-2 raised levels of tryptophan, serotonin levels in the
brainstem and decreased in cerebellar areas [35]. Various other in-
dicators that are connected to chronic toxicity in rabbit include lymphoid
tissue necrosis, emaciation and also subacute catarrhal gastritis [36].
T-2-contaminated feed has revealed to reduce egg production, weight
gain and hatching capability in poultries. Many research studies have
prevailed significant decreases in serum cholesterol and total protein
level, along with increase concentration of uric acid and lactate dehy-
drogenase in serum sample [37, 38].

Another study shown that T-2 toxicity in poultry can have phenotypic
alteration the in young chicks especially change the feather follicle and
patter [39]. T-2 toxicity has also been demonstrated in a research study
conducted on white ducks which exhibited an important reduction in
weight gain capability as T-2 contaminant doses were increased [40].
There have likewise been significant deficiencies in blastogenic lym-
phocytic feedback to particular and non-specific mitotic proteins or mi-
togens [41]. In addition to these, weight-loss, reduced levels of blood
cells, leucocytes and lower degrees of plasma glucose have been observed
in T-2 mycotoxin treated animals and a few pathological and lining ef-
fects improvements were all observed. The T-2 was also linked to a raised
swelling rate, damage to DNA and apoptosis. Both T-2 toxin and deox-
ynivalenol (DON) favors the formation of cellular reactive oxygen species
(ROS) that lead to further induction of lipid peroxidation and aberrant
changes in DNA. All these damaged DNA results in cell apoptosis in
multiple types of various cells [42].

3.5. Mechanism of action

In T-2 toxin, the thiol group has enable the compound a potential
transcription and translational inhibitor [43]. It likewise prevents
lymphocyte proliferation by altering the physiology of membrane,
impairing the antibody production and change the dendritic cell growth
[44]. Artificial insemination, the T-2 contaminant that triggers pro-
grammed cell death (apoptosis) in human U937 cells, liver cells, HL-60
cells, Vero, and Jurkat cells [45].

Previous in-vivo study exhibits the deleterious effects have been re-
ported. In this study T-2 was injected subcutaneously and results
unveiling the apoptotic effects on different tissues and organs such as
bone marrow, brain, kidney and skin [5]. Moreover, the T-2 toxic has
been effect and dysregulate the immune system [46]. The T-2 toxin is
thought to be binding and inactivating the peptidyl-transferase function
at the transcription site [47], leading to protein synthesis restraint [6].
The 60S ribosomal system is the most well-known molecular target of
trichothecenes especially T-2 and blockage of polypeptide chain initia-
tion [31]. The inhibitory effects of T-2 at transcription and translation
level that prominently effect the growing cells for instance gastrointes-
tinal tract mucosal lining cells, bone marrow, hemopoietic stem cells,
skin and erythroid cells [48]. In addition, T-2 mycois supposed to
interrupt the functions of DNA polymerases, terminal monoamine oxi-
dase and deoxynucleotidyl transferase. Moreover, proteins play an
important role in coagulation pathway [49]. Salmonella colonization in
pigs has revealed to be lowered by this toxics [50].

An earlier research work focused on the T-2 toxin as it involves in the
activation process of cellular immunity. This study has shown that T-2
mycotoxin activates the macrophages via “extracellular signal regulated
kinase” (ERK1/2) and “mitogen activated protein kinase” (MAPK)
pathway. As a result, Salmonella uptake by macrophages and also induce
the membrane ruffles and reorganization. The T-2 mechanism of action
with subcellular structures develops disturbance of mitochondrial
morphology, rough endoplasmic reticulum and various other membrane
layers [5, 51]. They protect against the metabolically active and viva-
cious enzymes like succinic dehydrogenase, blocking mobile energetics
by lowering the malate, pyruvate and succinate that causes oxidation of
molecules and hinders the healthy and balanced synthesis of protein in
mitochondria [52]. The trichothecenes family's ability to go across the
4

placenta and damage the mouse fetuses by triggering the apoptosis in the
immune system of a body and numerous other cells was also reported
[21].

Nevertheless, l-carnitine can minimize oxidative stress in rat hepa-
tocytes which is induced by the T-2 toxin [53]. In granulosa cells of rat
ovarian, it also controls the secretion of steroid hormones by using the
cAMP-PKA pathway [54]. T-2 toxic substance binds to thiol group and as
a result, converting it into the DNA synthesis inhibitor as well as potential
protein [33]. T-2 toxin can enable to disturb antibody production [55],
modify the membrane function [56], lymphocyte progression [57] and
also dendritic cell growth [58]. T-2 toxic induced single strand DNA
breaks in lymphoid cells such as vitro and vivo. In addition, in vitro T-2
toxin triggers apoptosis in a variety of cells including U937, Jurkat, HL60
[59], human hepatoma cells [60] and Vero cells [20]. In vivo, apoptosis
has observed in splenic and thymic lymphocytes in addition to various
other mouse tissues including skin [22, 60], bone marrow, intestinal
epithelial cells [61], brain [62] and kidney [63]. In the toxicity of several
mycotoxins, oxidative damage is considered as the major indicator.
Essential biomolecules include proteins, nucleic acid sand lipids that are
usually the targets of oxidative damage [64]. Most of the trichothecenes
family especially T-2 bind to subcellular frameworks that cause func-
tional disability and interfere with mitochondrial oxidative properties,
rough endoplasmic reticulum functions, myofibers elasticity, as well as
membrane morphology [65]. They prevent succinic dehydrogenase ac-
tivity that cause reduced succinate, pyruvate and malate oxidation that
are restraint of mitochondrial healthy protein synthesis which affects
cellular energetics [27]. T-2 toxic substance therapy causes apoptosis in a
cell types selection using non-mitochondrial and mitochondrial mecha-
nisms [66, 67]. Moreover, trichothecenes have revealed for enhanced
apoptosis in the mouse fetus after going across the placenta [68].

Besides these oxidative damage mostly trigger these cells that indi-
cate and target macro biomolecules such as proteins, lipids, and nucleic
acids. Hydrogen peroxide, hydroxyl radicals, and superoxide particles
tend to be the significant ROS connected with the oxidation of healthy
proteins, lipids, and DNA. Mycotoxin-induced ROS generation is also
believed to be moderated by mitochondrial complex I and CYP450 [9].

3.6. Toxicokinetics

In general, T-2 toxin adversely effects human, animals, plants, in-
vertebrates, birds and eukaryote cells in different ways. The primary
exposure signs and symptoms of T-2 toxin rely on the dosage and
thrashing of the exposure [69]. T-2 is taken in quickly after ingestion in
many animal species and it does not need any transporter protein and
assistant for distribution in body and to reach at any specific organs.
Maximum concentration of toxin in plasma would reach after 30 min of
exposure in rats. After 4 h, it is administered intravenously to pigs, 15–24
% of the radioactivity labelled was traced in the gastrointestinal system
and 4.7–5.2 % in the tissues, liver and mainly muscle. T-2 toxin has a
plasma shelf-life that is around less than 20 min. T-2 toxic substance is
quickly metabolized and show no vital accumulation of T-2 that is
detected after it has been secreted in the in vivo tested animals (e.g.
guinea pig, livestock, dog) [70].

4. Toxic and pathological effects of T-2 toxin on intestinal
microflora

The mycotoxins’ effect on the gut microorganisms resemble to alter
the digestive tract microbial populace. These modifications can take
place at the species, genus and phylum levels. This alteration can be the
direct effect of mycotoxins and their antimicrobial properties or it can be
secondary to the toxic consequences of mycotoxins on the intestinal cells,
as well as release of antimicrobial substances [71, 72]. Considering that
the emphasis of T-2 mycotoxins in the various gastrointestinal parts
varies dramatically because of absorption as well as likewise biliary
excretion.
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Nonetheless, the microbiota on T-2 mycotoxins is also due to the
microbiome, along with the fact that the microbiome differs in structure,
relying on a component of an intestine that is being evaluated. Fusarium
mycotoxins generally develop interactions with wide range of animal
host species such as salmonellosis in mice and pigs, necrotic enteritis in
chickens, catfish enteric septicemia, and colibacillosis in pigs. The like-
lihood of developing adverse effects by exposing fungus trichothecene
mycotoxins depends on toxin dose, purity and duration of exposure. This
fungus develop infection in host animal species by affecting their
alimentary canal. It is challenging to characterize and its consequences
may differ with the speculative layout of the research perspective [73,
74]. T-2 toxin may have adverse impacts on almost entirely cellular
progressions that occurs in the gastrointestinal system. Even digestive
tract mucosa can be damaged by a toxin with minimum quantity and it
also impairs the nutrient reabsorption. Necrosis has been spotted in the
gizzard cells, oral cavity, mucosa of GIT system and liver [75].

Necrotic lesions follows the “white-yellowish mucosal lump” such as
caseous-necrotic materials in the intestine, [76]. T-2 toxin and co-toxins
of trichothecenes family is swiftly absorbed in the gut, metabolized, as
well as removed practically entirely (80–90%) within two days [77].
Nevertheless, their dangerous result can be improved by enterohepatic
recirculation [78]. Despite the erudite tract lesions triggered by T-2 toxin
[79], the impacts of T-2 toxic on gastrointestinal integrity have hardly
been checked out.

Nevertheless, in a study Goossens et al. [80] found that T-2 toxic af-
fects the barrier integrity, occurring at a concentration of 21 nM, which is
detected by a reduction in TEER (Trans-epithelial electrical resistance)
values and also results in increasing the concentration and passage of the
antibiotic agents, including “doxycycline and paromomycin” across the
IPEC-J2 cells. Further this research showed that a direct contact of mice
with T-2 toxin dose 3.3 mg/kg body weight for 24 days improves the
translocation of Mycobacterium consumption [81]. Also, a substantial
increase in the Salmonella typhimurium translocation throughout IPEC-J2
cell monolayer currently arises 30 min after T-2 toxin has a direct
exposure with a low dose concentration as 2.1 nM [82]. Unexpectedly in
the same research study, TEER value persisted for 24h after exposure to
the T-2 concentrations ranging between 1.6 and 10.7 nM [83].

In a recent work, it has been shown that the TEER value that is
exponentially down in T-2 toxin shows the Caco-2 cells at concentration
~100 μM for 7 days. It has conveyed the substantial reduction in the
transcription rate of protein coding genes such as CLDN4, CLDN3, and
OCLN [84]. The similar mechanism underlying the intestinal barrier
dysfunction caused by combined effects of T-2/and HT-2 toxin are under
investigation and would certainly invite researchers for further studies
[85]. Gratz et al. (2017) [86] revealed that human digestive tract
microbiota released incognito T-2 toxic as a parent mycotoxin and,
therefore, helped thermycotoxin exposure. Moreover, T-2 mycotoxins
induce the ribotoxic stress and efficiently inhibit eukaryotic 28S rRNA.

Schmeits et al. [87] proposed that T-2 toxic had not effects on protein
synthesis and growth in theoretical aspects. Nonetheless, this contrasts
that has been shown in a research conducted by Tenk et al. [37]. This
study demonstrated that the T-2 mycotoxin supervision for a week was
sufficed in creating a high number of aerobic bacteria in the intestine of
rates and swine. At the same time, the microbial populations have been
shown to be extensively influenced by T-2 and a mechanism that causes
the discomposure of bacterial colonies stays to be clarified [88].

4.1. Colibacillosis

The E. coli as a gram-negative belongs to Enterobacteriaceae. This
bacteria is deliberately considered as normal flora of intestine because it
causes the intestinal infections in animals and human [89]. A unique
selection of these stress bearing and particularly a combinations of
virulence strains enable them to create illness. Scientific disorders
developing from infection with these patho-types consist of enteric and
diarrheal conditions, urinary system infections and meningitis/sepsis.
5

The pathogenicity process of E. coli infections differs depending upon the
histology. Still, it may be trying to conquer the gastrointestinal system
mucosa, escaping innate immunity, regeneration and triggering host
problems [90]. T-2 can take part in the E. coli infections’ development in
various organisms by enhancing proliferation in gut and efflux while still
disrupting the immune response.

Pigs have nourished a diet tainted with a reduced rate of FB1, which
improved digestive tract translocation and evacuation of a “septicemic
E. coli infection” (SEPEC) pressure from the gastrointestinal tract to the
body system. Due to increase in the mesenteric lymph nodes by bacterial
invasion, mucosal lining and lungs were proliferated after FB1 therapy
[91].

Previous study has proposed that DON () play role to increase SEPEC
translocation through the IPEC-1 (intestinal epithelial cell monolayer) in
vitro [92]. Calf sensitivity to Shiga toxic or vero toxin-producing E. coli
(STEC) and associated hemorrhagic enteritis is increased by mycotoxins.
Currently, Baines et al. found that introducing juvenile calf bodies to a
mixture of Fumonisins and aflatoxin stimulated STEC-associated hemor-
rhagic enteritis [93]. Pig's mucosal immune responses was observed to be
impaired after enterotoxigenic E. coli contaminated feed (ETEC). How-
ever, retro-effect have been observed in case of feeding with
FB1-contaminated diet. Devriendt et al. [94] documented a long-term
E. coli infection in pigs who had been provided 10 days Fumonisins
and then screened with F4þ ETEC E. coli.

APCs (Antigen-presenting cells) play an essential part in the gut-
associated lymphoid tissue or mucosal immune system, affixing the
inherent as well as adaptive immune response by antigen uptake in the
respiratory tract, maturation, lamina propria and also translocation to
GALT and contact with T cells. The FB1 has adverse effects on the in-
testinal tract APCs function by reducing the transcription of the relevant
major histocompatibility complex II (MHC-II), IL-12p40 cytokine and cell
of differentiation (CD) 80/6 genes [58]. As a result, the E. coli-induced
adaptable immune response can be affected by APCs' migrating function
[95]. In comparison, after intravenous (IV) administration of mon-
iliformin and FB1, systemic E. coli clearance was restrained in turkeys
and broiler [96]. This current study on gastro infection can be fruitful and
open new window for medical research because gastrointestinal tract of
human and pig are nearly similar to each other. The “entero pathogenic
E. coli” (EPEC) instigates the infant diarrhea that is significant concern
and emergency health issue in less developed countries. For example
“entero hemorrhagic E. coli” (EHEC) infections have become challenging
to global health and has many threats [97].

4.2. Salmonellosis

Salmonellosis is caused by Salmonella a Gram-negative bacteria,
which is a facultative intracellular and facultative anaerobic, bacterium
of the Enterobacteriaceae family. Salmonella and its host interaction are
multifaceted, in which bacteria use array of mechanism to conquer the
host defense mechanisms. However, Enteric fever and Gastroenteritis
induced by typhoidal and non-typhoidal i. e, Salmonella serovars are
divided into two critical disease manifestation respectively [98]. There
are three steps of a Salmonella infection: the first step involves the
adhesion to the intestinal surface; the second step is the infiltration of the
intestinal mucosal wall; and third strep is to disseminate the mesenteric
lymph nodes and other visceral organs.

Salmonella infects digestive epithelium through microbial endocy-
tosis, and the bacteria are then contained to the intracellular phagosomal
region namely “the Salmonella-containing vacuole” (SCV). The bacteria
is typically located in macrophages in the surrounding tissues after
passing the epithelial barrier [99]. The gastrointestinal phase of Salmo-
nella typhimurium infection is induced by T-2 mycotoxin treated pigs.
Non-cytotoxic concentration of T-2 promotes Salmonella penetration in
the bowel and Salmonella Typhimurium migration through the epithelial
cells [100]. Salmonella Typhimurium diffusion was unaffected by
frequent high contact of pathogen-free livestock to usually
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Mycotoxin-contaminated diet [101]. The normal immune response is
activated when Salmonella enters the digestive system epithelium, and
the porcine digestive system begins to produce many cytokines [102].
Both Fusarium mycotoxins, especially T-2 and DON, and Salmonella
create an effect on the body natural immune system. Vandenbroucke
et al. [83] discovered that lowering DON levels would enhance the early
immune responses to Salmonella typhimurium infection in the digestive
tract. Its close contact with the intestinal tract resulted in enhanced
production of many cytokines, including those that stimulate proin-
flammatory cytokines (TNF-α) and T-lymphocyte stimulatory cytokines
(IL-12). As immune responses of body are stimulated by host immune
cells. These immune cells such as monocytes, neutrophils, eosinophils
and basophils are considered as molecular and cellular targets for
immunotherapy. All these immune cells have proteins, surface receptors
and cytokines for immunostimulation, immunomodulation and immu-
noactivation. These modulatory immune cells provide better approaches
to treat infectious cells. The researchers speculated that the increased
inflammatory bowel disease (IBD) or intestine inflammation was caused
by DON-induced Salmonella typhimurium infiltration into and trans-
location across the gut mucosal epithelium [83].

Fusarium mycotoxins especially T-2 are assisting the Salmonella
typhimurium infection to infect the systemically in pigs. Post intestinal
infection phase of Salmonella typhimurium, it can cause septicemia
(Salmonella typhimurium bloodstream invasion) and via macrophages it
can reach visceral organs (lymphatic tissues of the small intestine, spleen,
liver). But systematic invasion research study on Salmonella typhimurium
to infect the organs other than gastrointestinal tract is still poorly un-
derstood and very limited data is available [103].

Salmonella can persist and even duplicate in host cells after microbial
ingestion by the macrophage. Direct contact of macrophages to the non-
cytotoxic concentration of DON and T-2 stimulates Salmonella typhimu-
rium endorsement. Salmonella's entry into host body cells necessitates a
complex set of actin cytoskeletal modifications [83]. T-2 mycotoxin im-
proves Salmonella typhimurium engulfment in vitro [83].

Since low concentrations of T-2 modulates the reconstruction of
macrophage cytoskeleton by ERK1/2 F-actin and results in an increased
Salmonella uptake in “porcine alveolar macrophages” (PAM). In porcine
macrophages, the non-cytotoxic target of Fusarium mycotoxins (DON
and T-2) have no effects on Salmonella typhimurium intracellular growth.
Additionally, they have adverse impacts on the host defense due to Sal-
monella typhimurium infection, as Fusariummycotoxins act to regulate the
metabolic rate of bacterium [104].

T-2 enhanced inflammatory effects are more likely due to the myco-
toxin devastating impact on the digestive system instead of on the
pathogen [83]. The bacterial expression of regulatory bodies of SPI-1
(Salmonella pathogenicity island-1) and SPI-2, respectively. Just a high
concentration of T-2 enhances ssrA and hilA. SPI-1 genetics express
critical intracellular replication systems, while SPI-2 genetics encode
microbial secretion systems required for breach [105]. T-2 toxin's effects
on the bacterium are likely to be even more noticeable as compare to the
host body cells that mediates effects and result into the in-vivo reduction
of emigration in pigs [101]. Decreased Salmonella mobility is caused by
the low dose of T-2 and a normal down-regulation of genetics linked to
the ribosomal proteins, Salmonella metabolism and SPI-1 genetics [104].

Very little is known about the communication between Salmonella
infection and Fusarium mycotoxins in animals is readily available.
Recently available literature has mainly focused on T-2 propagation and
an intensity of the infection. Salmonella typhimurium related body organ
lesions or death is observed in T-2-challenged mice and broiler chicken
[106, 107]. When mice were infected with Salmonella typhimurium, they
develop a bacterial infection and shown similar symptoms as people
infected with Salmonella typhi [107]. At the lateral stage of murine
salmonellosis, the combined effects of microbial lipopolysaccharide
(LPS) along with T-2 can co-assist to develop the increased mortality
[108]. In healthy human cells, cellular toxicity of T-2 toxin has been
observed by the pathologists. They have examined functions of
6

salmonellosis infection more clearly in hematopoietic cells and in those
tissues that contain infiltrating lymphocytes. Furthermore, DON elimi-
nates tolerance to Salmonella enteritidis dental infection in mice by
fostering Salmonella migration to the “mesenteric lymph node” (MLN),
spleen and liver [109]. The use of mouse and pig variants to inspect the
infectious disease, mycotoxins effect and their combination on animal
safety and health is significant [110] (Figure 3).

Salmonella typhimurium infection in mice is an imperative “host-
pathogen interaction model” to study the consequences of typhoid fever
in humans. T-2 has been presented to increase Salmonella induced death
rate (mortality) at low to high toxin concentrations [111]. In terms of
anatomical as well as physiological attributes, including kidney size,
function, structure, lung vascular bed anatomy, breathing rates, cardio-
vascular anatomy, coronary artery circulation, digestive physiology and
immunological reaction, the pig is extremely comparable to humans and
has actually been used to investigate various diseases [110]. The asso-
ciation between Salmonella typhimurium and T-2 mycotoxins which has
been examined in a porcine infection model, offers us with significant
finding about the effect of this interaction of human IBD and immune
response [83].

To summarize, it is hard to limit the accurate representation of co-
exposure to Salmonella typhimurium and T-2 mycotoxins. . The newly
released information gives an insight of direct mycotoxin contact with
bacteria, host-pathogen and host cells interaction. This study depicts the
harmful effects of T-2 toxins in low or relevant concentration in case of
bacterial infection caused by Salmonella typhimurium bacteria. And when
we discuss about role of T-2 toxins in bacterial infection and immuno-
toxicity, animals treated with fusarium T-2 toxins develop leukopenia
and show decreased activity in their lymphocytes. Basically, T-2 toxins
has capability to initiate hypoxia in cells that lead to activation of
hypoxia-inducible factors. This activation ultimately leads to release the
exosomes involved in immunotoxicity. Based on mycotoxin direct
disclosure physiognomies, one of these outcomes would be the product of
T-2 mycotoxins and Salmonella contact [112].

Gastrointestinal tract (GI) is mainly affected by taking contaminated
food and feed. Generally, intestinal epithelial barriers are present in GI
tract that function as filter for harmful mycotoxins. These macrophages
help in engulfing of these toxins, present in lamina propria. After
engulfing of salmonella by macrophages it results in activation of actin.
These actin activation and reorganization events help in activation of
transcriptional system. Mitogen activated protein kinase pathway
(MAPK) extracellular signal regulated kinases pathway (ERK) and all
salmonella pathogenicity island-1 (SPI-1) effector proteins react with
DON site and activate the other proteins for neutralization of toxins, in
macrophages [113].

4.3. Necrotic enteritis in broilers

The Gram-positive Clostridium perfringens as a primary cause of
“Necrotic enteritis” (NE) and ailment affects broiler. This spore-forming
bacterium is naturally occurring in soil, food and digestive tracts of an-
imals and particularly chickens [114]. As earlier mentioned that NE is
multifaceted and multifactorial ailment with various factors prompting
the manifestation and duration of the episodes. The mucosal damage is
one of the well-known predisposing factors that is caused by coccidial
pathogen [115]. In broiler, only C. perfringens tension revealing NetB
pollutants will trigger NE. Since C. perfringens is auxotrophic or auto-
trophic for various amino acids, the extensive and close accessibility of
these amino acids will help wide spreading of bacterial proliferation
[116]. Consumption of T-2 toxin feed is a highly risk factor due to the
advancement of fatal enteritis in broiler chicks and its adverse impacts on
the epithelial barrier and food accessibility for clostridial spread in the
digestive system. Recently, researchers experimentally have proven
subclinical NE infection variance showing that chicks fed with
T-2-contaminated diet for 3 weeks and were more likely growing the NE
lesions than chicks fed with controlled and specific diet. Therefore,



Figure 3. T-2 mycotoxins and its impacts on the human intestinal gut region against infection by salmonella [50].
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adverse impacts of T-2 on the small intestine or intestinal membrane may
result in food digestion impairment and leakage of plasma amino acids
into the gastro intestinal lumen. As a result, C. perfringens start prolifer-
ation in the presence of the essential growth substrate [117].

4.4. T-2 mycotoxins as an aqueduct for quorum sensing

A mechanism known as quorum sensing enables bacteria and fungus
to control the developmental programs. These programs consist of bio-
film development and expression of virulence proteins. In addition to
these the earlier mentioned mechanism also manages the alteration in
expression pattern of genes that are based upon population densities.
Many studies revealed the mechanism of microbes and their metabolic
products to hinder in quorum sensing properties. T-2 mycotoxins are
related to interrupting bacterial quorum signaling [118]. T-2 Mycotoxins
works as a quorum quencher of acyl homo-serine lactone fragments at
low concentrations versus the bio-control representative Pseudomonas
chorographic. At higher concentrations, T-2 mycotoxins impedes the
production of the antifungal metabolite phenazine-1-carboxamide by the
microorganism [119]. Additionally, two different other mycotoxins,
zearalenone and fumonisins, have actually been revealed to prevent
quorum sensing in the bacteria Chromobacterium violaceum. Diketopi-
perazines derived from gram-negative bacteria have actually been shown
to manage quorum-dependent phenotypes [120], possibly linking
diketopiperazine-like mycotoxins (gliotoxin, roquefortines to name a
few) as extra quorum regulating molecules [121].

4.5. Edwardsiella ictaluri infection in catfish

The Gram-negative microbe Edwardsiella ictaluri belongs to the
Enterobacteriaceae family. “Bacillary Necrosis of Pangasianodon” (BNP),
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which is infected by E. ictaluri, is one of the common infectious diseases
in catfish (Ictalurus punctatus). Aside from Vietnamese lakes, pounds etc
(freshwater) processing. The business of American network catfish
(Ictalurus punctatus) still suffers greatly by this microbe infections, as
refer as Catfish “Enteric Septicemia” (ESC). BNP is recognized by
multifocal uneven white spots of different sizes on a variety of body or-
gans, such as kidney, spleen, and liver [122]. In the network catfish, ESC
can manifest as an extreme form of septicemia and enteritis and fast
mortality rate [123]. Mortality got in touch with fusarium mycotoxins'
co-existence as well as likewise E. ictaluri is hard to anticipate in a ju-
venile network catfish. T-2 elevated the E. ictaluri-associated death [124].
At the same time, the restrained contamination of T-2 enhanced the
endurance of the network catfish. The susceptibility to mycotoxin varies
by fish species. . For example, rainbow trout are particularly sensitive to
T-2, while network catfish are impervious. Significant information about
the mycotoxin's poisoning of microorganisms is missing. To determine
the end result, further work in term of interactions between E. ictaluri and
Fusarium mycotoxins would be needed [125].

4.6. Coccidiosis

Protozoa of the gastrointestinal tract that include coccidia (Crypto-
sporidium, Sarcosporidia and Eimeria, Isospora) and having flagella, are
essential transmittable causative agents. Coccidiosis in chicken refers to a
health condition triggered by the Eimeria bacteria. This is a highly one of
the most serious enteric problems that disturb the performance. The oral-
fecal life cycle of these obligate intracellular parasites alternates between
evolving stages in outside and inside the host. “Eimeria brunetti, Eimeria
optimums, Eimeria acervulina, Eimeria praecox, Eimeria tenella, Eimeria mitis
and Eimeria necatrix”, have all been detected in chickens [126]. The
physio-biological traits such as pathogenicity and immunogenicity are
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species specific. Eimeria Immunity is multifaceted and predisposed by
both the parasite and the host [127].

The cellular immune component is mainly mediated by lymphocytes
of the intra-epithelial lymphocytes (IEL) and lamina propria, Macro-
phages, IEL, and CD4þ T-lymphocytes, are primary component exposed
against Eimeria infection, Whereas IFN and CD8þ T-lymphocytes are
essential for scavenger defensive immunity against Eimeria infection
[128]. As in innate immune response, production of cytokines and che-
mokines is increased to diagnose inflammatory condition. Continuous
secretion of cytokines and chemokines help in activation of immune cells
such as neutrophils and macrophages. Girgis et al. [129] revealed that
diet contained with T-2 mycotoxins had a detrimental effect on the
cellular immune response to coccidiosis in broiler chickens. T-2 myco-
toxins lower the number of CD8þ and CD4þ T-cells count in the duo-
denum mucous membranes accompanying Eimeria infection of broiler.
Additionally, consuming a mycotoxin-contaminated diet reduced CD8þ
T-cells and also monocyte count in the blood, which may indicate
increased infiltration of immune cells at the gastrointestinal site of coc-
cidial infection [129, 130].

Furthermore, feeding plan of Eimeria-challenged bird a diet
contaminated with T-2 mycotoxin induced over-expression of IFN-γ gene
in the cecal tonsils without being connected to deceptive resistant to
coccidial infection in relation to improvements in the oocyst yield. The
lymphoid tissues represent cecal tonsils in the cecum that originally
comes from GALT. To fight with the Eimeria infection associates with the
expression of a number of interleukins (ILs) rather than just IFN-γ, and
enhance the gene expression isn't necessarily associated with functional
secretion [131]. Furthermore, mild levels of T-2 mycotoxins were shown
to have a detrimental impact on GIT morphology and affect the recovery
of the intestinal tract from an infection of enteric coccidial, as shown by
theevident villus region with the lower villus height. T-2 mycotoxins
were seen to inhibit the Eimeria-induced immune proposed by Girgis
et al., but no consequence was shown on fecal oocyst counts [129].

Correspondingly, B�ek�esi et al. [132] study reported that a T-2
mycotoxin diet has minor effect on Cryptosporidium baileyi oocyst
discharge in broiler. Researchers are trying to investigate the mycotoxin
induce animal susceptibility towards the infectious diseases mainly
concerns is to disclosure with single major mycotoxins. There is limited
information in the literature to show the effects of co-occurrence of
mycotoxin as well as plant metabolite interaction. Nonetheless, Girgis
et al. [130] revealed that the combinatorial impact of T-2, ZEN, DON
Fumonisins, 15-acetylDON (15-AcDON) change the Eimeria-induced
immune responses. Surprisingly, broiler feed is contaminated by myco-
toxin and also reduces the effectiveness of the anti-coccidial therapy.
Activation of CD4þ and CD8þ on naïve T cells in response to foreign
stimulus lead to regulation of immunity. In conclusion, Fusarium my-
cotoxins have a detrimental impact on the immune responses (innate and
adaptive) against Eimeria, but do not affect the oocyst yield. In order to
determine the mycotoxins impact on the infection status, more infor-
mation about medical coccidiosis lesion scoring is also needed [133].

5. Genotoxic and cytotoxic effects of T-2 toxins in humans and
animals

In eukaryotic cells, T-2 toxic inhibits the synthesis of proteins, DNA
and RNA. As a result, cell cycle is disturbed and induces the cell death in
vitro and in vivo [134]. Both molecular and chemical structures of T-2
toxin have a vital function to determine the kind and mode of target
action, due to this specificity it can interact with protein molecules.
Hence T-2 toxic like diacetoxyscirpenol and HT-2 toxin truncate the
initiation of a polypeptide chain. On the other hand, trichothecenes in-
fluence the elongation and termination processes [135]. This mechanism
of action is similar to the activity of specific antibiotics such as “strep-
togramins, macrolide antibiotics and lincosamides” on microbial cells
[136]. Moreover, the cytotoxic effects of T-2 toxin are observed in
lymphoid cells, while DNA strand breaks the induction dysfunction of a
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body's immune system. The harmful effects of mycotoxins on human
health have studied and observed in both acute and chronic form. These
adverse effects ultimately lead some serious problems such as liver can-
cer, gangrene, respiratory problems and some other immune disorders.
Mycotoxins including T-2 toxins impose serious threat for both humans
and livestock [1]. Surprisingly, T-2 toxin are proactively worked reported
in mitotic active cells (gastrointestinal tract cells, lymph nodes, spleen,
bone marrow and hepatic cells) [135]. Mycotoxins ingested by animals
and humans produce a toxic response known as mycotoxicosis. Different
type of cancers, alimentary toxic aleukia, nephropathy and neurological
disorders have been reported as most common diseases caused by my-
cotoxins [50]. Furthermore, direct exposure of mycotoxins in humans
seems more dangerous even in very minute quantity. However, chronic
diseases progress due to continuous and prolonged exposure of myco-
toxins with humans either in direct or indirect way. Aflatoxins, tricho-
thecenes, fumonisins and ergot alkaloids are well known studied
mycotoxins that are threat for humans by causing fatal diseases in them
[137].

T2's cytotoxic radiomimetic results have been reflected by the trun-
cated protein synthesis and inhibition of DNA and RNA synthesis [138].
Additionally, in-vivo T-2 toxins can initiate the polyploidy in Allium cepa,
sex-linked recessive lethal mutation in Drosophila melanogaster [139].
The single strand of DNA manifests the breaks in thymus and spleen of
BALB/c. The chromosomal aberrations in Chinese hamster bone marrow,
along with DNA damages in peripheral lymphocytes of chicken [140].
Previous studies' results about genotoxicity have shown that in vitro, T-2
toxicity triggers the DNA single-strand breaks are analysed as in primary
thymic and hematocytes and spleen lymphocytes of BALB/c mouse. The
this triggering effects are seen in the development of micronucleus, he-
reditary anomalies and sister chromatid swapping in Chinese hamster
V79 fibroblasts [141]. The literature also showed the spontaneous DNA
synthesis in human fibroblasts, as well as disorder of intercellular
communication in Chinese hamster V79 cells [142]. Furthermore, in
vitro studies confirmed that T-2 and other co-mycotoxins can induced
and promote apoptosis [143] and in vivo in hematopoietic cells, liver,
spleen and digestive system Chinese hamster. In poultry, apoptosis were
reported in the thymus, but not yet seen in the spleen. The apoptosis that
rely on the activation of p38 MAP kinases and JNK are triggered by T-2
toxin. However, no specific and consistent mechanism has been proposed
for a clear description [144].

6. Immuno-toxic effects of T-2 toxin

T-2 mycotoxin with the immunomodulatory activity can activate
(immune-stimulator) or stop (immune-suppressor) the working of the
immune system. Beside with inhibitory effects of T-2 toxin in immune
system, some studies shows that expression pattern of mycotoxins is
observed in favorable prognosis in different type of infectious diseases.
Because of its co-stimulatory action, it has potential to control stimula-
tory mechanisms for the treatment of diseases. But still its mechanism of
action as co-stimulatory signal molecule is under investigation. An
immunomodulatory function of T-2 is mainly dependent on time and
dose. Immuno-suppression is due to high dose of toxin that induce
damages to the lymph nodes, spleen, bone marrow, digestive system
mucosa and thymus, leucopenia, and subsequently enhanced the chances
of getting infected with microbes (Salmonella sp. and Listeria monocyte
genes) [145]. Likewise, immune system activation is prompted by low
dose of the toxin and demonstrated by elevated level of serum IgE and
IgA antibodies as a result of quick and short-term triggering of genes in
charge of the function of the body immune system together with gene
important for inflammatory response [146]. The toxicity level of type
A-trichothecene (T-2 toxin) is reported higher in the literature than
B-trichothecenes.

Nonetheless, T-2 toxin can deplete lymphoid and necrosis cells in the
spleen, thymus and lymph nodes in poultry animals and pullets [134].
Current study of health institutes support that T-2 toxin show its



Figure 4. A schematic illustration of the proposed T-2 toxin immune-toxicity mechanism in animals and humans [150].
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expression as immune inhibitor on T lymphocytes, tumor cells and
myeloid cells. This expression suppress T cell's activation, cell division
and production of cytokines [134]. Salmonella infection can enhance the
mortality rate by the interaction of T-2 toxin with chicken [147]. It also
reduced the antibody titers against Newcastle and infectious bursal dis-
eases [148]. Molecular and cellular mechanism of T-2 toxin are not
similar to the mechanisms of other mycotoxins. Immunosuppressive ef-
fects result from direct or indirect inhibition of protein synthesis. Most of
the research work on T-2 toxin and its impacts have been undertaken by
evaluating the laboratory animals, and still we need to investigate
possible outcomes on chicken in future research [149] Figure 4.

This figure proposed a T-2 toxin immune toxicity mechanism in an-
imals and humans. Release of Ca ions, DNA methylation induced by
several proteins, inflammatory response as a result of different pathways
including JAK and STAT are activated via stress. All these activations
results in apoptosis that is pivotal for cell survival. While another group
of researchers have studied oxidative stress, ER stress and reactive oxy-
gen species responsible for oxidative damage that leads to apoptosis. In
addition to these PKA, CREB and P65 proteins bind to their respective
promoters that activate the inflammatory cytokines in response to
oxidative stress and lead to apoptosis by mitophagy and autophagy
[151].

7. Treatment of toxic manifestation because of T-2 toxin

There is no particular antidote apart from detoxifying with all-natural
substances and bringing back lipids, nutrients, enzymes, amino acids,
probiotics and controlled diet plan. Super-activated charcoal needs to be
given by mouth if the toxin is ingested [152]. On extreme and emergency
situation, radical treatment such as prescriptions like antifungal therapy
may be required if all-natural therapy is inefficient [153].
Super-activated charcoal adsorbs and eliminate the toxic from the GI
system, and protect further cellular stress. Dosage for adult is 1 g/kg
PO/NG; repeat dose of 20–50 g q 2–6 h can be administrated and dosage
for pediatric<1 year: 1 g/kg PO, for 1–12 years: 25–50 g PO and also for
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teenagers: 25–100 g PO repeat does in children not given; half initial
dosage advised [154, 155].

Mycotoxins as toxic secondary metabolites are causative agents for
disease and death in both animals and humans. Among trichothecene
mycotoxins, T-2 toxin is unique in producing cytotoxicity as it effect
cellular immune system in animals. Basically T-2 mycotoxin interfere
with immune system by blocking protein synthesis followed by inhibition
of RNA and DNA synthesis. The harmful effects of T-2 toxin in different
organs and systems such as liver, skin, gastrointestinal tract, intestinal
mucosa, bone marrow, spleen and lymphoid cells are reported. Although,
mycotoxins belonging to Fusarium sp. are common and show less harmful
effects on human health. Salmonellosis and colibacillosis species are
studied for humans that produce toxins in various infections by hindering
the cellular immune system of host.

The molecular characterization of microbiota involved in antitoxic
effects help us in development of probiotics. Less absorption of myco-
toxins in intestinal tract results in biotransformation of toxic metabolites
into less toxic variants. In addition to these, effects of microbiota on
harmful mycotoxins are not limited to intestinal tract, it may harm the
other human vital organs. However, detoxification of microbiota is
considered as an alternative way to decontaminate the feed for both
animals and humans. These transformations of toxic metabolites depend
upon the formation of metabolites. This study is complete in all per-
spectives regarding interactions between microbiota and mycotoxins,
their mechanism and practical applications based on experimental
studies.

8. Conclusions

The interactions between mycotoxins and microbiota of the intestine
were discovered earlier. A safety outcome of the microbiota versus
mycotoxin toxicity explained a couple of the variations in susceptibility
level in different animals. This result was linked to the fragments that are
being degraded into less harmful metabolites and decrease in mycotoxin
absorption oraly.
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In recent studies, immunotoxicity mechanism of T-2 toxin and human
T-2 toxin is discussed. In general terms, the microbiota have potential
benefit on mycotoxins toxicity, an adverse finding in the form of conju-
gated/masked mycotoxins hydrolysis was recently discovered. This hy-
drolysis that is linked to digestive enzymes and stomach acidity resulted
in the secretion of mycotoxins in the GIT system, especially stomach,
along with non-conjugated forms led to the general toxicity of contami-
nated food and feed. Nevertheless, the communications between myco-
toxins and intestinal microbiota are not restricted to influences of the
microbiota on mycotoxins. Additionally, a boosting variety of in-
vestigates are determining results of mycotoxins on the microbiota. The
initial work mainly concerned with the disturbed and barrier effects;
which were mainly provided by the digestive system and consequences of
microbial translocation. On other hand, the digestive tract barrier is the
product of a balance between three barriers/mechanisms: (1) the first
mechanism is to create a physical-chemical barrier from the secretions of
epithelial cells; (2) the second barrier or mechanism is attached to the
microbiota that colonizes the digestive system; and (3) the third one is
the immune threat.

Moreover, modified forms of T-2 toxins exerts immunotoxic effects by
effecting JAK/STAT signaling pathways. Infections related to mycotoxins
disturb the gut microbiota that results in autophagy and disturb the
normal functioning. Oxidative stress and transcriptional changes lead to
apoptosis that enhance the immunity against mycotoxins. At high dose of
toxin, as revealed in a study is a high risk of bacterial invasion. It natu-
rally comes from the mycotoxin toxicity to the immune system and gut
cells.

This study found that mycotoxins disrupt microbiota in intestines by
changing relative abundance of species, genus and phylum levels. From
literature study, it has been found that interactions between mycotoxins
and gut microbiota vary at specie, genus and phylum level. This has been
confirmed by analysis of the effects of the microbiota present between
metabolism of mycotoxins and the toxicokinetics [156]. As a result, many
innovative approaches were proposed to study the impacts of mycotoxins
on human health. Mycotoxins as toxic secondary metabolites are causa-
tive agents for disease and death in both animals and humans. Among
trichothecene mycotoxins, T-2 toxin is unique in producing cytotoxicity
as it effect cellular immune system in animals. Basically T-2 mycotoxin
interfere with immune system by blocking protein synthesis followed by
inhibition of RNA and DNA synthesis. The harmful effects of T-2 toxin in
different organs and systems such as liver, skin, gastrointestinal tract,
intestinal mucosa, bone marrow, spleen and lymphoid cells are reported.
Although, mycotoxins belonging to Fusarium sp. are common and show
less harmful effects on human health. Salmonellosis and colibacillosis
species are studied for humans that produce toxins in various infections
by hindering the cellular immune system of host. While research works
on the communications between mycotoxins and intestine microbiota
that occur due to a low doses is still in progress. Therefore, more research
studies need to be undertaken before concluding the actual impacts on
human health since innovative approaches are key to address the open
health challenges.
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