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Learning spin liquids 
on a honeycomb lattice 
with artificial neural networks
Chang‑Xiao Li, Sheng Yang & Jing‑Bo Xu*

Machine learning methods provide a new perspective on the study of many‑body system in condensed 
matter physics and there is only limited understanding of their representational properties and 
limitations in quantum spin liquid systems. In this work, we investigate the ability of the machine 
learning method based on the restricted Boltzmann machine in capturing physical quantities 
including the ground‑state energy, spin‑structure factor, magnetization, quantum coherence, and 
multipartite entanglement in the two‑dimensional ferromagnetic spin liquids on a honeycomb lattice. 
It is found that the restricted Boltzmann machine can encode the many‑body wavefunction quite 
well by reproducing accurate ground‑state energy and structure factor. Further investigation on 
the behavior of multipartite entanglement indicates that the residual entanglement is richer in the 
gapless phase than the gapped spin‑liquid phase, which suggests that the residual entanglement can 
characterize the spin‑liquid phases. Additionally, we confirm the existence of a gapped non‑Abelian 
topological phase in the spin liquids on a honeycomb lattice with a small magnetic field and determine 
the corresponding phase boundary by recognizing the rapid change of the local magnetization and 
residual entanglement.

The research on frustrated magnetic systems has attracted broad interest in condensed matter physics over the 
past several decades due to the strong frustration that can cause various novel quantum phases in these systems, 
such as quantum spin liquids (QSLs)1. QSL is a novel type of quantum state, in which any long-range magnetic 
order is suppressed by strong quantum fluctuation and is highly entangled even at absolute zero temperature. 
In addition, this exotic phase of matter is beyond Landau’s phase transition theory and not include any local 
order parameter or spontaneous symmetry breaking. Specifically, important theoretical insight into QSL phys-
ics comes from the study of Kitaev spin liquids (KSLs)2, which can be solved exactly through Jordan–Wigner 
 transformation3,4. The Kitaev model is highly frustrated and shows a large number of interesting peculiarities, 
such as long-range entanglement in the ground state and non-Abelian anyon  excitation1 due to the bond-
dependent anisotropic interactions. In particular, motivated by a recent experiment on KSL material candidate: 
α-RuCl35, one finds that the ferromagnetic (FM) Kitaev model has a field-induced non-Abelian topological phase 
under an external magnetic field. Then, extensive attention has shifted to the case with a magnetic  field6–9 and 
discovered that the topological phase survives only in the presence of a small magnetic  field10.

Furthermore, when considering complex or realistic systems, analytical methods may fail to extract the 
relevant physics and numerical approaches, like quantum Monte Carlo  simulation11 and the density matrix 
renormalization group  algorithm12, become necessary. Recently, a new strategy for reducing this complexity 
is to use machine learning algorithms based on neural  networks13, such as restricted Boltzmann machines 
(RBMs)14, which is one of the most widely used neural networks in the machine learning community. Modern 
machine learning technologies can classify, identify or interpret massive data sets such as images, which makes 
it naturally suitable to analyze the exponentially large information contained in the quantum many-body state. 
For quantum many-body problems, the commonly interested states, namely the low-lying eigenstates, generally 
possess an intrinsic structure, obeying the area-law of  entanglement15. It is noted that the representation power 
of artificial neural networks when adapted to encode the many-body wavefunctions has been investigated from 
the entanglement perspective to some  extent16. Specifically, it was suggested that quantum states represented by 
RBMs can potentially exhibit a volume-law of  entanglement17, which indicates a more powerful representation 
ability than tensor networks. Based on this observation, many researchers utilized machine learning methods 
to solve strongly correlated quantum  systems18, simulate the stationary state of open quantum  systems19–22, and 
explore the nature of quantum phase transition in many-body  systems23–26. Despite the rapid developments, 
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the representative features and limitations of neural networks in characterizing the QSL phases remain to be 
elucidated.

On the other hand, characterizing different phases of matter plays an important role in condensed  matter27. 
Unfortunately, it is tough to find characteristics and universal properties of a given phase, like the QSL state, lack-
ing local order parameters. Alternative ways to characterize different phases have recently emerged from the con-
cepts of quantum information  science28 overcoming this difficulty. Quantum  entanglement15,29,30 recognized as a 
key resource was the first and most commonly used one. Besides the developments of bipartite  entanglement31, 
which describes only a part of characteristics of many-body quantum systems, multipartite entanglement quan-
tifying entanglement distribution among different parties demonstrates complex structures of quantum states 
more thoroughly and deserves further investigation. Specifically, a relevant multipartite entanglement, residual 
 entanglement32, was recently proposed based on a general monogamy inequality of squared entanglement in an 
arbitrary N-qubit mixed  state33. Furthermore, quantum coherence is another favored choice for describing quan-
tumness. And it has been applied to the fields of quantum  optics34, quantum  thermodynamics35 and quantum 
 algorithms36. Recently, a rigorous framework for quantifying quantum  coherence37 was established, from which 
arises several good quantifiers like the relative entropy coherence and l1-norm coherence. Different from the 
traditional approaches used in condensed matter, these quantum information-oriented methods can investigate 
quantum phases without any knowledge of order parameters and offer new insights for quantum phase transition.

The above discussions may motivate one to consider the following questions: Can neural networks capture 
the physical natures of QSL phases? In the process of learning QSLs, what are the abilities and limitations of 
the neural networks? Can the residual entanglement be used to characterize the QSL phases? In this paper, we 
attempt to show the abilities and limitations of the neural network-based machine learning method to capture 
QSL states of the spin liquids on a honeycomb lattice with a magnetic field. First, we apply RBMs to learn the 
ground-state energy and spin-structure factor in the QSL honeycomb lattice, and compare these results with 
those obtained by exact diagonalization to verify the effectiveness of the neural network-based machine learning 
method. Then, we investigate the performances of the quantum coherence and residual entanglement via the 
RBM-based machine learning method, and observe that both of these quantities can be used to determine the 
boundary between the gapped and gapless QSL phases. It is shown that the residual entanglement is richer in 
the gapless phase than the gapped spin-liquid phase. Furthermore, we focus on the training of RBMs to learn 
the physical quantities including the local magnetization and residual entanglement in the QSL honeycomb 
lattice with a small magnetic field. It is found that both local magnetization and residual entanglement show a 
steep change near the critical field, which reveals the existence of a non-Abelian topological phase. Our work 
provides new insights for the machine learning method into the learning of different condensed matter phases, 
especially the QSLs.

Our paper proceeds as follows. In “Methods”, we briefly introduce the neural network-based machine learn-
ing method and outline how to calculate the multipartite entanglement. RBMs are applied to learn physical 
quantities including the energy, spin-structure factor, quantum coherence and multipartite entanglement for 
the pure QSL honeycomb lattice and FM QSL honeycomb lattice in “Results”. We finally present conclusion and 
discussion in “Conclusion and discussion”.

Methods
In this section, we briefly outline the neural network-based machine learning method and how to calculate the 
multipartite entanglement.

To set a general stage for our study, we start with the notion of the restricted Boltzmann machine  states13. 
The artificial network structure of RBMs sketched in Fig. 1 is composed of one visible layer with N physical 
spin variables, si = ±1 , and one hidden layer with M auxiliary spin variables, hj = ±1 . In this paper, we set the 
number of hidden units equals to the number of visible ones, namely, M = N.

By using the computational basis set, {|�s �} , one can express a general quantum state as

where si is the local quantum number for i-th site. An RBM is taken to represent the target many-body quantum 
state and the coefficient �(�s ) is encoded  as13

(1)|�� =
∑

{si}

�(s1, . . . , sN )|s1, . . . , sN �,
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Figure 1.  Network diagram of the restricted Boltzmann machine.
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Here, ai and bj are called visible and hidden bias, respectively, and the weights Wij representing the network links 
are taken to be complex-valued.

In the context of artificial neural networks, the word learning means that the parameters of the network, 
X = {a, b,W} in RBMs, are iteratively optimized to find the minimum of a certain cost function. To train a 
RBM, we adopt the variational Monte Carlo (VMC) method for optimizing the variational parameters of RBMs.

Optimization. We initialize all weights W based on a random Gaussian distribution and biases a and b 
with uniformly sampled numbers in the interval [0, 0.1]. To obtain the ground state of a given Hamiltonian H, 
the expected value of energy E(X) = ��|H|��/��|�� is chosen as the cost function, which is a function of the 
network parameters X = {a, b,W} . And then the objective of training is to obtain optimal RBM parameters 
for which the energy function converges to a minimum. To find the global minimum of the cost function, we 
choose to adopt Adagrad  optimizer38 in this study. Concretely, the k-th network parameter Xk is updated at the 
p-th iteration according to

where η is the corresponding learning rate, ǫ is a small cutoff to prevent division by zero, and the process is 
repeated until the cost function is converged.

Sampling. However, for the quantum many-body problems, it is hard to optimize such a large number of 
network parameters in the full Hilbert space. In the stochastic framework, this optimization problem can be 
solved by using the stochastic  reconfiguration39,40. During the optimization procedure, the expectation value of 
a physical observable Ô of interest can be written as

where p(�s ) = |�(�s )|2/Z corresponds to a classical probability distribution with Z =
∑

�s |�(�s )|2 and the local 
expectation contribution of a certain configuration �s is Oloc(�s) =

∑

�s ′
�(�s ′)
�(�s ) ��s |Ô|�s

′� . Therefore, the expectation 
values of observables, such as energy and its gradient, can be estimated at each learning step by using the Markov 
chain Monte Carlo  method39 with Metropolis local  sampler41. The network parameters are updated iteratively 
until the optimal energy is obtained and then the training ends.

Specially, we present the calculation of the n-site reduced density matrix, which is essential in the evaluation 
of quantum information quantities. Take the simplest case, namely the calculation of the one-site reduced density 
matrix on i-th site, for example, the elements of the reduced density matrix, ρsis

′
i

i  , can be estimated one by one 
by exploiting the formula (4) with Ô = |s′i��si| . Finally, one can use these estimated elements to reconstruct the 
required reduced density matrix with enforced Hermitian and normalization condition. The implementation 
is based on the NETKET  library42, which is an open-source Python toolbox that supports the message passing 
interface for distributed and parallel computing.

With the help of the neural network-based machine learning method, we can calculate multipartite entangle-
ment: residual entanglement, a useful entanglement indicator in many-body  systems33. The definition of residual 
entanglement is based on a general monogamy inequality of the squared entanglement of formation E2f  in an 
arbitrary N-qubit system

where Ef (ρA1|A2...AN ) represents the entanglement between A1 and the rest of the system, and Ef (ρA1Ai ) stands 
for the bipartite entanglement of the two-qubit system A1Ai . And the residual entanglement is defined as

Multipartite entanglement written in the above form can be interpreted as the global entanglement that 
does not store in the bipartite spins. Additionally, the first term in Eq. (6) can be expressed as simple as 
Ef (ρA1|A2...AN ) = S(ρA1) for the pure state  case43, where S represents the von Neumann entropy. Further, there 
is a one-to-one correspondence between the bipartite entanglement Ef (ρA1Ai ) and concurrence C(ρA1Ai )

44,
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where �i is the eigenvalues of matrix ρA1Ai (σ
y
A1 ⊗ σ

y
Ai
)ρ∗

A1Ai
(σ

y
A1 ⊗ σ

y
Ai
) in decreasing order, and Hbin is the 

Shannon binary entropy function, Hbin(x) = −x log2(x)− (1− x) log2(1− x).

Results
In this section, we employ the machine learning approach based on RBMs to investigate the topological phase 
for the FM QSL honeycomb lattice, and study various physical quantities to provide a better understanding of 
the application of machine learning in QSLs.

We consider the FM QSL honeycomb lattice, where a set of localized spin-1/2 particles are placed at a two-
dimensional honeycomb lattice with periodic boundary condition (see Fig. 2), subjected to an external magnetic 
field h along the [111] direction. The Hamiltonian is given by

where σγ
i  represents the Pauli matrix at i-th site, γ = x, y, z indicates three different nearest-neighbor links of 

the hexagonal lattice with the coupling interaction Jγ , and the first term of Eq. (8) is the pure QSL honeycomb 
lattice exhibiting strongly anisotropic spin exchange couplings. Here, the size of a system is N = Lx × Ly × 2 , 
where Lx and Ly indicate, respectively, the number of spins along the x and y directions.

For the case of zero magnetic field h = 0 , the pure QSL honeycomb lattice is known to be solved exactly 
through a Jordan–Wigner transformation combined with symmetry  considerations4. There are two kinds of spin-
liquid  phases2 in the parameter space: three gapped Z2 spin liquid phases Ax ,Ay ,Az with Abelian anyon excita-
tions for Jx > 0.5, Jy > 0.5, Jz > 0.5 , respectively, and a gapless phase B for other cases, which hosts non-Abelian 
anyons in the presence of a small magnetic field, for simplicity, we have set Jx + Jy + Jz = 1 as the energy unit.

To assess the effectiveness of RBMs, we apply the RBMs to a pure QSL honeycomb lattice with up to 
N = 3× 3× 2 sites with periodic boundary condition and optimize the network parameters to learn the ground 
state. It is found that 1500 iterations are mostly enough for training in this case. The expected values of the 
ground-state energy for different values of Jz with Jx = Jy obtained by RBM optimization are exhibited in Fig. 3 
and compared with the results computed by exact diagonalization. We can see that, for Jz � 0.2 and Jz � 0.8 , a 
high precision can be reached with a relative error, δ = |Eexact − ERBM|/|Eexact| , on the order of δ ∼ 10−3 . We also 
plot the energy as a function of the iterative steps to visualize the training process at the critical point, Jz = 0.5 , in 
the inset of Fig. 3, and show an explicit convergence towards to the exact value. In addition, the results of Fig. 3 
suggest that RBMs have difficulties learning quantum state in the range around phase transition, and a larger 
number of network parameters might be required to improve the performance.

Besides the investigation of the energy expectation value, we also consider the ability of RBMs to learn the 
transverse spin-structure factor,

which is experimentally accessible via scattering experiments. In Fig. 4, we display the dependence of the spin-
structure factor Sxx(2π/3, 0) on different coupling interactions with the parameters as Jx = Jy . It is shown from 
the inset in Fig. 4a that the structure factor at the critical point, Jz = 0.5 , as a function of the iterative steps. A 
clear convergence towards to the exact value is found. We also report the structure factor computed for different 
values of Jx in Fig. 4b, with Jz = 0.3 and Jy = 0.7− Jx , where the phase transition is expected to occur at Jx = 0.2 
and Jx = 0.5 . The RBM results of Sxx(2π/3, 0) agree well with the exact solution, especially for the points far 
away from the critical points.

From the above discussion, we have demonstrated a proof of principle of the RBM-based machine learning 
method by two successful tests including the ground-state energy and spin-structure factor of the pure QSL 
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∑

�i,j�γ

Jγ σ
γ
i σ

γ
j − h

∑

i

(σ x
i + σ

y
i + σ z

i ),

(9)Sxx(�k) =
1

N(N − 1)

∑

l �=j

e−i�k·(�rl−�rj)
〈

σ x
l σ

x
j

〉

,

Figure 2.  Structure of the Kitaev honeycomb lattice for N = 3× 3× 2.
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honeycomb lattice. It is observed that RBM states at criticality are hard to train because the quantum fluctuation 
reaches maximum there. In addition, the energy results are more accurate than the spin-structure factor, which 
means that the convergence of physical quantities lags behind the convergence of the cost function. One pos-
sibility to improve the learning of neural networks for capturing more accurate physical quantities is to perform 
a more precise training to make δ reach the order of ∼ 10−5 , compatible with the state of the art methods, which 
may require the involvement of other modern machine learning technologies like deep Boltzmann  machines14, 
convolutional neural  networks45, and recurrent neural  networks46.

Next, we turn our focus to the performances of the quantum coherence and multipartite entanglement in 
the pure QSL honeycomb lattice.

We train the architecture over 3× 104 iterations using AdaGrad optimizer and we set the learning rate to 
η = 0.03 , and the cutoff to ǫ = 10−7 . Here, we adopt the l1-norm quantum  coherence37, which is defined as the 
sum of the absolute value of the off-diagonal elements of a density matrix ρ , Cl1(ρ) =

∑

i �=j

∣

∣ρij
∣

∣ . In Fig. 5, we plot 
the quantum coherence of two nearest-neighbor sites linked by Jx coupling as a function of coupling interactions 
Jz (Fig. 5a) and Jx (Fig. 5b) for the same parameters as in Fig. 4. The quantum coherence declines with increasing 
Jz in Fig. 5a, but enhances with increasing Jx in Fig. 5b and changes dramatically near the critical point, agreeing 
with the previous  work47 that adopts the relative entropy coherence measure. It is also observed that the value of 
coherence learned by RBM is pretty close to the exact value, suggesting that the quantum feature of QSL phases is 
accurately reproduced. Additionally, we also note that for the points near the phase transition, the errors in Fig. 5 
are relatively large, and similar behaviors are also observed in the studies of energy and spin-structure factor.

Over the past decade, there have been increasing interests in the characterization of quantum phases via 
entanglement measures. Recent  works48,49 show that topological quantum phases can be characterized by the 
behavior of multipartite entanglement using the quantum Fisher  information50. Additionally, it was also reported 
that multipartite entanglement in the form of residual entanglement can serve as good indicators to detect 
quantum phase transitions in several spin  models51. Hence, it would be worthwhile to study the performance 

Figure 3.  The ground-state energy E/N computed as a function of the coupling Jz for a N = 3× 3× 2 lattice. 
RBM (green triangle) and the exact diagonalization (gray solid circle) values are compared. The inset shows the 
energy expectation value E/N, at the critical point Jz = 0.5 , as a function of the VMC iterations. The red dashed 
line in the inset marks the exact value of the ground-state energy. Other parameters: Jx = Jy = (1− Jz)/2 , 
η = 0.1 , ǫ = 10−7.

(a) (b)

Figure 4.  The spin-structure factor Sxx(2π/3, 0) (blue solid circle), compared with exact diagonalization results 
(gray solid circle), as a function of the coupling: (a) Jz , other parameters are set as Jx = Jy = (1− Jz)/2 ; (b) Jx , 
other parameters are set as Jz = 0.3, Jy = 0.7− Jx for a N = 3× 3× 2 lattice. The blue solid straight lines are 
plotted to indicate the error bars. Inset in (a): the convergence of the structure factor towards the exact value in 
the training process, at the critical point Jz = 0.5 . The red dashed line in the inset marks the exact value.
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of residual entanglement in the QSL honeycomb lattice to see whether residual entanglement can characterize 
the QSL physics. As was outlined in “Methods”, we plot the residual entanglement τ for a N = 4× 4× 2 lattice 
in Fig. 6 with Jz = 0.1 (Fig. 6a), 0.2 (Fig. 6b), 0.3 (Fig. 6c), 0.4 (Fig. 6d). It is found that these curves all increase 
first and then decrease while increasing Jx and approach the maximum at the median value of Jx . Interestingly, 
residual entanglement is richer in the gapless phase B than the gapped spin-liquid phases A. This suggests that 
there would be a rapid enhancement of multipartite entanglement as the QSL slides from a gapped region to 
another gapless one, and residual entanglement can be used to mark out the corresponding transition point.

As mentioned earlier, physical quantities obtained by the machine learning method suffer a small devia-
tion compared with the exact results. In general, this deviation can be reduced by performing a more accurate 
training and averaging over more samples in Eq. (4). Besides this, however, the one-by-one strategy used in the 
calculation of density matrix may bring larger accumulative error into the evaluation of quantum coherence and 
residual entanglement. For this reason, a smarter strategy that can extract the density matrix as a whole would 
be appealing and we leave it for future studies.

So far, we have confirmed the effectiveness of the RBM method in capturing physical features of the pure 
QSL honeycomb lattice. Previous theoretical studies found that a small magnetic field along the [111] direc-
tion will drive the gapless spin-liquid phase into a gapped topological phase with non-Abelian quasiparticle 
 excitations2,10. To better understand the change of the physics for the application of the magnetic field, we apply 
the RBM method to solve the FM spin liquids on a honeycomb lattice and specifically consider the behavior of 
the local magnetization and residual entanglement with respect to the external field.

First, we compute the local magnetization M according to

 for the FM QSL honeycomb lattice. According to the size of the system, we train the complete architecture 
over 103-104 iterations using the Adagrad optimizer with a learning rate η = 10−2 and a small cutoff ǫ = 10−7 . 
The expected values of magnetization M obtained by RBM, for N = 3× 3× 2 and N = 5× 5× 2 lattices, are 
plotted in Fig. 7 as a function of external magnetic field h with coupling Jx = Jy = Jz = 2 . It is observed that the 
local magnetization gains a nonzero value with an arbitrary small magnetic field. Specifically, the gapless QSL 
phase is driven into a gapped non-Abelian topological phase by a small magnetic field and this topological phase 
exists only within the interval 0 < h � 0.07 . As the parameter h is tuned through the critical value h∗ ≈ 0.07 , 
the local magnetization shows a steep change, which implies the happening of a quantum phase transition. For 
the region h > 0.07 , the magnetization shows a monotonic increase with respect to h and gradually approaches 

(10)
M =

√

∑

γ
(Mγ )2

Mγ =
1

N

∑N

i=1

〈

σ
γ
i

〉

, γ = x, y, z,

(a) (b)

Figure 5.  l1-norm coherence Cl1 as a function of the coupling strength (a) Jz with Jx = Jy = (1− Jz)/2 , (b) Jx 
with Jz = 0.3, Jy = 0.7− Jx , for a N = 3× 3× 2 lattice. Gray vertical lines indicate the critical points. The red 
solid straight lines indicate the error bars.

(a) (b) (c) (d)

Figure 6.  Residual entanglement τ as a function of coupling interaction Jx with different Jz : (a) 0.1, (b) 0.2, (c) 
0.3, (d) 0.4 for a N = 4× 4× 2 lattice.
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a saturate value, which corresponds to a fully polarized state.Furthermore, these two distinct regions can also 
be distinguished by investigating the behavior of the residual entanglement with respect to the external mag-
netic field. We display the residual entanglement τ as a function of the external field h with coupling strength 
Jx = Jy = Jz = 2 for a N = 4× 4× 2 lattice in Fig. 8. It is quite clear from Fig. 8 that the residual entanglement 
first decreases slowly with the increase of magnetic field and then drops rapidly near a critical field that agrees 
with the one marked by the local magnetization. For lager magnetic field, the system comes into a partial polar-
ized phase with relatively small residual entanglement as expected. Additionally, the residual entanglement 
stays at a relatively large value within the gapped non-Abelian topological phase, and such a rich entanglement 
may be advantageous in the topological quantum computation. Interestingly, both the behaviors of the local 
magnetization and residual entanglement can be used to confirm the existence of the gapped topological phase 
and determine the phase boundary.

Conclusion and discussion
In summary, we have explored the abilities and limitations of the RBM-based machine learning method in rep-
resenting the QSL states and specifically considered the FM QSL honeycomb lattice. Besides, we have provided 
a table containing different variational energies obtained in Supplementary. We note that a previous  study52 has 
examined the capability of RBMs to find ground-state energy of the Kitaev honeycomb model. However, they 
only focus on the specific parameter choice Jx = Jy = Jz = 1 , and we not only focus on the full phase diagram 
containing three gapped phases and one gapless phase with Jx + Jy + Jz = 1 but also consider the effect of the 
external field. By investigating the accuracy of the learned energy and structure factor in four phases, we con-
firmed the validity of the machine learning method in solving the QSL honeycomb lattice. Then we investigated 
the behavior of quantum coherence and residual entanglement and find that these quantities can serve as good 
indicators for the quantum phase transition between the gapped and gapless spin-liquid phases in the spin liquids 
on a honeycomb lattice. Furthermore, we recognized the existence of a gapped non-Abelian topological phase, 

Figure 7.  Magnetization M(h) computed as a function of the magnetic field h. Exact values obtained by exact 
diagonalization (gray solid circle) are compared. The inset shows the convergence of magnetization at h = 0.07 
for N = 3× 3× 2 lattice towards to the exact value (blue dashed line) in the training process. Parameters: 
Jx = Jy = Jz = 2.

Figure 8.  Residual entanglement τ computed as a function of the magnetic field h for a N = 4× 4× 2 lattice. 
Parameters: Jx = Jy = Jz = 2.
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which might be useful in performing the topological quantum computation, by further investigating the local 
magnetization and residual entanglement for the case with an external field.

Based on the success of the RBM-based machine learning method in the exploration of the FM QSL honey-
comb lattice, one can expect that the neural network-based machine learning method might be a good tool to 
study the physics of general QSL states. As we have mentioned in the main section, however, there are still many 
difficulties that we have to face to make this method more reliable and powerful, which will be the focus of future 
research. On the one hand, the effects of finite size are large, therefore, the precise extrapolations to the thermo-
dynamic limit are needed. To this end, a more reliable and powerful technique would be required to perform 
accurate finite-size analysis of the quantities presented here. On the other hand, we found that the convergence 
of physical quantities lags behind the convergence of the ground-state energy (see an example of magnetization 
in Supplementary Fig. S1 online), and the one-by-one strategy used in the calculation of density matrix may 
bring larger accumulative error into the evaluation of physical quantities, which limits the application of neural 
networks to explore the physical quantities of large-scale systems. In this context, it would be interesting to see 
how modern machine learning approaches can help tackle these problems. It is noted that some recent works 
have employed many advanced machine learning techniques, like the transfer  learning53, convolutional neural 
 networks54,55 and recurrent neural  networks56, to achieve high accurate learning for solving quantum many-body 
Hamiltonians. On the other hand, the concepts underlie the modern physics, such as symmetry, locality, entan-
glement and renormalization  group17,57, have also be used to understand the representing and learning power 
of the neural networks. We hope that the combination of these two directions can finally make the machine 
learning method a regular strategy for exploring the physics of quantum matters, especially the QSL physics.
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