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Abstract: Nearly a century has passed since Otto Warburg first observed high rates of 

aerobic glycolysis in a variety of tumor cell types and suggested that this phenomenon might 

be due to an impaired mitochondrial respiratory capacity in these cells. Subsequently, much 

has been written about the role of mitochondria in the initiation and/or progression of various 

forms of cancer, and the possibility of exploiting differences in mitochondrial structure and 

function between normal and malignant cells as targets for cancer chemotherapy. A number 

of mitochondria-targeted compounds have shown efficacy in selective cancer cell killing in 

pre-clinical and early clinical testing, including those that induce mitochondria permeability 

transition and apoptosis, metabolic inhibitors, and ROS regulators. To date, however, none 

has exhibited the standards for high selectivity and efficacy and low toxicity necessary to 

progress beyond phase III clinical trials and be used as a viable, single modality treatment 

option for human cancers. This review explores alternative treatment strategies that have 

been shown to enhance the efficacy and selectivity of mitochondria-targeted anticancer 

agents in vitro and in vivo, and may yet fulfill the clinical promise of exploiting the 

mitochondrion as a target for cancer chemotherapy. 
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1. Introduction 

Despite enormous investments in the areas of basic research and medical science during the past  

few decades, cancer remains a leading health threat worldwide. Today in the United States alone, it is 

estimated that one in four adult men and one in five adult women are at risk of dying from cancer [1].  

A resurgence of interest in the study of mitochondria has led to the discovery of several notable 

differences in the structure and function of this organelle between normal and cancer cells, and various 

attempts have been made to exploit these differences as novel and site specific targets for chemotherapy. 

Although a number of mitochondria-targeted compounds have shown some efficacy in selective cancer 

cell killing in pre-clinical and early clinical testing, the success of mitochondria-targeted therapeutic 

agents as a single modality treatment option for human cancers has been quite limited. This article 

presents an overview of mitochondria structure and function, especially as it relates to those differences 

found between normal and cancer cells, and highlights the progress made in exploiting this organelle as 

a target for chemotherapy. In addition, it summarizes three alternative treatment strategies that enhance 

the efficacy and selectivity of mitochondria-targeted anticancer agents in vitro and in vivo and offer 

the promise of therapeutic benefit. These include: mitochondria-targeted drug delivery systems; 

photodynamic therapy; and combination chemotherapy. 

2. Mitochondria Structure and Function 

In living cells, mitochondria are dynamic organelles comprising a network of long, filamentous 

structures that can be seen extending, contracting, fragmenting and fusing with one another as they move 

in three dimensions throughout the cytoplasm [2,3]. In electron micrographs of fixed tissue specimens, 

mitochondria appear as oval shaped particles similar in size to the bacterium Escherichia coli  

(1–2 microns long × 0.5–1.0 microns wide) and bound by two membranes. The outer membrane encloses 

the entire contents of the organelle. The inner membrane, which folds inward to form cristae, encloses 

the inner space, or matrix. Interestingly, the surface area of the inner mitochondrial membrane correlates 

with the degree of metabolic activity of the cell, and can vary considerably from cell type to cell type, 

or within a given cell depending upon its functional state. Mitochondria contain the enzymes and 

cofactors involved in a number of important metabolic reactions and pathways, including the 

tricarboxylic acid (TCA) cycle, oxidative phosphorylation, fatty acid degradation, the urea cycle,  

and gluconeogenesis. In mammalian cells, the matrix also typically contains up to 10,000 copies of  

a 16.6 kb closed circular double helical molecule of mitochondrial DNA (mtDNA), which is compacted 

in vivo to form a nucleoprotein complex, or nucleoid [4]. Although representing less than 1% of the total 

cellular DNA, mtDNA encodes two rRNAs, twenty-two tRNAs and thirteen highly hydrophobic 

polypeptide subunit components of four different respiratory enzyme Complexes (I, III, IV and V) that 

are localized to the inner mitochondrial membrane. 

Mitochondria are considered the “powerhouse” of eukaryotic cells because of their central role in the 

process of aerobic metabolism. In carbohydrate metabolism, this begins when pyruvate, the end product 

of glycolysis, is transported from the cytosol into the mitochondrial matrix to undergo oxidative 

decarboxylation via the pyruvate dehydrogenase complex. In lipid metabolism, this begins when fatty 

acids are transported into the mitochondrial matrix to undergo sequential rounds of oxidative 
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decarboxylation via the β-oxidation pathway. In either case, the resultant metabolic product is acetyl 

coA, which is further oxidized in the mitochondrial matrix via the TCA cycle. The net metabolic yield 

of the TCA cycle includes two molecules of CO2, one molecule of GTP (the energetic equivalent of 

ATP), three molecules of reduced nicotinamide adenine dinucleotide (NADH), and one molecule of 

reduced flavin adenine dinucleotide (FADH2). NADH and FADH2 go on to serve as respiratory 

substrates for oxidative phosphorylation, which couples the oxidation of these high-energy electron 

donors to the synthesis of ATP. In this process, electrons are transferred from NADH and FADH2 to 

oxygen via four multi-subunit electron transfer complexes located on the inner mitochondrial membrane. 

Complexes I, III and IV of the mitochondrial electron transfer chain assemble into functional 

supramolecular complexes, called respirasomes [5]. These three respiratory complexes also serve as 

proton pumps at which the energy derived from the transfer of electrons down the electron transport 

chain (ETC) is coupled to the translocation of protons from the matrix space outward to the space 

between the inner and outer mitochondrial membranes (i.e., inter-membrane space). Under normal 

physiological conditions, the inner mitochondrial membrane is relatively impermeable to the backflow 

of protons and an electrochemical gradient is established across the membrane. The energy stored in this 

proton gradient, the proton-motive force, is then used to drive the synthesis of ATP from ADP and  

Pi via the inner membrane bound enzyme, mitochondrial ATP sythetase (Complex V). Oxidative 

phosphorylation supplies the vast majority of ATP produced by a cell under aerobic conditions. 

Mitochondria are the main intracellular source of reactive oxygen species (ROS) in most tissues.  

It has been estimated that under physiological conditions, 1%–2% of the molecular oxygen consumed is 

converted to ROS molecules as a byproduct of oxidative phosphorylation [6]. ROS production can occur 

when a small fraction of reducing equivalents from Complex I or Complex III of the mitochondrial 

electron transport chain “leak” electrons directly to molecular oxygen, generating the superoxide anion 

O2
−. Mitochondrial superoxide dismutase converts O2

− to H2O2, which can then acquire an additional 

electron from a reduced transition metal to generate the highly reactive hydroxyl radical ˙OH.  

There is increasing evidence that Complex II can also be a major regulator of mitochondrial ROS 

production under physiological and pathophysiological circumstances [7,8]. ROS play an important  

role as signaling molecules that mediate changes in cell proliferation, differentiation, and gene 

transcription [9,10]. Uncontrolled ROS activity, or oxidative stress, can damage intracellular protein and 

lipid components, and affect the integrity of biological membranes. High levels of ROS can also damage 

both nuclear and mtDNA. The mitochondrial genome is especially susceptible to ROS damage due to 

its proximity to the site of ROS production (i.e., the ETC), as well as the fact that it has no introns or 

protective histones and a limited capacity for DNA repair. Thus, oxidative stress can impair 

mitochondrial function directly at the level of mitochondrial enzyme complexes, or as a consequence of 

its genotoxicity to mtDNA. Severe or prolonged oxidative stress can lead to irreversible oxidative 

damage and cell death [11]. 

Mitochondria also play a key role in mediating intrinsic apoptosis, an energy dependent cell death 

pathway regulated by numerous positive and negative signaling factors that exist in dynamic 

equilibrium [12]. Distally, intrinsic apoptosis can be induced by a variety of physiological or 

pathological cell stressors, such as toxins, viral infections, hypoxia, hyperthermia, free radicals, and 

DNA damage. Proximately, the intrinsic pathway is induced by the loss of anti-apoptotic proteins,  

(e.g., Bcl-2 and Bcl-x) or by activation of pro-apoptotic proteins (e.g., Bax and Bak). Intrinsic apoptosis 
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involves mitochondrial outer membrane permeabilization (MOMP), the critical, irreversible step in the 

pathway that commits the cell to ultimate destruction. MOMP is followed by the release of cytochrome c 

and other apoptogenic proteins from the mitochondrial inter-membrane space. Once released into  

the cytosol, these proteins activate a caspase cascade, which leads to the proteolytic cleavage of 

intracellular proteins, DNA degradation, formation of apoptotic bodies, and other morphological 

changes that are considered hallmarks of apoptotic cell death. Both the intrinsic apoptotic pathway and 

the extrinsic apoptotic pathway, which involves cell membrane receptor-mediated interactions, play 

significant roles in normal development, tissue remodeling, aging, wound healing, immune response, 

and maintaining homeostasis in the adult human body. 

3. Some Notable Differences between Mitochondria of Cancer Cells and Normal Cells 

Nearly a century has passed since Otto Warburg first observed high rates of aerobic glycolysis in a 

variety of tumor cell types and suggested that this phenomenon might be due to an impaired respiratory 

capacity in these cells [13]. Warburg’s observations prompted many scientists to focus their investigative 

efforts on the mitochondria of cancer cells in an attempt to understand the underlying basis for the 

“Warburg Effect”, i.e., enhanced glucose uptake, high rate of glycolysis in the presence of sufficient 

oxygen, and an increase in lactic acid as a byproduct of the glycolytic pathway. It is now known that at 

least some cancer cells possess a normal capacity for oxidative phosphorylation and can, under certain 

conditions, generate a majority of their ATP from this process [14–21]. In addition, recent evidence 

suggests that the enhanced glucose uptake and metabolic shift toward aerobic glycolysis in cancer cells 

is more likely due to their greater need for glucose metabolites, which serve as precursors for the 

biosynthesis of nucleic acids, amino acids, and lipids in these rapidly dividing cell populations [22], 

rather than to any specific impairment in respiratory function. In the years since Warburg’s initial 

observations, however, a number of notable differences between the mitochondria of normal and 

transformed cells have been identified [23–28]. These include differences in the size, number and shape 

of the organelle, the rates of protein synthesis and organelle turnover, and the polypeptide and lipid 

profiles of the inner mitochondrial membrane. Metabolic aberrations specifically associated with 

mitochondrial bioenergetic function in cancer cells include differences with regard to preference for 

respiratory substrates, rates of electron and anion transport, calcium uptake and retention, and decreased 

activities of certain enzymes integral to the process of oxidative phosphorylation, such as cytochrome c 

oxidase [29,30], adenine nucleotide translocase [31–33], and mitochondrial ATPase [34]. The mitochondrial 

membrane potential has also been shown to be significantly higher in carcinoma cells than in normal 

epithelial cells [35–37]. 

Alterations in mitochondrial genome sequence have also been linked to a variety of cancers [38–40]. 

Some are germ-line mutations. Among these, a human polymorphic variant in the NADH dehydrogenase 

3 (ND3) gene at nt 10,398 (nt G10398A) that alters the structure of Complex I in the mitochondrial ETC 

was associated with an increased risk for invasive breast cancer in African–American women [38,41], 

the A12308G mutation in tRNALeu(CUN) was associated with increased risk of both renal and prostate 

cancers [42], and a variant in a non-coding region of mtDNA (16189T>C) was associated with increased 

susceptibility to endometrial cancer [43]. Somatic mutations in the mitochondrial genome are more 

common and have been observed in a wide variety of cancers, including ovarian, uterine, liver, lung, 



Int. J. Mol. Sci. 2015, 16 17398 

 

 

colon, gastric, brain, bladder, prostate, and breast cancer, melanoma and leukemia [26]. The displacement 

loop (or D-loop) region, a triple stranded non-coding sequence of mtDNA (np 16024-516) that houses 

cis regulatory elements required for replication and transcription of the molecule, has been shown to  

be a mutational “hot spot” in human cancer. However, mutations in genes encoding the polypeptide 

subunits of enzymes involved in oxidative phosphorylation also occur and can be of functional 

significance. Some of these are thought to be adaptive mutations that confer a selective advantage under 

the harsh growth conditions of the tumor microenvironment [40]. Others have been shown to be  

involved directly in tumor initiation and/or progression. For example, introduction of the pathogenic 

mtDNA ATP6 T8993G mutation into the PC3 prostate cancer cell line through cybrid transfer produced 

tumors in nude mice that were 7-fold greater in size than those produced by wild-type cybrids [39]. 

Additionally, mutations in the mtDNA gene encoding NADH dehydrogenase subunit 6 (ND6) produced 

a deficiency in respiratory Complex I activity that was associated with an enhanced metastatic potential 

of tumor cells [44]. 

In general, tumor cells also exhibit higher levels of ROS than normal cells [9], and oxidative stress 

has been suggested to underlie the development and/or maintenance of the malignant phenotype.  

As noted previously, oxidative stress can cause somatic mutations in mtDNA. Evidence suggests  

that the converse is also true, i.e., certain mutations in mtDNA, especially those in genes encoding ETC 

enzyme subunits, can cause ROS overproduction. Oncogene activation is also known to enhance the 

production of mitochondrial ROS, which has been implicated as a mechanism for K-RAS and  

MYC-mediated cell transformation [45,46]. In tumor cells, oxidative stress activates signaling pathways 

that promote cell growth and metastasis. One such pathway involves hypoxia-inducible factor (HIF), 

which regulates the transcription of a large number of genes that facilitate cell survival at low oxygen 

pressures [47]. Under the hypoxic conditions of tumor cell growth, mitochondria act as O2 sensors and 

further enhance ROS generation as an adaptive response [48]. ROS overproduction stabilizes the HIF-α 

subunit, facilitating its dimerization with the HIF-β subunit. This activates a number of different genes, 

including those mediating a metabolic shift toward glycolysis, angiogenesis, and metastasis. ROS have 

also been shown to activate MAP kinase and phosphoinositide 3-kinase pathways, which are important 

for cell proliferation and survival [9], and to up-regulate the expression of matrix metalloproteinases 

(MMPs) and Snail proteins, which are involved in epithelial-to-mesenchymal transition and metastasis, 

respectively [49]. 

Inhibition of the intrinsic apoptotic pathway is also observed in a number of hematopoietic malignancies 

and solid tumors, and has been implicated in cancer initiation, progression and metastasis [50,51]. This 

is thought to occur as a result of dysregulation of mitochondrial outer membrane proteins of the Bcl-2 

family, and may involve overexpression or enhanced function of anti-apoptotic proteins, under-expression 

or loss of function of pro-apoptotic proteins, or a combination of both. For example, malignant chronic 

lymphocytic leukemia (CLL) cells express high levels of anti-apoptotic Bcl-2 and low levels of  

pro-apoptotic proteins such as Bax [52]. Interestingly, the progression of CLL is thought to be due to 

reduced apoptosis rather than increased proliferation in vivo [53]. Overexpression of Bcl-2 has also been 

shown to inhibit apoptosis in prostate [54], lung, colorectal and gastric cancers [55,56], neuroblastoma, 

glioblastoma, and breast carcinoma cells [57]. An imbalance in the expression of the anti- and  

pro-apoptotic Bcl-2 family of proteins is thought to stabilize the outer mitochondrial membrane, prevent 

MOMP and the release of cytochrome c, and ultimately, inhibit programmed cell death. This failure of 
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normal cell turnover contributes to cell accumulation, transformation, and survival under extreme 

conditions, such as the hypoxic or acidic environments common in tumors. Interestingly, the inhibition 

of apoptosis that results from dysregulation of Bcl-2 protein expression has also been shown to underlie 

the development of drug resistance in cancer cells. For example, the overexpression Bcl-XL protects 

murine pro-lymphocytic cells from a wide variety of apoptotic stimuli and confers a multidrug resistance 

phenotype [58], and drug-induced apoptosis in B-CLL cells cultured in vitro is inversely related to  

Bcl-2/Bax ratios [52]. 

4. Mitochondria-Targeted Drugs that Show Selective Cancer Cell Killing 

During the past few decades, scientists have been exploring the possibility that certain structural and 

functional differences that exist between the mitochondria of normal and transformed cells might serve 

as targets for selective cell killing by novel and site-specific anticancer agents. Recently, the term “mitocan” 

(an acronym for mitochondria and cancer) has been proposed to classify mitochondria-targeted 

anticancer agents, especially those that induce mitochondrial destabilization [59]. A number of these 

compounds have shown efficacy in selective cancer cell killing in pre-clinical and early clinical testing 

(see Table 1 for a representative sampling). 

Table 1. Representative mitochondria-targeted compounds that exhibit selective cancer cell killing. 

Class Compound Mode of Action Demonstrated Efficacy References 

OxPhos 
Inhibitors 

Rhodamine 123 ATP Synthase inhibitor Preclinical (in vitro, in vivo) [60–62] 

Dequalinium 
Chloride 

Complex I inhibitor Preclinical (in vitro, in vivo) [63,64] 

AA-1 ATP Synthase inhibitor Preclinical (in vitro, in vivo) [65] 

MKT-077 
General inhibition of  

ETC enzymes 

Preclinical (in vitro, in vivo) 
[66–69] 

Clinical, Phase I 

Metformin Complex I inhibitor 
Preclinical (in vitro, in vivo) 

[70–89] 
Clinical, Phase I 

ROS 
Regulators 

Elesclomol Enhanced ROS production 
Preclinical (in vitro, in vivo) 

[90–92] 
Clinical, Phase I 

Bezielle Enhanced ROS production 
Preclinical (in vitro, in vivo) 

[93–99] 
Clinical, Phase I 

Intrinsic 
Apoptosis 
Inducers 

ABT-737 BH3 mimetic Preclinical (in vitro, in vivo) [100–102] 

ABT-263 
(Navitoclax) 

BH3 mimetic 
Preclinical (in vitro, in vivo) 

[103–105] 
Clinical, Phase I/II 

Gossypol BH3 mimetic Preclinical (in vitro, in vivo) [106,107] 

GX15-070 
(Obatoclax) 

BH3 mimetic Preclinical (in vitro, in vivo) [108,109] 

HA14-1 BH3 mimetic Preclinical (in vitro, in vivo) [110,111] 

Among the earliest known mitochondria-targeted anticancer agents are the delocalized lipophilic 

cations (DLCs). Due to their lipophilicity and positive charge, these compounds selectively accumulate 

in the mitochondria of carcinoma cells in response to a higher, negative inside membrane potential  

(e.g., approximately 160 mV in carcinoma vs. 100 mV in control epithelial cells) [36,37]. Several DLCs 
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have exhibited efficacy in carcinoma cell killing in vitro and in vivo [60–69,112,113], including the  

class prototype Rhodamine 123 (Rh123), dequalinium chloride (DECA), and the thiopyrylium AA-1. 

Although all DLCs are taken up into mitochondria by a common mechanism and display dose dependent 

mitochondrial toxicity, their specific mechanism of action can be quite varied. For example, Rh123 and 

AA-1 inhibit mitochondrial ATP synthesis at the level of F0F1-ATPase activity [62,65,113], while 

DECA and certain DLC thiacarbocyanines interfere with NADH-ubiquinone reductase (ETC Complex 

I) activity [64,112]. Another DLC, the water-soluble rhodacyanine dye analogue MKT-077, was shown 

to cause a more generalized deleterious effect on respiratory function through membrane perturbation 

and consequent inhibition of membrane-bound enzymes [67]. MKT-077 was the first DLC with  

a favorable pharmacological and toxicological profile and showed great promise as a selective  

anticancer agent in preclinical studies [66]. Phase I trials were undertaken to evaluate the safety and 

pharmacokinetics of MKT-077, but were halted due to recurrent but reversible renal toxicity in about 

half of the patients treated [68]. It was determined, however, that it is feasible to target mitochondria 

with rhodacyanine analogues if drugs with higher therapeutic indices could be developed [69]. 

More recently, evidence suggests that the widely prescribed anti-diabetic biguanide derivative, 

metformin, may also be effective in the prevention and treatment of human cancer via inhibition of 

mitochondrial respiratory function. Retrospective analyses show an association between the use of 

metformin and diminished cancer risk, progression and mortality in diabetic patients [70–74]. In vitro 

laboratory studies demonstrate that metformin has a direct and selective inhibitory effect on breast, 

colon, ovary, pancreas, lung, and prostate cancer cell lines [75–79]. In addition, at doses that had no 

effect on the viability of non-cancer stem cells, metformin inhibited transformation and selectively killed 

cancer stem cells resistant to chemotherapeutic agents [80]. In vivo, metformin inhibits the growth of 

spontaneous and carcinogen-induced tumors, and impacts tumor growth in mouse xenograft and 

syngeneic models [81–85]. Furthermore, prospective studies investigating the therapeutic efficacy of 

metformin use in non-diabetic cancer patients suggest its promise for the chemoprevention of colorectal 

cancer and treatment of early breast cancer [86–88]. It has been postulated that the therapeutic effects of 

metformin may be associated with both direct (insulin-independent) and indirect (insulin-dependent) 

actions of the drug [74]. However, results of a recent study showed that the direct inhibition of cancer 

cell mitochondrial Complex I by metformin was required to decrease cell proliferation in vitro and 

tumorigenesis in vivo [89]. Interestingly, it has been shown that cancer cell lines harboring mutations in 

mtDNA encoded Complex I subunits or having impaired glucose utilization exhibit enhanced biguanide 

sensitivity when grown under the low glucose conditions seen in the tumor microenvironment [114]. 

Metformin is a very safe and well-tolerated drug that is now prescribed to almost 120 million people in 

the world for the treatment of type II diabetes. Clinical trials using metformin alone and in combination 

with conventional anticancer agents in non-diabetic patients are ongoing and should clarify its potential 

use in cancer therapy. 

Mitochondria-targeted ROS regulators have also shown efficacy as anticancer agents. Although the 

generally higher endogenous levels of ROS in tumor versus normal cells contribute to the development 

and/or maintenance of the malignant phenotype, they also render cancer cells more vulnerable to 

irreversible oxidative damage and consequent cell death. Therefore, pro-oxidant pharmacological agents 

that either enhance ROS production or inhibit ROS scavenging activity have the potential to increase 

ROS level beyond the threshold of lethality in cancer cells while leaving normal cells viable [115].  
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One such compound that targets mitochondria is elesclomol (STA-4783), an investigational, first-in-class 

small molecule that has been shown to enhance ROS production and induce a transcriptional gene profile 

characteristic of an oxidative stress response in vitro. Interestingly, the antioxidant N-acetylcysteine 

blocks elesclomol induced gene expression and apoptosis, indicating that ROS generation is the  

primary mechanism of cytotoxicity of the drug [115]. Comparative growth assays using the yeast model  

S. cerevisiae demonstrated that elesclomol interacts with the mitochondrial ETC to generate high levels 

of ROS and induce apoptosis [90]. In the same study, elesclomol was shown to interact similarly with 

the ETC in human melanoma cells. Elesclomol was granted fast-track designation by the FDA in 2006 

for the treatment of metastatic melanoma. A randomized, double-blind, controlled SYMMETRY study 

evaluating the combination of paclitaxel and elesclomol in patients with advanced melanoma was  

stopped after all patients were enrolled because the addition of elesclomol to paclitaxel did not  

significantly improve progression free survival in unselected patients [91]. Studies are ongoing to 

determine the effect of elesclomol treatment alone and in combination with paclitaxel in patients with 

acute myeloid leukemia, and ovarian cancer [92]. 

Bezielle (BZL101), an aqueous extract from the herb Scutellaria barbata, is another ROS regulator 

that displays selective cytotoxicity against a variety of cancers in vitro and in vivo [93–95]. Early studies 

showed that in tumor cells, but not in non-transformed cells, Bezielle induces ROS production and 

causes severe DNA damage followed by hyperactivation of PARP-1, depletion of the cellular ATP and 

NAD, inhibition of glycolysis, and cell death [96]. It was later shown that treatment of tumor cells with 

Bezielle induces progressively higher levels of both mitochondrial superoxide and peroxide type ROS, 

and that Bezielle inhibits oxidative phosphorylation [97]. In addition, tumor cells lacking functional 

mitochondria did not generate mitochondrial superoxide and were protected from cell death in the 

presence of Bezielle, supporting the hypothesis that mitochondria are the primary target of the  

compound [97]. Bezielle has shown promising efficacy and excellent safety in the early phase clinical 

trials for advanced breast cancer [98,99]. 

Mitochondria-targeted compounds that induce outer membrane permeabilization and intrinsic 

apoptosis in cancer cells also show potential as anti-cancer agents. As previously discussed, BCL-2 

family proteins, which share one or more of the four BCL-2 homology domains (BH1–BH4), regulate 

the intrinsic apoptotic pathway. Anti-apoptotic members of the family (such as BCL-2, BCL-XL,  

BCL-W and MCL-1), which are overexpressed in many cancers, function by sequestering the  

pro-apoptotic executioners of the MOMP (such as BAX and BAK). Inhibition of programmed cell death 

is antagonized by BH3-only proteins, a BCL-2 protein subfamily comprised of only the α-helical BH3 

domain. These small proteins interact with anti-apoptotic molecules in their BH3-binding groove, 

causing the release and activation of BAX/BAK and inducing apoptosis [116]. Certain small molecules 

mimic the effect of BH3-only proteins. Among these BH3 mimetics, the synthetically derived ABT-737 

has been shown to induce BAX/BAK-dependent apoptosis in a variety of cancer cell lines in vitro, and 

to display antitumor effects as a single agent in vivo [100–102]. Navitoclax (ABT-263), a potent, orally 

bioavailable analog of ABT-737 with similar biological activity, was shown to elicit complete tumor 

regression in small cell lung cancer (SCLC) and acute lymphoblastic leukemia xenograft models [103]. 

A phase I clinical study investigating the single-agent activity of navitoclax in the treatment of recurrent 

SCLC yielded encouraging preliminary safety and efficacy data [104]. However, in a subsequent phase 

II study navitoclax treatment induced only a low positive response and was limited by a dose-dependent 
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and clinically significant thrombocytopenia [105]. Since both ABT-737 and navitoclax have been shown 

to potentiate the efficacy of standard cytotoxic agents against a variety of cancers [103,117–121], 

combinatorial regimens may ultimately prove a more promising therapeutic strategy for these 

compounds. Pre-clinical and clinical studies have shown that several other BH3 mimetics, such as the 

natural polyphenolic compound gossypol, and the synthetic compounds GX15-070 (obatoclax) and 

HA14-1 (ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate), also 

demonstrate anti-cancer activity, supporting the therapeutic potential of this class of mitochondria-targeted 

agents in the treatment of human cancer [106–111]. 

5. Alternative Treatment Strategies that Enhance the Efficacy and Selectivity of  

Mitochondria-Targeted Anticancer Agents 

The fact that several mitochondria-targeted compounds have exhibited potent cancer cell killing in 

pre-clinical and early clinical studies is encouraging, and further research and testing of these compounds 

as viable, single modality treatment options for human cancers is warranted. However, the current 

limitations of this approach suggest the need also to explore the use of alternative treatment strategies in 

an effort to improve the efficacy and selectivity of these anticancer agents. Presented below (and 

summarized in Table 2) are three treatment strategies that have been shown in vitro and in vivo to 

enhance the selective cancer cell killing of several compounds known to have direct or indirect effects 

on mitochondrial function. It is proposed that by expanding the application of these strategies to include 

additional mitochondria-targeted compounds already known to exhibit significant preclinical and 

clinical anticancer activity as single agents (e.g., oxidative phosphorylation inhibitors, ROS regulators, 

and apoptosis inducers), the therapeutic efficacy of these compounds might also be improved. 

Table 2. Treatment strategies that have been shown to enhance the efficacy and selectivity 

of anticancer agents. 

Strategy Carrier/Class Anticancer Agent References 

Mitochondria-Targeted 

Drug Delivery Systems 

TPP+-conjugated molecules 
Vitamin E succinate [122,123] 

Coenzyme Q [124] 

DQAsomes 

Paclitaxel [125–127] 

Curcumin [128] 

Resveratrol [129] 

STPP+ liposomes 
Paclitaxel [130,131] 

Doxorubicin [132] 

Mito-targeted nanontubes Platinum (IV) [133] 

Photodynamic Therapy 

Cationic photosensitizers 

EDKC [134] 

Rh123 [135] 

MKT-077 [136] 

Non-cationic photosensitizers 
Pba [137–143] 

BBr2 [144] 

Combination 

Chemotherapy 

Inhibitors of glycolysis and oxidative 

phosphorylation 
2-DG plus metformin [145,146] 

Inhibitors of two or more mitochondrial target sites AZT plus MKT-077 [147]   
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5.1. Mitochondria-Targeted Drug Delivery Systems 

Over the past several decades, attempts have been made to develop mitochondriotropic drug delivery 

systems for a variety of therapeutic purposes. One early strategy employed mitochondrial protein-import 

machinery to deliver macromolecules to mitochondria. For example, a mitochondrial signal sequence 

was used to direct green fluorescent protein to mitochondria to allow the visualization of mitochondria 

within living cells [148]. Another strategy employed conjugation with well-established mitochondriotropic 

cations, such as triphenylphosphonium (TPP+) to successfully target low-molecular weight molecules  

to mammalian mitochondria. These molecules rapidly permeate lipid bilayers and, in response to  

the plasma and mitochondrial membrane potentials (negative inside), accumulate several hundredfold  

inside the organelle. One study demonstrated that significant doses of the TPP-conjugated  

antioxidants coenzyme Q or vitamin E could be fed safely to mice over long periods, and achieve  

steady-state distributions within the heart, brain, liver, and muscle [149]. These results showed that 

mitochondria-targeted bioactive molecules can be administered orally, leading to their accumulation at 

potentially therapeutic concentrations in those tissues most affected by mitochondrial dysfunction. More 

recently, mitochondria-targeted, TPP-conjugated vitamin E succinate has been shown to act preferentially 

on cancer cells, suppressing mitochondrial function and mtDNA transcription and blocking proliferation 

at low concentrations [122], and inducing apoptosis at higher concentrations [123]. In another study, 

Mito-Q (coenzyme-Q conjugated to an alkyl triphenylphosphonium cation) and Mito-CP (a 5-membered 

nitroxide, CP, conjugated to a TPP cation) potently inhibited the proliferation of breast cancer cells 

(MCF-7 and MDA-MB-231) [124] and human colon cancer cells (HCT-116) [45], further demonstrating 

the anticancer potential of TPP-conjugated molecules. 

A quantitative structure activity relationship (QSAR) model was developed to facilitate guided 

synthesis and selection of optimal mitochondriotropic structures [150]. In theory, any compound that 

acts on mitochondria can be chemically modified to become mitochondriotropic. However, there are 

limitations to this strategy. First, not all potentially therapeutic compounds with molecular targets at or 

inside mammalian mitochondria find their way to mitochondria once inside a cell. This is because the 

intracellular distribution of a low-molecular weight compound is strongly affected not only by its own 

physico-chemical properties, but also by the cytoskeletal network, dissolved macromolecules, and 

dispersed organelles. Furthermore, any chemical modification that renders a compound mitochondriotropic 

may adversely affect its inherent pharmacological activity. In contrast, pharmaceutical nanocarriers offer 

an alternative approach to improve the intracellular disposition of potentially therapeutic compounds. 

The benefit of this strategy is that all chemistry can be carried out on the components of the nanocarrier, 

leaving the pharmacological profile of the compound unaltered [151]. Furthermore, nanocarrier delivery 

can overcome several limitations for the therapeutic use of free compounds, such as lack of water 

solubility, non-specific biodistribution and targeting, and low therapeutic indices. 

The idea that nanocarriers could serve as effective mitochondria-targeted drug delivery systems arose 

in the late 1990s with the accidental discovery of the vesicle-forming capacity of dequalinium chloride, 

a cationic bolaamphiphile comprising two quinaldinium rings linked by ten methylene groups [152]. The 

compound was found to self-assemble into liposome-like vesicles, called DQAsomes (DeQAlinium-based 

lipoSOMES), and to have a strong affinity for mitochondria [153,154]. Follow-up studies confirmed the 

suitability of DQAsomes for the delivery of bioactive compounds to mitochondria, and DQAsomes are 
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now considered the prototype for all vesicular mitochondria-specific nanocarriers [155]. In vitro and  

in vivo studies have shown that DQAsomal preparations of the anticancer agent paclitaxel increase the 

solubility of the drug by a factor of 3000, and enhance its efficiency in triggering apoptosis by direct 

action on mitochondria [125–127]. More recently, DQAsomes have been used for the pulmonary 

delivery of curcumin [128], a potent antioxidant with anti-inflammatory and potential anticancer 

properties. Due to its water-insolubility, however, curcumin’s bioavailability following oral administration 

is extremely low. Curcumin encapsulated into DQAsomes displays enhanced antioxidant activity in 

comparison to the free compound. 

Interestingly, a mitochondria-targeting drug delivery system in which dequalinium chloride has been 

covalently linked to the hydrophilic distal end of polyethylene glycol-distearoylphosphatidylethanolamine 

(DQA-PEG(2000)-DSPE) has also been prepared [129]. These nanocarriers were used to deliver 

resveratrol to mitochondria in human lung adenocarcinoma A549 cells, resistant A549/cDDP cells, 

A549 and A549/cDDP tumor spheroids as well as the xenografted resistant A549/cDDP cancers in nude 

mice. Results demonstrated that the mitochondrial targeting of resveratrol induced apoptosis in both  

non-resistant and resistant cancer cells by dissipating the mitochondria membrane potential, releasing 

cytochrome c and increasing the activities of caspase 9 and 3 [129]. DQAsomes have also been used  

to deliver an artificial mini-mitochondrial genome construct encoding Green Fluorescence Protein  

(GFP) to the mitochondrial compartment of a mouse macrophage cell line resulting in the expression  

of GFP mRNA and protein [156]. Though the transfection efficiency for GFP was very low this work 

constitutes the very first reported successful transgene expression inside mitochondria within living 

mammalian cells. 

Conventional liposomes are another type of pharmaceutical nanocarrier that can also be rendered 

mitochondria-specific via the surface attachment of known mitochondriotropic residues, such as the 

cation TPP [157–160]. Preparation of liposomes in the presence of hydrophilic molecules, which have 

been artificially hydrophobized via linkage to fatty acid or phospholipid derivatives, results in the 

covalent “anchoring” of the hydrophilic moiety to the liposomal surface [161,162]. In 2005, TPP cations 

were conjugated to stearyl residues (yielding stearyl-TPP, or STPP), and STPP-bearing liposomes were 

first shown to exhibit in vitro mitochondriotropism [157]. The same group later demonstrated that 

surface modification of nanocarriers with mitochondriotropic TPP cations facilitates the efficient 

subcellular delivery of a model compound, ceramide, to mitochondria of mammalian cells and improves 

its cytotoxic and pro-apoptotic activities in vitro and in vivo [158]. More recently, STPP liposomes  

have been used as nanocarriers to enhance the efficacy of mitochondria-targeted anticancer agents.  

For example, paclitaxel loaded STPP liposomes were shown to co-localize with mitochondria and to 

significantly increase cytotoxicity by paclitaxel in a drug resistant ovarian carcinoma cell line [130].  

The improvement in cytotoxicity was found to result from the increased accumulation of paclitaxel in 

mitochondria, as well as from the specific toxicity of STPP towards the resistant cell line. Mechanistic 

studies revealed that the cytotoxicity of STPP was associated with a decrease in mitochondrial membrane 

potential and other hallmarks related to caspase-independent cell death. Interestingly, mitochondriotropic 

STPP liposomes can be made to exhibit even greater cancer cell specificity with the addition of another 

ligand, folic acid. Cancer cell-specific targeting via surface modification with these dual ligands has 

been shown to enhance the cellular and mitochondrial delivery of doxorubicin in KB cells, and produce 

a synergistic effect on ROS production and cytotoxicity in this tumor cell line [132]. 
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The preparation of TPP-surface modified liposomes utilizing an alternative hydrophobic anchor for 

TPP cations has also been described. For example, a d-alpha-tocopheryl polyethylene glycol 1000 

succinate-triphenylphosphine conjugate (TPGS1000-TPP) was synthesized as the mitochondrial 

targeting molecule and incorporated into the membranes of paclitaxel-loaded liposomes [131].  

The paclitaxel loaded TPGS1000-TPP conjugated liposomes were shown to selectively accumulate in 

the mitochondria. This targeted delivery of paclitaxel caused the release of cytochrome c, initiated a 

cascade of caspase 9 and 3 reactions, and enhanced apoptosis by activating pro-apoptotic pathways  

and inhibiting anti-apoptotic pathways. In comparison with taxol and regular paclitaxel liposomes,  

the mitochondria targeted paclitaxel liposomes exhibited the strongest anticancer efficacy against drug 

resistant lung cancer cells in vitro and in a nude mouse xenograft model in vivo, suggesting a potential 

therapeutic treatment for drug-resistant lung cancer. 

A number of other TPP+ modified nanocarriers have shown promise as effective mitochondrial 

specific drug delivery systems. One novel mitochondriotropic nanocarrier based on an oligolysine 

scaffold with the addition of two triphenylphosphonium cations per oligomer, and another based on a  

5 poly(amidoamine) dendrimer conjugated with TPP+, were shown to be efficiently taken up by cells 

and display a high degree of mitochondrial specificity [163,164]. A TPP-conjugated, mitochondria-targeted 

nano delivery system for coenzyme Q10 (CoQ10) has also been shown to reach mitochondria and  

to deliver CoQ10 in adequate quantities [165]. The multifunctional nanocarrier is composed of 

poly(ethylene glycol), polycaprolactone and triphenylphosphonium bromide and was synthesized  

using a combination of click chemistry with ring-opening polymerization followed by self-assembly  

into nanosized micelles. A potential disadvantage of this system, however, is the localization of  

the mitochondrial targeting moiety, which is seated between the two polymers, i.e., between the 

poly(ethylene glycol) and polycaprolactone units. In a different approach, TPP+ was linked to the PEG 

side of a PLGA-PEG-based block copolymer, thereby enhancing the availability of the targeting  

moiety for any potential interaction with mitochondrial membranes [166]. In a follow-up study, Zinc 

phtalocyanine (ZnPc) was encapsulated inside PLGA-b-PEG-TPP polymer nanoparticles. By targeting 

ZnPc to the mitochondria, singlet oxygen was locally produced inside the mitochondria to effectively 

initiate apoptosis [167]. Interestingly, TPP-conjugated poly(ethylene imine) hyperbranched polymer 

nanoassemblies were also shown to successfully deliver doxorubicin to the mitochondria of human 

prostate carcinomas cells and cause rapid and severe cytotoxicity within few hours of incubation, even 

at sub-micromolar incubation concentrations [168]. 

The mitochondrial cationic dye, rhodamine-110, has also been used for rendering carbon nanotubes 

(CNTs) mitochondriotropic. In one study, multi-walled carbon nanotubes (MWCNTs) were functionalized 

with either mitochondrial-targeting fluorescent rhodamine-110 (MWCNT-Rho) or non-targeting 

fluorescein (MWCNT-Fluo) as a control [133]. Results demonstrated that MWCNT-Rho co-localized 

well with mitochondria (ca. 80% co-localization) in contrast to MWCNT-Fluo, which showed poor 

association with mitochondria (ca. 21% co-localization). In addition, platinum (IV), a prodrug of  

cis-platin, displayed significantly enhanced cytotoxicity towards several cancer cell lines when incorporated 

into mitochondria-targeted carbon nanotubes in comparison to non-targeted formulations [133]. 

MWCNTs have also been functionalized with peptides having a mitochondria-targeted peptide sequence 

(MTS). The association of such MWCNT-MTS conjugates with mitochondria inside murine macrophages 

and HeLa cells has been confirmed by wide-field epifluorescence microscopy, confocal laser scanning 
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microscopy and transmission electron microscopy (TEM). The localization of the MTS-MWCNT 

conjugates with mitochondria was further confirmed by analyzing the isolated organelles using  

TEM [169]. The use of nanoparticles for the delivery of small molecule anticancer agents has thus shown 

past success and holds much promise for further development and therapeutic application. 

5.2. Photodynamic Therapy 

Photodynamic therapy (PDT) involves the use of a photoreactive drug, or photosensitizer, that is 

selectively taken up or retained by target cells or tissues. Upon administration of light of a specific 

wavelength, the photosensitizer becomes activated from a ground state to an excited state. As the 

photosensitizer returns to the ground state, the energy is transferred to molecular oxygen, thus generating 

ROS and inducing cellular toxicity in the particular areas of tissue that have been exposed to light [170]. 

There has been considerable interest in PDT as a treatment modality for a variety of cancers [170,171]. 

Photofrin, which was first used in PDT in 1993 for the prophylactic treatment of bladder cancer, is the 

most common photosensitizer in clinical use today. However, a number of other photosensitizers have 

been approved for clinical use or have undergone clinical testing to treat cancers of the head and neck, 

brain, lung, pancreas, intraperitoneal cavity, breast, prostate and skin. The selectivity of a photosensitizer 

and its site of action within a cell contribute to the efficacy of PDT. Evidence suggests that subcellular 

localization is more important than photochemical reactivity in terms of overall cell killing, and that 

mitochondrial localization represents a highly desirable property for the development of highly specific 

and efficient photosensitizers for photodynamic therapy applications [172]. 

Cationic photosensitizers are particularly promising as potential PDT agents. Like other DLCs,  

these compounds are concentrated by cells and into mitochondria in response to negative-inside 

transmembrane potentials, and are thus selectively accumulated in the mitochondria of carcinoma cells. 

In combination with localized photoirradiation, the cationic photosensitizer can be converted to a 

reactive and highly toxic species, thus enhancing its selectivity for and toxicity to carcinoma cells,  

and providing a means of highly specific tumor cell killing without injury to normal cells. Several 

cationic photosensitizers have shown promise for use in PDT. For example, selective photoxicity of 

carcinomas in vitro and in vivo has been observed for a series of triarylmethane derivatives [173]  

and the kryptocyanine EDKC [134]. Both Rh123 and the chalcogenapyrylium dye 8b have been 

evaluated as photosensitizers for the photochemotherapy of malignant gliomas [135,174]. In another study, 

photoactivation of the selective anticancer agent MKT-077 was shown to enhance its mitochondrial 

toxicity [136]. As expected, the mechanisms of mitochondrial toxicity exhibited by these compounds 

are varied, and range from specific inhibition of mitochondrial enzymes to non-specific perturbation of 

mitochondrial function due to singlet oxygen production. 

Non-cationic photosensitizers that target mitochondria have also shown promise for use in PDT. 

Pheophorbide a (Pba), is a chlorophyll breakdown product isolated from silkworm excreta and the 

Chinese medicinal herb, Scutellaria barbarta [137,175]. Because Pba absorbs light at longer wavelengths 

than the first-generation photosensitizer photofrin, tissue penetration is enhanced. Pba has been shown 

to accumulate in mitochondria and cause apoptosis in a variety of cancer cells, including leukemia, and 

uterine, breast, pancreatic, colon and hepatocellular carcinoma [137–143]. In vivo animal studies have 

supported the efficacy of Pba-PDT in preventing tumor cell growth. [139,143]. In addition, the tetra-aryl 
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brominated porphyrin and the corresponding diaryl derivative are also promising sensitizers with good 

photodynamic properties that have the ability to accumulate in mitochondria and induce cell death in 

human melanoma and colorectal adenocarcinoma in vitro and in vivo [144]. These results have positive 

implications for the use of mitochondria-targeted PDT compounds in cancer therapy. 

5.3. Combination Chemotherapy 

As noted previously, the two major pathways for cellular ATP production are glycolysis and 

mitochondrial oxidative phosphorylation. The high rate of aerobic glycolysis in cancer cells makes them 

particularly vulnerable to chemotherapeutic agents that inhibit glycolytic enzymes. For example,  

2-deoxy-D-glucose (2DG), 3-bromopyruvate (3-BrPA), and lonidamine, which inhibit the hexokinase 

(HK) catalyzed first step in glycolysis, each have demonstrated significant anticancer activity against  

a variety of cell types in vitro and in vivo [176–181]. Unfortunately, the therapeutic efficacy of these 

compounds as single agents appears to be quite limited. Perhaps this is due to the fact that many cancer 

cells have functionally competent mitochondria and can overcome inhibition of the glycolytic pathway 

by increasing mitochondrial ATP production. 

Recent evidence suggests that combination chemotherapy, simultaneously aimed at both glycolytic 

and mitochondrial pathways for ATP production, can be a more effective chemotherapeutic approach 

for the selective cytotoxicity of cancer cells. In one study [145], the in vitro antitumor activity 2DG 

alone was found insufficient to promote tumor cell death in human breast cancer and osteosarcoma cell 

lines, reflecting its limited efficacy in clinical trials. However, the combination of 2DG and metformin 

led to significant cell death associated with a decrease in cellular ATP. Gene expression analysis and 

functional assays revealed that metformin compromised OXPHOS. Furthermore, forced energy 

restoration with methyl pyruvate reversed the cell death induced by 2DG and metformin, suggesting a 

critical role of energetic deprivation in the underlying mechanism of cell death. The combination of 2DG 

and metformin also inhibited tumor growth and metastasis in mouse xenograft tumor models [145].  

In another study, the combination of 2DG and metformin was shown to inhibit both mitochondrial 

respiration and glycolysis in prostate cancer cells leading to a severe depletion in cellular ATP. This 

combination of drugs induced a 96% inhibition of cell viability in LNCaP prostate cancer cells, a 

cytotoxic effect that was much greater than that induced by treatment with either drug alone. In contrast, 

only a moderate effect by the combination of 2DG and metformin on cell viability was observed in 

normal prostate epithelial cells [146]. 

The selective tumor cell killing by mitochondria-targeted DLCs can also be enhanced by combination 

with anticancer agents having alternative mitochondria target sites. For example, 3-azido deoxythymidine 

(AZT) as a single agent was found to induce a dose-dependent inhibition of cell growth of several  

human carcinoma cells, yet cause no significant effect on the growth of control epithelial cells [147]. 

Combination treatment employing a constant concentration of a delocalized lipophilic cation 

(dequalinium chloride or MKT-077) plus varying concentrations of AZT enhanced the AZT-induced 

cytotoxicity of carcinoma cells up to four-fold. The drug combination of constant DLC and varying AZT 

had no significant effect on the growth of control cells. Furthermore, clonogenic assays demonstrated 

up to 20-fold enhancement of selective carcinoma cell killing by combination vs. single agent treatment, 

depending on the specific drug combination and concentrations used. It was hypothesized that the 
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efficacy of the AZT/DLC drug combination in carcinoma cell killing may be based on a dual selectivity 

involving inhibition of mitochondrial energy metabolism and inhibition of DNA synthesis due to limited 

deoxythymidine monophosphate availability [147]. 

Although limited in scope and number, the results of these drug combination studies are encouraging. 

More importantly, they suggest that additional studies should be undertaken to assess the anticancer 

activity of novel combinations of metabolic inhibitors targeting both major pathways of ATP production, 

and of novel combinations of compounds that target different sites in mitochondria. 

6. Summary and Concluding Remarks 

A persistent challenge in cancer therapy is to find ways to improve the efficacy and selectivity of  

a therapeutic compound while minimizing its systemic toxicity and treatment-limiting side effects.  

The central role that mitochondria play in the life and death of a cell, together with the many differences 

found to exist between the mitochondria of normal and transformed cells, make them prime targets  

for anticancer agents. However, despite the fact that a number of mitochondria-targeted compounds  

have exhibited potent and selective cancer cell killing in preclinical and early clinical testing, currently 

none has achieved the standards for high selectivity and efficacy and low toxicity necessary to progress 

beyond phase III clinical trials and to be used as a viable, single modality treatment option for  

human cancers. The limitations of this approach suggest the need to explore the use of alternative 

treatment strategies to enhance the efficacy and selectivity of mitochondria-targeted anticancer  

agents. Mitochondria-targeted drug delivery systems, photodynamic therapy, and combination 

chemotherapy are three strategies that have been shown to enhance the efficacy and selectivity of certain 

mitochondria-targeted anticancer agents in vitro and in vivo. These strategies enhance the effects of 

potential therapeutic agents either by delivering them directly to the site of action (mitochondria-targeted 

drug delivery systems), or by increasing their potency once they have reached their target site (PDT, 

combination chemotherapy). It is proposed that by expanding the application of these strategies to 

include additional mitochondria-targeted compounds that have already demonstrated significant 

preclinical and clinical anticancer activity as single agents, including but not limited to those summarized 

in this review, the therapeutic efficacy of these compounds might also be improved. New and ongoing 

research in this area is warranted, and may yet fulfill the clinical promise of exploiting the mitochondrion 

as a target for cancer chemotherapy. 
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