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In recent years the problem of how inter-individual differences play a role in risk-taking

behavior has become a much debated issue. We investigated this problem based on the

well-known balloon analog risk task (BART) in 48 healthy subjects in which participants

inflate a virtual balloon opting for a higher score in the face of a riskier chance of the

balloon explosion. In this study, based on a structural Voxel Based Morphometry (VBM)

technique we demonstrate a significant positive correlation between BART score and size

of the gray matter volume in the anterior insula in riskier subjects. Although the anterior

insula is among the candidate brain areas that were involved in the risk taking behavior

in fMRI studies, here based on our structural data it is the only area that was significantly

related to structural variation among different subjects.

Keywords: Voxel Based Morphometry (VBM), risk taking behavior, balloon analog risk task (BART), anterior insula

Introduction

Uncertainty about the future is a fact of life. Any future event arising from our own deeds or
completely out of control, can be conceived of as a form of gamble which may improve or
impair one’s well-being by some probability distribution. Looking at future in terms of probability
distributions permits quantifying the degree of uncertainty in various forms that are collectively
known as the measures of risk (Schultz, 2010). In several situations, our actions can increase or
decrease the risks which we face. For instance, trying a new brand of coffee can be interpreted as
avoiding risk or seeking risk, respectively.

Contextual factors that modulate one’s attitude toward risk have been studied extensively
in economics and psychology (Tversky, 1979, 1992; Damasio, 1996). For instance, framing
choices in terms of the associated loss or gain (Tversky and Kahneman, 1981; De Martino
et al., 2006) or expressing their relation to the status quo (Fleming et al., 2010) as
well as several other contextual factors can change one’s willingness to engage in a risky
behavior. However, substantial inter-individual differences have also been observed among
(human as well as non-human) decision makers in their risk attitude (Fecteau et al.,
2007; Rao et al., 2008; Jentsch et al., 2010). After all, some individuals are more likely to
buy a lottery ticket with their Saturday morning newspaper than others. These trait-like
inter-individual variations can operate in parallel to the contextual factors mentioned above and
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they contribute to substantial variability in risk-ridden behavior
(Elke and Weber, 1997; Bach and Dolan, 2012). The biological
basis of these inter-individual differences are much less studied
and understood compared to the case for contextual modulators
of attitude toward risk.

Previous research in behavioral genetics has shown that
inter-individual variance in risk attitude may be highly
heritable. Measures of risk taking were more correlated among
monozygotic versus dizygotic twins and overall, the influence
of shared genes explained about 20% of the variance in risky
behavior (Cesarini et al., 2009). A similar figure around 20% was
suggested for the genetic influence on risk attitude by another
study that examined the relationship between polymorphism
in Dopamine D4 receptor and financial risk taking in men
(Dreber et al., 2009). More recently it has also been observed that
carriers of a certain L polymorphism of monoamine oxidase-A
were more accurate in their risk assessment and more willing
to take financial risks (Frydman et al., 2011). These findings
linking central nervous system neurotransmitter mechanisms to
trait-like variations in risk attitude raise the question whether
variations in brain structure may also contribute to inter-
individual differences in risky behavior (Kanai and Rees, 2011).

In recent years there have been many studies on functional
neural correlation of risk taking behavior in disorders such as
anxiety, attention deficits, pathological gambling, and substance
abuse (Martins et al., 2004; Singer et al., 2004; Kathleen Holmes
et al., 2009). Evidence from neuropsychological, neuroimaging,
and animal studies suggest that decision making under
risk involves a network of cortical and subcortical regions
including orbitofrontal cortex (OFC), dorsolateral prefrontal
cortex (DLPFC), parietal cortices, and caudate, anterior cingulate
cortex (ACC) and thalamus (Ernst and Paulus, 2005; Trepel
et al., 2005; Krain et al., 2006). However, which of these neuronal
structures contributes to individual differences in risk taking is
unknown.

Balloon analog risk task (BART; Lejuez et al., 2002; see below
for a description) has been extensively used to study the neuronal
substrates of risk taking behavior in human. In this task the
subject is asked to repeatedly choose whether or not to inflate
a balloon that could expand or explode as a consequence of the
subject’s choice to inflate. The larger the balloon sizes the higher
the probability of the explosion as well as the larger the collectable
reward if the explosion is avoided. Thus, this task is a model
of real-world situation in which taking a new risk gives one a
probabilistic chance to increase profits at the expense of accepting
a probability for losing what one already has (e.g., health, safety,
savings, etc.) (Lejuez et al., 2002, 2003a,b, 2007; Hunt et al.,
2005). Higher BART scores indicate more risk seeking. A fMRI
study using BART revealed activations in the mesolimbic-frontal
regions, including the midbrain, ventral and dorsal striatum,
anterior insula (AI), dorsal lateral prefrontal cortex (DLPFC),
and anterior cingulate/medial frontal cortex (ACC/MFC) (Rao
et al., 2008). Results from patient studies using the same task also
accorded with the neuroimaging findings.

In one recent fMRI study using the BART, (Fukunaga et al.,
2012), the authors looked for distinct neural correlations of loss
aversion and reward seeking signals. They hypothesized that two

brain areas, anterior insula (AI) and inferior frontal gyrus (IFG)
are involved in the loss aversion independent of reward seeking
or the expectedness of reward and punishment. A modified
version of BART was used to test this hypothesis. The activity at
the ACC and AI/IFG were increased when participants chose to
discontinue inflating the balloon. This finding accorded well with
increasing loss aversion. In addition, a significant activation was
observed in the vmPFC area associated with subjects continuing
to inflate the balloon (i.e., when they decided to take a risk
rather than collect the accumulated reward), which was also
in agreement with previous findings that implicated vmPFC in
reward seeking.

Putting the above findings together, we asked whether the
individual variability in risk taking behavior as measured by
BART may have specific correlations in the gray matter structure
of the human brain. Based on the previous fMRIworks (Rao et al.,
2008; Fukunaga et al., 2012; Canessa et al., 2013) we hypothesized
that the brain regions AI/IFG, ACC, vmPFC, DLPFC, posterior
insula and Amygdala are most likely to reflect the individual
differences in risk taking in the context of BART.We conducted a
Voxel Based Morphometry study (Ashburner and Friston, 2000,
2005; Ashburner, 2007) to assess whether a gray matter structure
in a set of previously identified regions of interest is correlated
with the BART score.

Method

Fifty two healthy college students, 30 males, 22 females ranging
from 20 to 32 years old with the average (µ) age of 21.9, and
the standard deviation (σ) of 1.76 participated in the study.
They were recruited by advertisements placed in the Shahid
Beheshti University of Medical Science campus and its nearby
community. The participants did not report any illnesses in the
past as well as at the time of evaluation, and neither did use any
psychoactivemedications. The experiments were approved by the
ethical committee in the Shahid Beheshti medical school, and all
the participants were given a written informed consent.

Behavioral Measurement of Risk Attitudes
Stimuli and Procedure
We used a version of BART (Rao et al., 2008) that was modified
from the original BART (Lejuez et al., 2002) (Figure 1) in
rewarding and punishing the participants and also in calculating
BART scores. In modified BART a realistic image of a balloon
was presented to the participants in the center of the screen in
a standard illuminated room. They were instructed to choose
between inflating the balloon by pressing “pump up” button
repeatedly or stop and harvest the collected reward by pressing
the “collect the money” button. They were also informed that the
balloon could explode at any size but the probability of explosion
associated with every pump was not mentioned.

Each participant started the experiment with an endowment
of 10000 Rials (subjectively equivalent to 10 $). At the beginning
of each trial, a small balloon (4 cm in its biggest diameter, 50 cm
distance from the screen) was displayed on the computermonitor
(Figure 1) and the participants chose to either “Pump Up” or
“Collect the Money” by the mouse click. If the participant chose
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FIGURE 1 | Display panel in the BART. The balloon was expanded by

clicking on the “Pump up” button. Each click added 100 Rials (equivalent to

10¢) to the “potential earnings.” By clicking on “collect money” button, the

money accumulated thus far in “Potential Earnings” was transferred to “Total

winnings.” If the balloon is exploded, the money in the “potential earnings” was

subtracted from the “Total winnings.” The “Balloon number” indicates the trial

number.

to pump up, the balloon might explode with some probability;
this is explained in the following paragraph. If the balloon did
not explode, then the participant’s earnings from the current
trial was increased by 100 Rials (subjectively equivalent to 10¢).
If the balloon exploded or the participant chose to collect the
money, then the trial was terminated and the money was added
to her/his endowment. In the case of explosion, the current trial’s
earnings prior to explosion were deducted from the participant’s
total endowment. Each participant was supposed to complete 30
trials.

The probability that a balloon would explode was 1/128 for
the first pump. If the balloon did not explode after the first pump,
explosion probability for the second pump is altered to 1/127,
for the third pump, it is 1/126. This trend goes on until; at the
128th pump the probability of the explosion reaches unity (i.e.,
1/1 or 100%). This distribution of explosion probabilities means
that if the participant never chooses to collect the money, on
average, the explosion occurs at the 64th pump-up. As pointed
out in the literature (Lejuez et al., 2002), this task is a laboratory
model of real-world situations in which taking excessive risk
often decreases the outcome, and jeopardizes one’s health, safety
and property. Each successful pump-up (i.e., not followed by an
explosion) increases the temporary earning which could be lost
in a future explosion (contributing to a greater future regret) and
decreases the relative gain from future pump-ups (diminishing
the prospect of further risk). For example, after a successful first
pump-up, the next pump risk losing only the 100 Rials earned so
far. The second pump-up would increase the possible earnings
by 100%; however, the 31st pump-up would only increase the
current earnings of the trial by 3.3% (i.e., from 3000 Rials to 3100
Rials). Note that the participants were unaware of maximum
number of inflations and the probability distribution of the
explosions.

Data Analysis
There are several ways to measure the BART score. We utilized
the convention that could help us quantifying the participant’s

attitude toward the risk in the most accurate way. We used
the adjusted score, i.e., average number of pumps during the
task except the trials terminated by explosion. This adjusted
score is preferred to the unadjusted score which also included
the exploded balloons because the number of pumps depends
on the exploded balloons, which limits between-participant-
difference in the unadjusted score (Lejuez et al., 2002). Behavioral
studies (Lejuez et al., 2002, 2003a,b, 2007; Hunt et al., 2005)
have shown that the participants’ BART scores correlate with the
scores on a number of real-world risk attitude measures such
as sensation seeking and impulsivity questionnaires as well as
the occurrence of risky behaviors (e.g., drug addiction, smoking
and delinquency). All behavioral analyses were done in SPSS17.0
software. (http://www.spss.com).

Structural Imaging
A Siemens MAGNETOM Avanto 1.5 Tesla MRI machine
with a standard quadrature head coil were used for the
structural brain imaging. T1-weighted images (160 contiguous,
1-mm thick, TE = 3.5ms, TR = 12ms axial slices) were
generated. We used Statistical Parametric Mapping 8
(SPM8) (http://www.fil.ion.ucl.ac.uk/spm) to do Voxel Based
Morphometry analysis (Ashburner and Friston, 2000, 2005;
Ashburner, 2007).

All scans were manually reoriented and realigned with respect
to the anterior commissure. Using SPM8 software,T1 images
were segmented into gray matter, white matter and cerebrospinal
fluid. We then used Diffeomorphic Anatomical Registration
integrated in the Exponentiated Lie algebra (DARTEL) to
build the gray matter template of each participant for
registration. The images then were smoothed using a Gaussian
kernel with an 8mm full-width half-maximum, and finally
were normalized into Montreal Neurological Institute (MNI)
space.

For statistical analysis we used a General Linear Model
approach described in (Mccullagh and Nelder, 1989). This
method looks at the correlation between the gray matter volume
and the behavioral performance in BART. Our design matrix
consist of BART scores as the covariate of interest, and age,
gender and total gray matter volume as covariates of no interest.
We employed multiple comparison theory (Hsu, 1996) to adjust
our statistics.

In order to test our anatomically circumscribed hypothesis
we restricted our analysis to predefined regions of interest and
used small volume correction to test whether the gray matter
structure in those regions were correlated with BART score or
not. We defined our regions of interest (ROIs) according to
the literature (Rao et al., 2008; Fukunaga et al., 2012) ACC,
IFG/AI, vmPFC and DLPFC. To test, we performed an ROI
analysis on the coordinates derived from the previous studies
(see Table 1). A sphere of 10mm diameter was made around
each coordinate with p-value (uncorrected) < 0.001. Another
ROI analysis was also done with constructing a union image
of all the mentioned areas using MarsBar toolbox of SPM8
(http://marsbar.sourceforge.net).

The results are reported in the Talairach coordinate using
GingerALE software (http://www.brainmap.org/ale/index.html)
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TABLE 1 | Candidate brain areas, Talairac coordinates and the reference

articles linking them to BART score.

Brain area MNI Coordinates (reference article)

ACC Right: 6, 26, 24 (Fukunaga et al., 2012)

Bilateral: 0, 12, 42 (Rao et al., 2008)

rAI/IFG 48, 20, −6 (Fukunaga et al., 2012)

lAI/IFG −4, 16, −8 (Fukunaga et al., 2012)

vmPFC Left: −12, 36–18 (Fukunaga et al., 2012)

DLPFC Right: 30, 36, 20 (Rao et al., 2008)

Left: −34, 46, 16 (Rao et al., 2008)

FIGURE 2 | Measured BART score of 48 participants. (Mean = 33.50,

Standard Deviation = 13.19, variance = 174.12) The frequency histogram

shows the number of participants as a function of BART score.

and anatomical locations were determined by Talairach Client
(http://www.talairach.org/client.html) (Lancaster et al., 1997,
2000).

Results

Four participants were removed from the study because they
produced extreme outlier negative BART scores which were
greater than 2 S.D.S from population mean. The included
participants consisted of 28 males and 20 females with the
ages ranging from 20 to 30, with the average age of 21.9. The
BART scores (mean score = 33.50; Standard deviation = 14.29;
see Figure 2) showed a normal distribution with the following
parameters (Z = 0.712, p = 0.691) in Kolmogorov–Smirnov test.

We assessed predefined areas that showed positive or negative
correlations between the size of the gray matter volume, and
the BART performance to make a unified image using MarsBar
toolbox of SPM. The results of the ROI analysis for the unified
image was not significant (p = 0.10). Moreover, the results of
one by one ROI analysis revealed that there was a significant
positive correlation between Anterior Insula (AI), and the BART
results (MNI coordinate [45 18 −12], P(FWE-cor) = 0.03, T =

3.53, Cluster extend = 11) (Figures 3, 4). The region of interest
in this area was [48 20 -6] MNI coordinate (Fukunaga et al.,
2012). We did not observe any brain region to have reached a

FIGURE 3 | MRI T1 weighted images. The yellow area in the images above

shows anterior insula. Results are represented with p < 0.05 with multiple

comparison correction at cluster level with an underlying p < 0.001

uncorrected on voxel–level.

FIGURE 4 | Interaction between AI and BART results. Positive correlation

between Anterior Insula (AI), and the BART results (MNI coordinate [45 18

−12]).

statistical significance for the negative correlation in the small
volume correction analysis (P < 0.05, FWE-corrected).

Discussion

The research question was whether inter-individual variability in
risk preference could be related to inter-individual variability in
brain structures. Based on the previous neuroimaging findings
(Kuhnen and Knutson, 2005; van ‘t Wout et al., 2005; Fecteau
et al., 2007; Rao et al., 2008; Strenziok et al., 2011; Fukunaga
et al., 2012), we hypothesized a number of brain areas (see
Table 1) such as the anterior insula (Tversky, 1992), ACC, vmPFC
and DLPFC would be candidates for showing the expected
relationship. Our findings showed that among the candidate
areas, there is only a significant positive correlation in the
anterior insula, between gray matter volume and the obtained
BART score.

This brings up the important question of what special role
the anterior insula may play in risk taking behavior. This is
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important as to what characteristics of the BART are correlated
better with the risk taking behavior associated with a given brain
area. It will be helpful to note that the different roles of anterior
insula includes risk prediction error (Preuschoff et al., 2008;
Bossaerts, 2010) as well as contribution to the representation of
objective versus subjective value of rewards (Schultz, 2010). One
hypothesis connecting our findings with the previous results is
that the subjects with higher BART scores (with correspondingly
larger gray matter volume in the anterior insula) underestimate
the reward prediction error associated with a possible bubble
burst and thereby overweight the probability of getting the
reward compared to less risk-taking subjects who scored lower
in the BART (and had smaller size of the gray matter volume in
anterior insula). Future, computational modeling analysis of the
behavior in BART task is required to test this prediction.

Another way to interpret the results is to consider a particular
feature of the BART task. Every choice to pump up is likely to lead
to either a small increment in the reward or a devastating total
loss.We evaluate the rewards expected from our choices based on
objective or subjective values (Schultz, 2010). The objective value
of a reward is the real monetary amount of the reward whereas
its subjective value is influenced by particular characteristics of
an individual such as his/her inborn or acquired attitude and
beliefs. It has been argued that the anterior insula makes a crucial
contribution to the formation of our subjective experience (Craig,
2009). Putting these ideas together it leads to the suggestion that
people with larger size of the gray matter volume may assign
a higher subjective value to rewards leading to a more risky
behavior and higher BART scores.

It is interesting that while the coordinate [48 20 −6] is
highly associated with areas Insula (Z-score = 7.1), AI (Z-
score = 6.91) and frontal operculum (Z-score = 6.98), (all
derived from http://www.neurosynth.org), the coordinate [45
18 −12] specified in our results is associated to the area IFG (Z-
score = 3.7), known to play a role in cognitive control as well
as AI (Z-score = 4.2). This however could be important when
interpreting data in a cognitive control task.

In addition to fMRI studies, there are some VBM and
structural studies done on risk taking. As far as we know this
is the first VBM study in which we use BART as a paradigm
case of a risk taking behavior. Other studies use other paradigms
such as Cambridge gamble task or Cups task in some lesion
study tasks (Clark et al., 2008; Weller et al., 2009). Although,
interesting effects should not be task dependent, it is important
that there are as yet only a few experiments based on structural

methods reported in the literature. It is therefore not possible
at this early stage to judge what differences matter most in
the reported results. For example results reported by Canessa
et al. (2013) is not only based on a different task, but the
authors further point out the role of posterior insula area in risk
taking behavior and do not specifically maintain the anterior
insula region which is relevant to our data. Also the lesion
studies (Clark et al., 2008; Weller et al., 2009) seem to imply
different roles for the insular cortex. In lesion study done by
Clark et al. (2008) four groups of participants including vmPFC
lesion, insular lesion, healthy subjects and control lesion affecting
dorsal and lateral frontal cortex were studied under Cambridge

gamble task to differentiate distinctive roles of vmPFC and
Insula roles in risk taking behavior. Results showed increased
betting regardless of the odds of winning in patients with vmPFC
damage. In contrast patients with insular cortex lesion failed
in adjusting odds of winning which the authors consider it as
consistent with the role of Insula in loss aversion. In another
study (Weller et al., 2009), patients with focal insular lesion
and healthy individuals are compared on risk taking in terms
of achieving gains and avoiding losses. It was revealed that
lesion patients made fewer risky choices than healthy adults in
gain domain. All together, future investigation is required to
understand the specific commonalities and differences between
these paradigms and their neuronal substrates. There are also
other functional imaging modalities that are recently used for
the brain (Nasiriavanaki et al., 2014) which with their higher
resolution capability may provide us with more details.

Conclusion

We asked a question whether local structural variations in the
human brain are related to individual differences in risk taking
behavior. To answer this, we used Balloon analog risk task
as a behavioral measure. Voxel based Morphometry was done
on T1-weighted images of 48 subjects. Results of region of
interest analysis revealed that among all areas candidate for risk
taking behavior, there is a significant positive correlation between
anterior insula and BART results.
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