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Abstract

The purpose of this study was to provide a simplified alternative technology and format for direct current stim-
ulation of mammalian cells. An incubatable reusable stimulator was developed that effectively delivers a regu-
lated current and does not require constant monitoring.
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Introduction

Determining the effects of electric fields (EFs) on cells
has been an area of interest for many years.1–7 EFs have

been shown to be a signaling cue for cell migration,1,8 mediate
growth cone steering,9 induce cellular alignment,10,11 influ-
ence anatomical development,12 and aid in wound healing
and regeneration.13 Stimulation setups for these types of stud-
ies can vary, depending on the application. McCaig et al.14 and
Robinson15 describe an experimental setup and a protocol for
stimulating cells in vitro. The setup was effective for cells not re-
quiring incubation, but for mammalian cells, modifications
may be needed. For example, Cork et al.16 designed and fabri-
cated a field chamber and a stimulator to expose PC12 cells (rat
clonal pheochromocytoma cell line) to field strengths from 5 to
100 mV/mm. Each field chamber could house two cell cultures
and was placed inside a 37�C, 7% CO2 incubator. However, the
chambers were connected to the stimulator by a segment of
flat eight-stranded ribbon cable that fed over the closed incuba-
tor door to the stimulator set up on the outside. The system also
included digital current and voltage meters and a channel selec-
tion switch. In addition to the space required for a multicompo-
nent system of this type and specialty chamber, a dedicated
incubator may also be necessary.

Borgens et al.10 designed and fabricated a special chamber
and an incubator system to electrically stimulate rat astro-
cytes. The system was a bench-top setup on a microscope
stage and included several components. A 37�C incubator
was created around the microscope by fitting it with plexiglas
and utilizing a thermostatically controlled heater. An in-
dwelling microthermoprobe was used to constantly monitor
the temperature, and an in-series multimeter was added to
monitor the current. Pan and Borgens17,18 utilized a heated

(35�C) microscope stage setup to apply EFs to chick periph-
eral neurons for 3–6-h periods. This arrangement was favor-
able to the cell type examined and stimulation duration
chosen and allowed for real-time recording and photography
of the cultures. However, for nonreal-time applications and
long stimulation periods ( ‡ 10 h), a modified arrangement
may be more suitable for some cell types. In preliminary
work, we found that for extended stimulations, mammalian
central nervous system (CNS) neurons had better survival
rates and viability when incubated in a traditional CO2 incu-
bator versus a microscope stage-based setup.

As an alternative, a self-contained, incubatable direct cur-
rent stimulator was developed here that effectively delivers
an EF to cells. The circuit arrangement allows the stimulator
to be housed inside a traditional CO2 incubator during exper-
imental runs without compromising its output current regu-
lation. This provides a more favorable environment for some
cells types and allows longer-duration experiments without
concerns for gas regulation. In addition, it eliminates the
need for customized or dedicated incubators and multidevice
setups. Since it is reusable, fabrication of a new device or re-
placement of circuit components for each experiment is not
required. It can also be used with commercially available,
stimulation-compatible cell culture chambers.

Materials and Methods

Stimulator fabrication

The stimulator circuit is based on the National Semiconduc-
tor Corporation’s zero-temperature coefficient configuration19

using the LM334Z three-terminal adjustable current source. A
schematic is shown in Figure 1. Current stability at tempera-
tures greater than ambient is achieved with this circuit, since
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it compensates for increases in current due to temperature
rises. The output current, ISET, is established by adjusting
the variable resistors R1 and R2 to values resulting from Equa-
tions (1) and (2). It can be set to any value between 1 lA and
10 mA.

R1 = 0:134V=ISET (1)

R2 = 10R1 (2)

Fixed resistors of suitable values could also be utilized.
Since the LM334Z’s operating voltage limit is 40 V, four re-
chargeable 250-mAh, 9-V nickel-metal-hydride batteries
were placed in series giving a total power capacity of 36 V.
All circuit components (e.g., LM334Z, resistors, diode, and
batteries) have operating temperature ranges well above
and below 37�C, and thus the incubator environment does
not place undue stress on them and shorten their life. This en-
hances the stimulator’s longevity and reusability.

Xenopus cell culture

To determine if the stimulator could adequately supply an
EF to and invoke responses from cells, experiments were con-
ducted on cell types known to respond to applied EFs, Xeno-
pus laevis neurons and myoblasts. For these experiments, cell
culture/stimulation chambers were fabricated as described
by McCaig et al.14 using No. 1 coverglass strips. Embryos
were developed and dissected, and cells harvested and cul-
tured in accordance with protocols outlined by Tabti et al.20

Cells were harvested from stage 19 to 21 embryos and plated
for 11 h before application of the field.

Incubatable setup for mammalian cell culture

For cell culture and application of the EF to mammalian
cells, Ibidi l-Slide I IbiTreat chambers (Ibidi; #80106) were

purchased. It has internal dimensions of 50 mm ·
5 mm · 0.4 mm, contains medium reservoirs on both ends,
and since cells can be fixed and stained within the chamber,
facilitates microscopy. Each reservoir can hold over 1.5 mL
of the medium. These features make it suitable for electrical
stimulation applications. The setup consists of 1% agarose-
filled bridges (mixed with medium), the cell culture/stimula-
tion chamber, 100-mm medium-filled petri dishes (to house
bridges), platinum electrodes (0.5-mm diameter; 7-cm long),
and a stimulator (Fig. 2). The platinum electrodes were sol-
dered to attachment wires to extend their length. Bridges
were made of a flexible silicone rubber tubing (Barnant;
#62998-490) with dimensions 3/16†I.D., 1/4†O.D., and cut
to an appropriate length for the setup and stimulation dura-
tion.15 They were placed in petri dishes so that their tips
were submerged *4 mm or less. The opposite ends of the
bridges were placed inside the chamber reservoirs to make
electrical contact with the circuit. Reservoir caps were first re-
moved and replaced with parafilm to help secure the bridges
in place. A hole was punctured in the parafilm to allow bridge
entry. The entire stimulation setup is placed on an aluminum-
foil-covered tray (of any size and type) and placed on the
shelf of a 37�C, 5% CO2 incubator. Before placing the cells
and stimulator on the tray, items were UV sterilized. The
stimulator was disinfected with 70% ethanol. The platinum
electrodes were placed in the petri dishes and connected
(via attachment wires) to spring coils installed on the stimu-
lator. The electrodes are reusable over multiple experiments
and do not require any special coatings or pretreatment.

Results and Discussion

To test the effectiveness of the system, experiments were
conducted to determine stimulator performance at 37�C
and to examine its effect on a biological organism (Xenopus
cells).

Stimulator testing

The stimulator’s performance was assessed by monitoring
the output current at the beginning and end of 16-h incubated
runs and by comparing these two values to determine if there
was a significant difference (Student’s t-Test). Currents were
set to 0.55, 0.84, and 0.88 mA. Six experiments were conducted
at each current level (n = 6). No significant differences were
found at any of the values (ISET = 0.55 mA, p > 0.05; ISET = 0.84
mA, p > 0.05; ISET = 0.88 mA, p > 0.05). The 95% confidence in-
tervals were also calculated for the beginning and ending

FIG. 1. Schematic diagram of stimulator circuit. Variable re-
sistors (potentiometers) R1 and R2 set the circuit current in ac-
cordance with Eqs. (1) and (2), while RSeries is used to monitor
it. RLoad represents total load resistance (i.e., stimulation
chamber, bridges, and medium), which connects to the stim-
ulator through spring connectors and platinum electrodes.

FIG. 2. Schematic diagram of incubatable setup. The setup
includes the stimulator, platinum electrodes, agarose-filled
bridges, medium-filled petri dishes, cell culture/stimulation
chamber, and foil-covered tray.
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output currents. Plots are shown for ISET = 0.55 and 0.84 mA
(Fig. 3). Currents were determined using Ohm’s law after
measuring the voltage across the series resistor (RSeries). Meas-
urements were taken (from ports installed on stimulator) with
a digital multimeter immediately after the system was re-
moved from the incubator.

Separate experiments were carried out to monitor the out-
put current at several time points during incubated stimula-
tions (Table 1). Readings were taken at 2 to 3-H intervals
during the 16-h period. Comparable values were observed
during the course of the runs. Results indicate that the stimu-
lator performs well under incubator conditions and delivers a
regulated current to the load.

Xenopus cell stimulation (effect on a biological organism)

Xenopus cellular alignment and orientation were observed
after electrically stimulating the cells with our system on the
benchtop. The neurons and myoblasts were exposed to EFs of
120 mV/mm for 10 h. Phase-contrast photos were taken on a
Leica DM IRB inverted microscope at the end of the stimula-
tion period. Results were calculated and compared to that
reported in the literature.2,7 Neurites (Fig. 4) and myoblast
(Fig. 5) exhibited the cathode-oriented and perpendicular-
like behaviors, respectively, described. Neurites were catego-
rized in a manner similar to Rajnicek et al.7 Namely, with the
cathode at 0� and anode at 180�, neurites were classified as
projecting cathodally if the X-coordinate of the growth cone
was greater than the X-coordinate of the somal initiation
site of the same neurite. Myoblasts were considered

Table 1. Output Current Readings Taken Over

a 16-h Period at 2 to 3-h Intervals

Experiment number Output current (mA)

Stimulator 1
1 0.55

0.55
0.55
0.55
0.54
0.55
0.54

Mean – SEM 0.55 – 0.002

2 0.55
0.55
0.55
0.55
0.55
0.55

Mean – SEM 0.55 – 4.96 · 10�17

Stimulator 3
3 0.88

0.90
0.90
0.90
0.90

Mean – SEM 0.90 – 0.004

4 0.89
0.89
0.89
0.89
0.89
0.89

Mean – SEM 0.89 – 0

Output current regulation at 37�C.
SEM, standard error of the mean.

FIG. 4. Xenopus neuron after 10 h in a 120 mV/mm electric
field. Neurites labeled ‘‘c’’ are oriented or have turned cathod-
ally. Magnification, 20 · . Scale bar = 50 lm. + /� signs indi-
cate the field vector.

FIG. 3. Comparison of stimulator output currents at begin-
ning and at end of stimulation runs. Current stability was ob-
served at each value tested with no significant differences. (A)
ISET = 0.55 mA, p > 0.05; (B) ISET = 0.84 mA, p > 0.05. 95% confi-
dence intervals are shown.
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perpendicular if their bipolar axis was > 60� with respect to
the EF vector.

Mammalian cell stimulation

Rat cortical neurons were cultured in the Ibidi chambers
and electrically stimulated with the incubatable stimulator
developed. Neurite orientation and enhanced neurite exten-
sion were observed (to be reported separately), suggesting
an influence by the field. Figure 6 shows a healthy culture
of the cells after stimulation. GAP-43 staining confirmed
that the cells were in a growth state. The abundance of neu-
rites (highlighted by arrows), robust somas, and GAP-43 sug-
gests that no ill effects occurred from stimulation.

One advantage of the system is that the current does not re-
quire constant monitoring. The performance test results
(Table 1; Fig. 3) showed that the stimulator operates in a
37�C environment without any significant change in the out-
put current. The circuit configuration cancels the temperature-
dependent properties of the LM334Z, and thus provides current

stability. Another advantage is that for mammalian cells, a tra-
ditional CO2 incubator can be used. This was found to be ad-
vantageous in our study of CNS neurons. It simplified the
experimental process and procedures and facilitated obtaining
consistent results.
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