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Introduction

UVB irradiation from sunlight is the primary source for vita-
min D synthesis in the epidermis. However UV can also cause 
skin cancer when excessive radiation is received. The same UVB 
that produces vitamin D also causes DNA and other damage that 
eventually results in skin cancers for large numbers of people. 
There is level 1 evidence from meta-analyses of randomized, con-
trolled trials that adequate vitamin D status reduces parathyroid 
hormone levels, falls, fractures and overall mortality.1 There is 
also increasing evidence for a range of other health benefits of 
adequate vitamin D status.1,2 Considering the increase in skin 
cancer incidence worldwide, with up to approximately 450,000 
new cases diagnosed per year in Australia alone, as reported by 
the Australian Institute for Health and Welfare,3 it is vital to find 
a balance between vitamin D sufficiency and preventing the haz-
ardous effects of UV that lead to skin cancers and photoaging.

There is compelling evidence that because vitamin D and its 
metabolites are made in skin, the damage from UV exposure is 
less than it would be otherwise.4,5 Vitamin D compounds that do 
not cause hypercalcemia, are not photolabile but also protect skin 
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As skin cancer is one of the most costly health issues in 
many countries, particularly in Australia, the possibility that 
vitamin D compounds might contribute to prevention of 
this disease is becoming increasingly more attractive to 
researchers and health communities. In this article, important 
epidemiologic, mechanistic and experimental data supporting 
the chemopreventive potential of several vitamin D-related 
compounds are explored. Evidence of photoprotection by 
the active hormone, 1α,25-dihydroxyvitamin D3, as well 
as a derivative of an over-irradiation product, lumisterol, a 
fluorinated analog and bufalin, a potential vitamin D-like 
compound, are provided. The aim of this article is to understand 
how vitamin D compounds contribute to UV adaptation and 
potentially, skin cancer prevention.
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cells from the hazardous effect of UV are promising alternatives 
to 1α,25dihydroxyvitamin D

3
 (1,25(OH)

2
D

3
) for therapeutic 

applications. The focus of this review is on the photoprotective 
actions and mechanisms of a number of natural and synthetic 
vitamin D compounds and vitamin D-like compounds, which 
might be used for protection from the hazardous effects of UV 
and for skin cancer prevention.

Structure of Vitamin D

Technically speaking, vitamin D
3
 is not a true vitamin but a 

seco-steroid, synthesized in skin.6 The molecular structure of 
the vitamin D

3
 compound family, including the active hormone 

1,25(OH)
2
D

3
, is chemically related to that of classical steroid 

hormones through a steroid hormone specific cyclopentanoper-
hydrophenanthrene 4 ring carbon skeleton.7 However, unlike its 
steroidal relatives, the 9-10 carbon-carbon bond of ring B is bro-
ken, making vitamin D

3
 a seco-steroid (Fig. 1).

In comparison with their classical steroid counterparts, mol-
ecules of the vitamin D

3
 superfamily are particularly conforma-

tionally flexible, due to three major structural regions of their 
carbon skeleton. First, simple rotation of the 8-carbon side chain 
about the 5 carbon-carbon single bonds allows for a plethora of 
differing molecular shapes. Additionally, as a result of the 9-10 
carbon-carbon breakage, the cyclohexane-like A-ring is liberated 
from the B-ring and undergoes rapid interconversion between 
chair-chair conformers. The mobility of the A-ring results in ori-
entation of the 1α-hydroxyl and 3α-hydroxyl to move between 
axial and equatorial planes. Finally, the seco B-ring rotates freely 
around its 6-7 single carbon bond, producing 6-s-cis and 6-s-trans 
variates of conformation, which may be locked or flexible.7,8 It is 
the conformational flexibility of the vitamin D backbone, which 
allows for the generation of a vast number of ligand shapes that 
are able to generate different biological responses through the 
vitamin D receptor (VDR).

Photobiology and Metabolism of Vitamin D

Vitamin D is produced in skin by the photochemical conver-
sion of 7-dehydrocholesterol in epidermis to pre-vitamin D. The 
energy for this reaction is provided by UV B radiation (UVB, 
290–315 nm) which is the only part of the solar UV radiation 
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recruitment of protein co-modulators assists interaction with the 
general transcription apparatus wherein gene transcription is pro-
moted or repressed.18,19

Non-Genomic Pathway

The non genomic pathway activated by 1,25(OH)
2
D

3
 generates 

a biological response within seconds to minutes by triggering a 
number of intracellular signaling pathways.7,16,18 These include 
the opening of chloride and calcium channels, mitogen activated 
protein kinases (MAPKs), protein kinase C, phosphatidylinosi-
tol 3-kinase (PI3K), phospholipase C and subsequent G-protein-
coupled second messenger systems such as cyclic adenosine 
monophosphate (cAMP). Activated messenger systems may cross 
talk with the nucleus to contribute to gene transcription.16

The location of a binding protein/receptor through which 
1,25(OH)

2
D

3
 exerts its non-genomic effects is not yet well 

established. There is evidence that this is the classic vitamin D 
receptor, which is located in lipid rafts in the cell membrane.12,20 
There is also evidence for a rapid response binding protein for 
1,25(OH)

2
D

3
, first identified in the basolateral membrane of 

chick epithelium, involved in rapid calcium absorption from 
the duodenum.13 Subsequent purification of the protein led to 
its definitive identification as the 66 kDa membrane-associated 
rapid response steroid binding (MARRS) protein, identical to 
ERp57/PDIA3.21

In the last decade, it has been proposed that the rapid actions 
of 1,25(OH)

2
D

3
 may occur via a putative alternative ligand bind-

ing pocket (AP) within the ligand binding domain of the VDR.22 
Through molecular modeling, the natural 6 sec-cis locked ana-
log of 1,25(OH)

2
D

3
, 1α,25 dihydroxylumisterol

3
 (JN) (Fig. 

1), which has weak genomic activity but equivalent potency to 
1,25(OH)

2
D

3
 in non-genomic signaling, was shown to dock with 

the classic VDR through a pocket other than the genomic pocket 
(GP) to elicit cellular responses. The flexible 1,25(OH)

2
D

3
 mol-

ecule was found to have a high affinity for both pockets, with 
differing modes of binding. It is thought that vitamin D sterol 
binding at the VDR occurs kinetically through the AP, while 
in a thermodynamic manner at the GP, and thus subsequent 
responses are highly dependent on the conformation and orien-
tation of the ligand present.15,22 The AP prefers the planar 6-s-
cis locked non-genomic agonist vitamin D sterols, such as JN, 
while the bowl shaped GP binds 6-s-trans conformed isomers of 
1,25(OH)

2
D

3
. The conformationally flexible 1,25(OH)

2
D

3
 mol-

ecule can take up both structures, thus making it the most potent 
agonist for both genomic and non-genomic biological responses. 
The AP forms complexes with an array of 1,25(OH)

2
D

3
 molecule 

conformations, while the GP is more restricted with its binding 
affinity.15

Evidence for a bi-functional VDR comes from a study show-
ing 1,25(OH)

2
D

3
 induced rapid chloride fluxes in wild type 

mouse osteoblasts, while mouse osteoblasts lacking a functional 
VDR showed no response.14 The VDR-KO mice used in the 
aforementioned study were previously reported to exhibit phe-
notypic defects similar those seen in human vitamin D-resistant 
rickets type II, such as alopecia, growth retardation, impaired 

(UVR, 290–400 nm) that can split the B-ring of the precursor. 
Thermal conversion at body temperature forms the stable form, 
vitamin D.9 Continued exposure of pre-vitamin D or vitamin D 
to UVB results in the formation of the so called “over-irradiation 
products” including lumisterol, tachysterol and suprasterols.9 
Vitamin D made in skin of animals is cholecalciferol or vitamin 
D

3
, while vitamin D made from the plant precursor, ergosterol 

is vitamin D
2
 or ergocalciferol. The metabolism and actions of 

D
2
 or D

3
 compounds are fairly, though not entirely, similar.1 

Subsequent to cutaneous production or intestinal absorption 
from food or supplements, vitamin D is transported in the circu-
lation by serum vitamin D binding protein to the hepatocytes of 
the liver where the first hydroxylation occurs at the 25 position. 
As a result of this, 25(OH)D, the major circulating form of vita-
min D is synthesized. This compound has a 15–50 day half-life 
and is widely used as the biological marker for vitamin D status in 
humans. This metabolite has little biological activity and needs 
to be hydroxylated again, in the proximal convoluted tubule cells 
of the kidney at the 1α-position, in order to yield the hormonally 
active metabolite, 1,25(OH)

2
D

3
 or calcitriol, which enters the 

blood.2 1,25(OH)
2
D

3
 is also able to be locally produced in many 

tissues including skin, which expresses both 25-hydroxylase and 
1α-hydroxylase (CYP27B1) activity.10,11 Local production of the 
hormone probably restricts its effects to those immediate areas.

Transduction Pathways

1,25(OH)
2
D

3
 is the predominant structural ligand of the vita-

min D endocrine system. It exerts its biological effects via two 
well-known pathways; a genomic pathway mediated by the well-
known nuclear vitamin D receptor (VDR), and a non-genomic/
rapid response pathway via a receptor that has not yet been clearly 
characterized.7,12-15

Genomic Pathway

A nuclear receptor of the large steroid receptor family, the VDR 
is found in nucleated cells in most tissues of the human body 
including the intestine, kidney, bone, skin, parathyroid gland, 
pancreas, pituitary and cells of the immune and reproductive 
systems, among others.16,17 The VDR is made up of six primary 
domains each designated a different functionality, specifically, a 
variable domain, a DNA binding domain, a hinge, a ligand bind-
ing domain and a transcriptional activation domain.16

The biological responses of 1,25(OH)
2
D

3
 are mediated by 

the classic genomic pathway through stereospecific ligand bind-
ing to the nuclear vitamin D receptor (VDR). The lipophilic 
1,25(OH)

2
D

3
 molecule passes through the lipid bilayer of the 

plasma membrane and binds to the hydrophobic pocket in the 
ligand binding domain of the VDR. Upon activation, the VDR 
heterodimerizes with a retinoid X receptor (RXR) forming a 
VDR-RXR complex. Zinc fingers of the DNA binding domain 
recognize the VDR-RXR complex, allowing docking with vita-
min D response elements (VDREs) in the DNA sequences of 
vitamin D target genes. These may be in the promoter region of 
target genes or at distant enhancer or repressor sites. Subsequent 
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through well characterized mechanisms including inflamma-
tion,29 DNA damage,30-32 mutagenesis33 and immune suppres-
sion,34 all of which are believed to be involved in combination or 
sequentially leading to photocarcinogenesis.

DNA damage. UV-induced DNA lesions, such as cyclobu-
tane pyrimidine dimers (CPD) and 6–4 photoproducts35 are 
thought to be the initiating events to photocarcinogenesis. UV 
radiation also causes other types of DNA damage through pro-
duction of reactive oxygen species (ROS) and nitric oxide (NO), 
products which are known to be not only mutagenic but also car-
cinogenic on their own.36-38 UV-induced DNA damage is known 
to be repaired at various rates through nucleotide excision repair 

bone formation and rickets, among many others.23 Importantly, 
VDR-KO mice are more susceptible to photocarcinogenesis as 
well as chemical skin carcinogenesis.24-26

Skin Carcinogenesis

UVR is classified as a class one carcinogen by the World Health 
Organisation.27 Carcinogenesis is a multistep process which 
requires initiation, promotion and progression28 and UVR is 
known to be both an initiator and a promoter. UVR is known to 
be responsible for more than 90% of all skin cancers in humans 
including non-melanoma skin cancers and malignant melanoma, 

Figure 1. The chemical structures of the various D compounds.
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or base excision repair. CPDs are known to take many hours for 
nucleotide excision repair, with different rates of repair in differ-
ent species.39,40 Xeroderma pigmentosum is an autosomal reces-
sive disorder with dysfunctional nucleotide excision repair and 
sufferers are known to have a very high incidence of skin cancer.41

p53. UVR induces the upregulation and accumulation of 
the tumor suppressor protein p53 in the nucleus, a process first 
described by Maltzman.42-45 Lane proposed p53 to be a DNA 
guardian since it has been shown to cause growth arrest, which 
could allow enough time for adequate DNA repair to take place.46 
p53 is also believed to cause apoptosis to remove cells with severe 
and unrepairable DNA damage. This was evidenced by a mark-
edly reduced number of sunburn cells after UVR in an inacti-
vated p53 transgenic mouse model.47 Inactivating mutations in 
p53 as a result of UVR therefore would prevent G1 arrest and 
the initiation of apoptosis, and therefore would lead to continued 
division of mutated cells and subsequent carcinogenesis.

Immunosuppression. Lewis Thomas proposed a new con-
cept of immune surveillance in 1959 for the first time.48 Since 
then, many studies have built on this proposal and confirmed 
that UV radiation causes immune suppression in skin.49,50 
Immunosuppression was suspected to contribute to carcino-
genesis when observations were made showing increased cancer 
development, including skin cancers, in immunocompromised 
patients.51 UV-induced immunosuppression is thought to be 
mediated through suppressor T cells and antigen presenting cells 
(APCs) or Langerhans cells.52 UV is known to reduce contact 
and delayed type hypersensitivity, which would mean decreased 
skin immune surveillance.53,54 Applegate and Kripke et al.55 also 
suggested that UV-induced immunosuppression may be trig-
gered or worsened by DNA damage proposing that UV-induced 
DNA damage and photoimmunosuppression play significant 
roles together in photocarcinogenesis.

Oxidative stress. Finally, UV-induced oxidative stress is 
known to contribute to photocarcinogenesis. Oxidative stress is 
believed to be caused mainly by UVA rather than UVB,54 and 
when combined with the damaging effects of UVB, may have 
a very significant role in photocarcinogenesis.56,57 The most fre-
quent product from oxidative stress to the DNA guanine base 
is 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG).37 8-oxodG 
production was shown to be proportional to the degree of UV 
exposure58 and hence believed to be caused by UVR. 8-oxodG 
is repaired through base excision repair (BER) and OGG1 has 
been identified as the important enzyme for the repair process.54 
Kunisada et al. showed OGG1 knockout mice had significantly 
increased incidence of basal cell carcinoma,36 which supports the 
importance of ROS in photocarcinogenesis.

Notch signaling pathway. Notch signaling pathways are 
responsible for cell proliferation, migration, differentiation and 
apoptosis59 and maintain homeostasis of epidermis. Aberrant 
notch signaling is implicated in carcinogenesis.60 Although the 
exact mechanism of this is not fully understood, it is believed to 
have two contrasting sides where it may act either as a tumor pro-
moter or a tumor suppressor depending on the cell type and tis-
sue context, level of expression and potential contemporary cross 
talk with other signaling systems.61 It is believed upregulation in 

Notch signaling is associated with melanoma while downregula-
tion was observed in non-melanoma skin cancers,60 except for 
basal cell carcinoma (BCC) where nodular or superficial sub-
types showed overexpression of Notch-1 protein.60

Analogs of 1,25(OH)2D3 and a Vitamin D-Like 
Compound

Previous studies have identified the photoprotective properties of 
1,25(OH)

2
D

3
, the active derivative of vitamin D. 1,25(OH)

2
D

3
 

has been shown to enhance survival of skin cells following expo-
sure to UV radiation, by reducing the level of damage to DNA 
and thus UV-induced apoptosis.62 Further, 1,25(OH)

2
D

3
 has 

been shown to reduce post-irradiation edema and inflammation 
in mouse skin, as well as photocarcinogenesis.62 These findings 
suggest that 1,25(OH)

2
D

3
 might be beneficial as an addition to 

sunscreens or even as an after-sun topical therapy, to boost skin 
protection against the harmful effects of UV radiation. However, 
1,25(OH)

2
D

3
 is chemically unstable in the presence of light. 

Further, it is an extremely expensive compound to synthesize and 
potentially causes hypercalcemia when large areas of skin are cov-
ered.63 Analogs of 1,25(OH)

2
D

3
 are currently being studied for 

their potential commercial use in after-sun lotions; however, they 
are also expensive to produce.

1α,25-dihydroxylumisterol
3
 (JN). 1α,25(OH)

2
-lumisterol

3
 

(JN) is a low-calcemic 6 sec-cis-locked analog (Fig. 1), which has 
been shown to be a full agonist of the non-genomic pathway that 
can only weakly bind to the VDR.64 This compound is poten-
tially a metabolite of the over-irradiation product, lumisterol.65,66 
JN was shown to generate non-genomic effects in pancreatic β 
cells and endothelial cells.67,68

1α-hydroxymethyl-16-ene-24,24-dif luoro-25-hydroxy-
26,27-bis-homovitaminD3 (QW; QW-1624F2–2). 
1α-hydroxymethyl-16-ene-24,24-dif luoro-25-hydroxy-26,27-
bis-homovitaminD

3
 (QW; QW-1624F2–2) has some tran-

scriptional activity and is approximately 80–100 times less 
calciuric than 1,25(OH)

2
D

3
.69,70 This hybrid analog does not 

cause cachexia in animals71 and has been shown to be non-geno-
toxic71 (Fig. 1). QW has been demonstrated to have anti-prolifer-
ative and pro-differentiating activity and proved effective in the 
inhibition of skin tumor formation and latency in a model of 
chemical-induced skin tumorigenesis.72

Bufalin. Toad venom isolated from various Bufo species has 
been used in the preparation of Ch’an Su and Senso, traditional 
Chinese medicines, for centuries.73 Extraction and characteriza-
tion of this medicinal remedy identified bufalin from the fam-
ily Bufadienolide as the most active component. Bufalin exhibits 
cardiotonic and local anesthetic properties via its action on the α 
subunit of Na+, K+-ATPase, inhibiting the movement of Na+ and 
K+ across the cell membrane.73 Subsequent intracellular accumu-
lation of Na+ modulates the Na+/ Ca2+ exchanger. This causes a 
build-up of Ca2+ ions within the cell, leading to enhanced cardio-
myocyte contraction, preventing heart failure.74

Previous studies of bufalin have revealed it to have some 
effects in common with 1,25(OH)

2
D

3
 in cancer cells.75 The abil-

ity of 1,25(OH)
2
D

3
 to differentiate human myeloid leukemia 
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cell lines toward monocyte/macrophage-like cells was signifi-
cantly enhanced in combination with low doses of bufalin.76 In 
these studies, bufalin did not appear to bind directly to the vita-
min D receptor (VDR) but improved ligand-dependent activa-
tion of the VDR and upregulated VDR-mediated expression of 
endogenous target genes, such as CYP24.75,77 In the presence of 
1,25(OH)

2
D

3
, bufalin maintained expression of the VDR in the 

nucleus of human leukemia cells, most likely through a reduction 
in nuclear VDR degradation or export.77 Bufalin was also shown 
to modulate the relationship and enhance the interaction of the 
VDR with its recruited coactivators, such as SCR-1.75 Bufalin 
treatment enhanced the association between the VDR and the 
corepressor N-CoR and abolished their dissociation in the pres-
ence of 1,25(OH)

2
D

3
. Bufalin-induced modification of cofactor 

complexes enhanced 1,25(OH)
2
D

3
-stimulated VDR transacti-

vational activity.75 Since the only known receptor for bufalin is 
the Na+, K+-ATPase and the plasma membrane is impermeable 
to bufalin, it has been proposed that bufalin must functionally 
modify the VDR through a Na+, K+-ATPase dependent mecha-
nism.78 Collectively, the findings suggest a new role for cardio-
tonic steroids, in particular bufalin, in the modulation of VDR 
function. More recently, it has been proposed that bufalin’s struc-
tural similarity to 6 sec-cis conformation of 1,25(OH)

2
D

3
 might 

allow it to bind to the alternative binding pocket of the VDR and 
activate the non-genomic pathway and thus confer protection to 
skin cells following UV-exposure (Fig. 1).

Effects of Vitamin D, Its Metabolites 
and Its Photoproducts on Skin Cells

Vitamin D and UV-induced DNA damage in skin cells. UV 
induces various types of DNA damage either photochemically 
or by UV activation of endogenous photoreceptors that create 
genotoxic free radicals that modify the DNA molecular struc-
ture. The most frequently occurring photolesion in sun-exposed 
human skin is the cyclobutane pyrimidine dimer (CPD),79,80 par-
ticularly thymine dimers, which are induced primarily by UVB, 
and also by UVA to a lesser extent.80-82 CPDs are produced by the 
dislocation of double bonds in two adjacent pyrimidines by UV 
absorption, resulting in a cyclobutane ring conformation linking 
the two nucleobases as a dimer.83,84

Our group and others have shown that 1,25(OH)
2
D

3
 reduces 

thymine dimers in irradiated skin cells in vitro85-90 and also in vivo 
in mouse62,87,89,91 and human skin.92,93 Thymine dimers are also 
reduced in irradiated skin cells in the presence of the low calcae-
mic rapid acting cis-locked non-genomic analogs, 1α,25(OH)

2
-

lumisterol
3
 (JN) and 1α,25(OH)

2
-7-dehydrocholesterol (JM) in 

vitro85,87,94,95 and in mouse skin,62 and also by the transcription-
ally active hybrid QW.85,95

Evidence that the vitamin D photoprotective effect on reduc-
tions in thymine dimer DNA damage is via the rapid non-genomic 
pathway is demonstrated with various vitamin D-like compounds. 
As noted above, studies by our group have shown that that the tran-
scriptionally non-active 1α,25(OH)

2
-lumisterol

3
 protects against 

UV-induced thymine dimers.85,87,88 Of relevance to the mecha-
nism of action of vitamin D compounds in photoprotection, the 

co-incubation of skin cells with 1,25(OH)
2
D

3
 and 25-dehydro-

1α-hydroxyvitamin D
3
-26,23S-lactone (TEI-9647) (Fig. 1), an 

antagonist of the genomic action of 1,25(OH)
2
D

3
,96,97 did not 

alter the protective effects of 1,25(OH)
2
D

3
 on thymine dimers.87 

In contrast, co-incubation with 1β,25-dihydroxyvitamin D
3
 

(HL), an antagonist of the non-genomic pathway, abolished the 
photoprotective effect of 1,25(OH)

2
D

3
.87,88

As shown in Figure 2, bufalin caused a significant and 
dose-dependent reduction in thymine dimers in irradiated 
keratinocytes at nanomolar concentrations with 16 ± 1% to 
18 ± 2% of nuclei carrying thymine dimers compared with 35 
± 3% of nuclei in vehicle-treated wells. This study shows for 
the first time that bufalin reduced UV-induced DNA damage. 
In Skh:hr1 mice given a single three minimal erythemal dose 
exposure of solar-simulated irradiation (as described in ref. 62) 
bufalin, at a concentration of 23 pmol/cm2 applied topically 
immediately after irradiation, reduced at 24 h, the proportion 
of keratinocytes exhibiting thymine dimers from 4.8 ± 2.5% 
in mice treated with vehicle to 2.3 ± 1.6%. This figure was not 
significantly different to the thymine dimers measured at 24 h 
in skin of mice treated topically with a similar concentration of 
1,25(OH)

2
D

3
.

All the above studies were assessed by immunohistochemis-
try and image analysis. A reduction in thymine dimers (TD) by 
1,25(OH)

2
D

3
 has also been demonstrated by an entirely differ-

ent method in irradiated keratinocytes by digestion with the site 
specific DNA repair enzyme T4 endonuclease IV for CPDs in the 
comet assay.94,98

Two other major UV-induced photolesions found in human 
skin are 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG)84,99-101 
and 8-nitroguanine.102-105 These are induced indirectly by UV 
through oxidation or nitrosylation of guanine by increased lev-
els of reactive oxygen (ROS) and nitrogen (RNS) species respec-
tively. Cellular levels of ROS are increased by UV activation of 
endogenous photoreceptors in the cell.106 Excess levels of nitric 
oxide (NO) accumulate by UV upregulation of nitric oxide syn-
thases107-109 and UVA decomposition of NO stores.110-112 NO can 
act as a free radical on its own as well as react with ROS to form 
more powerful oxidating and nitrating intermediates, such as 
peroxynitrite.

Recently, we reported that 1,25(OH)
2
D

3
 reduces 8-oxodG in 

irradiated keratinocytes in culture, in mouse skin98 and in irradi-
ated ex vivo human skin explants.93 This was demonstrated by 
reduced nuclear staining with a monoclonal antibody to 8-oxodG, 
immunohistochemistry and image analysis, and also by Comet 
assay incorporating digestion with the site specific DNA repair 
enzyme, human 8-oxoguanine DNA glycosylase (hOGG1) in 
cultured keratinocytes.93,98 Reduction of hOGG-sensitive sites by 
1,25(OH)

2
D

3
 occurred within 30 min of UV irradiation.98 The 

8-nitroguanosine lesion, considered a marker for inflammation 
and carcinogenesis,113 was also reduced by 1,25(OH)

2
D

3
. This 

was demonstrated by reduced nuclear staining with a monoclo-
nal antibody to 8-nitroguanine in irradiated human ex vivo skin 
explants.93 The 8-nitroguanosine lesion is rapidly removed by 
depurination to leave an abasic site.114 We have also demonstrated 
that 1,25(OH)

2
D

3
 reduced abasic sites in irradiated keratinocytes 



©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

www.landesbioscience.com	 Dermato-Endocrinology	 25

by Comet assay with endonuclease IV digestion, which cleaves 
DNA at abasic sites.98

Vitamin D compounds reduce UV-induced cell death in 
skin cells. Cell death is suppressed in UV-irradiated skin cells 
treated with vitamin D compounds despite a further increase in 
expression of p53.62,89 This has been demonstrated in human skin 
cell cultures treated with 1,25(OH)

2
D

3
85,89,91,115-119 and the vita-

min D analogs calcipotriol,120 JN,85 JM85 and QW.88 Evidence 
suggests that this is facilitated by a non-genomic pathway as the 
non-genomic antagonist HL suppressed improved cell survival 
with 1,25(OH)

2
D

3
.85 Apoptotic cells (sunburn cells) in the epi-

dermis of UV irradiated skin were also reduced by 1,25(OH)
2
D

3
 

when applied systemically in mice,121 and topically in mice62,88,89 
and human subjects.92 When applied to an in vivo model bufa-
lin reduced the number of sunburn (apoptotic) cells as well as 
the aforementioned thymine dimers in the epidermis of Skh:hr1 
hairless mice. At a concentration of 115 pmol/cm2, topical bufalin 
significantly (p < 0.01) reduced apoptotic keratinocytes (sunburn 
cells) in skin of Skh:hr1 mice irradiated with a single exposure of 
three minimal erythemal doses of solar-simulated UV radiation 
as described in ref. 62 compared with vehicle treatment and to a 
similar extent as 23 pmol/cm2 of 1,25(OH)

2
D

3
.

The mechanism for this improved cell survival in the presence 
of vitamin D compounds is almost certainly due to reduced DNA 
damage, and may be mediated by a reduced catalytic action of 
caspase 3 on poly(ADP-ribose) polymerase118 and through effects 
on sphingosine-1 phosphate, a breakdown product of membrane 
sphingolipid and second messenger in the apoptotic signaling 
pathway.116

Vitamin D compounds reduce nitric oxide derivatives. 
Nitric oxide (NO) levels are increased in irradiated skin112,122-126 
as noted in the above section. High levels of NO cause nitro-
sylation of DNA repair enzymes,127 inhibit DNA repair128 and 
combine with excess levels of ROS to produce more toxic RNS 
intermediates that cause oxidative and nitrosative damage to 
DNA and proteins and peroxidation of lipids.102 The vitamin 
D hormone, 1,25(OH)

2
D

3
, has been shown to reduce nitrite89 

and 3-nitrotyrosine,62 two stable end products of the nitric 
oxide pathway. Furthermore, similar to 1,25(OH)

2
D

3
, the 

inhibitors of nitric oxide synthase, aminoguanidine and L-N-
monomethylarginine, reduced UV-induced nitrite and thymine 
dimers in skin cells,85,89 while a selective inhibitor of the induc-
ible isoform (1400 W) reduced both CPDs and 8-oxodG.98 It is 
likely that a reduction in post-UVR NO products is a mecha-
nism whereby 1,25(OH)

2
D

3
 protects skin cells from oxidative 

and nitrative DNA damage, as well as enhancing DNA repair 
and improving cell survival. Whether a reduction in NO prod-
ucts contributes to a reduction in thymine dimers as well, is 
unclear, since in one study in human keratinocytes, the reduc-
tion in NO products with 1,25(OH)

2
D

3
 was dissociated from 

the reduction in thymine dimers.94

Mutagenesis. Most DNA damage is promutagenic, includ-
ing that induced by RNS.100,129-131 If the lesions are not perfectly 
repaired before DNA replication, the damaged nucleobases are 
replaced with an adenine during transcription. This may alter the 
coding sequence.35 Mutations with sequence changes C to T tran-
sitions are associated with unrepaired CPDs, which are the pre-
dominant mutation due to the relatively high frequency and slow 
repair of CPD. These are now termed “solar signature mutations” 
rather than “UVB signature mutations,” as the contribution of 
UVA to mutations in unrepaired bipyrimidines is currently being 
debated (refer to refs. 80, 132–135). The hallmark of mutations 
from UV- induced 8-oxodG are G to T transversions, found pre-
dominantly in the basal layer of the epidermis where keratinocyte 
stem cells and melanocytes are situated. These mutations have 
implications for skin cancer development.100,136 The presence of 
mutations in the p53 tumor suppressor gene in many skin can-
cers, including premalignant precursors of SCC, correlate with 
both UVA- and UVB-induced lesions, providing evidence of 
their involvement in photocarcinogenesis.137-140 Although there 
is no direct data that 1,25(OH)

2
D

3
 reduces mutagenicity in 

UV-irradiated skin, the observation that photocarcinogenesis is 
substantially reduced by topical application of this compound 
suggests that this is indeed the case.62

D compounds and UV-induced immune suppression. 
The UVR component of sunlight causes immune suppres-
sion.141 These immunosuppressive effects suppress cell-medi-
ated immune reactions that normally destroy developing skin 
tumors.142 The VDR is present in several immune cells, including 
monocytes, macrophages and activated T and B cells.143 In fact, it 
has been suggested that the UVB-induced immune suppression 
from sun exposure is mediated through vitamin D. Interestingly, 
1,25(OH)

2
D

3
 was reported to increase mRNA expression of 

interleukin-10 (IL-10), an immune suppressive cytokine, and 
induce IL-10 secretion by mouse mast cells, thereby adding to 

Figure 2. Photoprotection against thymine dimers by 1,25(OH)2D3 and 
Bufalin in human keratinocytes. DNA damage was assessed using a 
monoclonal antibody to thymine dimers,182 immunohistochemistry 
and image analysis as previously described89,94 at 3 h after UV irradia-
tion, in human keratinocytes treated with vehicle, 1,25(OH)2D3 or three 
concentrations of bufalin and expressed as positively stained nuclei 
as a percent of total nuclei. The graph illustrates pooled data from a 
minimum of four independent experiments. *** denotes a significant 
difference compared with vehicle (***p < 0.001), ^, ^^, ^^^ denotes a 
significant difference compared with 10-9 M bufalin (̂ p < 0.05, ^^p < 
0.01, ^^^p < 0.001).
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the mast cell’s ability to suppress inflammation and skin pathol-
ogy at sites of UV irradiation.144

The effects of vitamin D compounds on the immune system 
are complex and depend on many factors including concentra-
tion. Interestingly, high concentrations of vitamin D have been 
shown to be immunosuppressive,145 while vitamin D deficiency 
also causes immunosuppression.146 Studies by our group have 
shown that vitamin D compounds including 1,25(OH)

2
D

3
, 

JN and QW inhibit UV-induced immune suppression (contact 
hypersensitivity reaction to oxazolone) in hairless mice.62,87,88 
Conversely, studies in human subjects showed that 1,25(OH)

2
D

3
 

provided no protection against UV-induced suppression of a 
recall delayed-type hypersensitivity (DTH) (Mantoux) reac-
tion and that topical 1,25(OH)

2
D

3
 (doses of 1 μg or higher) was 

immunosuppressive in a recall DTH model.92 This is supported 
by findings in another human study in which the vitamin D ana-
log calcipotriene suppressed contact hypersensitivity responses to 
dinitrochlorobenzene by 64%, a level similar to that caused by 
solar simulated UV.147

Photoaging. Photoaging, also known as dermatoheliosis,148 is 
a premature aging process caused by excessive exposure to solar 
UV radiation determined by the degree of sun exposure and 
the level of skin pigmentation.149 This extrinsic aging process is 
distinguished from the natural chronological or intrinsic aging, 
in that it produces several complex and sequential cellular and 
molecular phenomena from photochemical reactions that are not 
seen in chronological aging including inflammation, oxidative 
stress, DNA lesions, mutation and immunosuppression caused 
by UV.

The acute effects of UVB on skin include the upregulation 
of TNFα by both keratinocytes and dermal fibroblasts within a 
couple of hours after UV exposure,150 which is an important step 
for development of the inflammatory cascade in skin. This is aug-
mented by release of pro-inflammatory cytokines such as IL-1, 
and IL-6151 due to UV-induced DNA lesions such as CPDs and 
6–4 photoproducts.152-154 These DNA lesions are also known to 
enhance expression of inducible nitric oxide synthetase (iNOS) 
that increases nitric oxide products.155 UVA is known to induce 
IL-10 in dermal macrophages and neutrophils which are, at least 
in part, responsible for UV-induced immunosuppression. Reeve 
and Tyrrell also reported the induction of IL-12 by UVA, which 
they proposed would counteract the UVB- induced immunosup-
pression through the hemoxygenase 1 pathway.156 UV exposure 
is also known to deplete cellular antioxidants such as glutathi-
one,157 which increases reactive oxygen species (ROS) and reac-
tive nitrogen species (RNS), which adds to the inflammatory 
process through peroxidation of membrane lipids and production 
of prostaglandins E

2
.158

The signs of photoaging include wrinkles, reduced elasticity, 
dyspigmentation, telangiectasia and the development of benign 
or malignant tumors.149 Wrinkles and reduced elasticity are pro-
duced, in part, through activation protein 1 (AP-1) transcription 
factor, which is known to be a critical mediator of photoaging 
and also involved in the overexpression of matrix metalloprotein-
ases (MMPs) that in turn cause both the reduction of dermal col-
lage and inhibition of collagen synthesis.159 Interestingly, MMPs 

are also known to be responsible for collagen breakdown during 
invasion of various malignancies.160

The mechanism of UV-induced melanogenesis is unclear. 
There is a constant basal melanogenesis determined by genetic 
makeup, and this is increased with exposure to UV.161 Since UV 
is responsible both for sunburn and tanning, it is believed the 
mechanism may be similar. Certainly, pigmentary disorders such 
as solar lentigo are commonly seen in photoaged skin, and it was 
postulated they were caused by UV-induced DNA mutations 
of keratinocytes and melanocytes with subsequently increased 
melanogenesis and transfer.162 The evidence of this is seen in 
patients suffering from xeroderma pigmentosum with excessive 
development of severe dyspigmentation and skin tumors due to 
impaired nucleotide excision repair, which is important for repair 
of UV-induced cyclobutane pyrimidine dimers and other photo-
products.41 Melanogenesis was once thought to be the negative 
feedback mechanism to control vitamin D synthesis to prevent 
hypercalcemia, but this is now unlikely and it has been proposed 
that the “over-irradiation” derivatives of the vitamin D pathway 
from excessive UVR reduce vitamin D synthesis in skin.163

To prevent photoaging, the most important and obvious 
strategy is to minimize UV exposure through lifestyle changes 
and using effective UV filters to prevent penetration of UVR 
into skin. Further to this, cellular and molecular protection 
to minimize some of the molecular events described may be 
attempted. In particular, prevention of UV-induced ROS has 
been suggested to be an important aspect in photoaging pre-
vention, although these claims may be difficult to substantiate 
since there still are many challenges in accurately assessing the 
antioxidant activities required to provide cellular protection.164 
Endogenous, naturally occurring cellular protective anti-oxi-
dants such as superoxide dismutase, catalase, glutathione per-
oxidase and glutathione reductase are known to be depleted after 
UV exposure in animals165 as well as in photoaged human skin.166 
There is some evidence that topical and systemic administration 
of antioxidants such as vitamin E, vitamin C, polyphenols and 
carotenoids provide some photoprotection in human skin.167-171 
Several plant based polyphenolic compounds such as green tea, 
grape seed and pomegranate showed some protection in vitro, 
and it has been suggested that they may reduce photoaging and 
photocarcinogenesis.172 Topical all-trans-retinoic acids showed 
more convincing evidence of photo-aging protection through 
inhibition of UV-induced inflammation mediated by AP-1 and 
NFkB transcription factors.173,174 It does this through reduction 
in UV-induced c-jun both by reducing the accumulation and 
also stimulating the breakdown of c-jun through ubiquitin-pro-
teasome degradation.173,174

There is some evidence that suggests vitamin D compounds 
may also contribute to reductions in photoaging. As noted ear-
lier, vitamin D metabolites and other photoproducts reduce 
several types of UV-induced DNA damage including thymine 
dimers, 8-oxodG and 8-nitroguanosine.62,85,87,89,90,92,93,175 They 
also reduce NO products (8-nitrotyrosine and nitrite) and aug-
ment p53 expression,89 thereby probably reducing inflammation 
and improving DNA repair. Both 1,25(OH)

2
D

3
, and an analog, 

1,24(OH)D
2
, reduced TNFα in human macrophages176 and 
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also caused upregulation of IkappaBalpha levels by increased 
mRNA stability thereby reducing nuclear translocation of 
NFkB and downgrading its activity. We have also reported that 
1,25(OH)

2
D

3
 reduced expression of the inflammatory marker 

IL-6 in mouse skin (Fig. 3),177 similar to the reduction in IL-6 
production by irradiated keratinocytes treated with this com-
pound in vitro.118 Treatment of mice with topical 1,25(OH)

2
D

3
 

also reduced post-UV irradiation skin edema (Fig. 4).62

1,25(OH)
2
D

3
 was found to have regulatory effects on AP-1, 

and MMPs via the VDR178 and a recent study suggested that 
1,25(OH)

2
D

3
 attenuated TNFα induced MMP3, hence prob-

ably also reducing UV-induced collagen degradation in skin.179

In summary, vitamin D and photoproducts are likely to pro-
vide protection against photoaging by protecting keratinocytes 
and fibroblasts from UV-induced DNA damage, oxidative stress 
and excessive nitric oxide products and also protecting against 
dermal collagen breakdown through MMP regulation.

Vitamin D system and photocarcinogenesis. Vitamin D 
and its photoproducts provide photoprotection in several types 
of UV-induced DNA damage, as described earlier, including 
CPD,62,85,87,89,90,92,93,177 8-oxodG93,98 and 8-nitroguanosine.93,98 
The further increase in p53 with 1,25(OH)

2
D

3
, which is known 

to promote DNA repair and thus reduce mutagenesis, is also 
thought to be an important mechanism of photoprotection by 
1,25(OH)

2
D

3
.89 Skin cancers induced by UV or chemically were 

significantly increased in VDR knockout mice.24-26 Interestingly, 
the absence of a vitamin D receptor also blocked the ability of 
1,25(OH)

2
D

3
 to reduce UV-induced thymine dimers in human 

skin fibroblasts.90 VDR is also implicated in the DNA repair 
process where VDR-/- mice showed significantly higher CPD 
levels when subjected to UVB, which failed to reduce over 
time compared with the wild-type mice.24 We also reported the 
key role of the alternate receptor ERp57/MARRS/PDIA3 in 
1,25(OH)

2
D

3
-mediated photoprotection. Blockade of this pro-

tein by a neutralizing antibody or downregulation with siRNA, 
abolished the reduction in post-UV thymine dimers in skin cells 
treated with 1,25(OH)

2
D

3
.90 In this model the VDR and ERp57 

co-immunoprecipitated in non-nuclear cell extracts.90

It has now been demonstrated that treatment with 
1,25(OH)

2
D

3
 or the derivative of the over-irradiation prod-

uct lumisterol, JN, reduced photocarcinogenesis in mice62 
(Fig. 5). The low calcemic analog, QW, also protected against 
UV-induced cell death, DNA damage and immunosuppres-
sion,85,87 but at a comparable dose to 1,25(OH)

2
D

3
, did not 

confer protection in a model of chronic UV-induced skin carci-
nogenesis in hairless mice.180 It is possible that this analog might 
prove effective at higher doses. The non-steroid compound 
bufalin, also protected against UV-induced thymine dimers in 
vitro and in vivo, but has not yet been tested in a photocarcino-
genesis model. Bufalin is more likely to be stable in the presence 
of light than vitamin D compounds, as it does not feature the 
broken B-ring seen in the molecular structure of 1,25(OH)

2
D

3
. 

Provided that bufalin can mimic the photoprotective proper-
ties of other low-calcemic analogs being trialled, it could pro-
vide a cheap and efficient way to increase the level of protection 
against UV-induced skin damage.

Figure 3. Reduction of UV-induced IL-6 expression by topical applica-
tion of 1,25(OH)2D3 in mouse skin. Immunohistochemical detection of 
IL-6 in Skh:hr1 hairless mice skin was with a monoclonal antibody to IL-6 
and a biotinylated secondary rabbit anti-goat IgG. Figures are represen-
tative dorsal skin sections (A) non-irradiated skin or (B) after solar simu-
lated radiation followed by 48-h treatment with vehicle or (C) after solar 
simulated radiation followed by 48-h treatment with 1,25D (22.8 pmol/
cm2). Reprinted from The Journal of Steroid Biochemistry and Molecular 
Biology. R.S. Mason, V.B. Sequeira, K.M. Dixon, C. Gordon-Thomson, K. 
Pobre, A. Dilley, M.T. Mizwicki, A.W. Norman, D. Feldman, G.M. Halliday, 
V.E. Reeve (2010).
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Summary and Perspectives

It has been noted with some curiosity that while vitamin D 
receptor knockout mice are more susceptible to photocarcino-
genesis, mice with a knockout of the 1α-hydroxylase enzyme and 
so unable to make 1,25(OH)

2
D

3
 are not.181 Given that a range 

of vitamin D compounds, and even the non-steroidal com-
pound bufalin, appear to have some protective properties against 
UV-damage, it is likely that further metabolites of vitamin D, or 
even other over-irradiation products, will be found to contribute 
to endogenous photoprotection by the vitamin D system. The 
production of many vitamin D compounds in skin takes several 
hours, so it is likely that this system mostly protects against the 
next exposure to UV, in a similar manner to increased pigmenta-
tion and increased epidermal thickness, both well-known adap-
tive responses to UV. By applying vitamin D or vitamin D like 
compounds during or even immediately after UV exposure, it 
seems possible to enhance endogenous protection of skin from 
the various changes that lead to photocarcinogenesis. The search 
is now on to find relatively cheap and stable vitamin D-like com-
pounds to add to sunscreens and possibly even after sun lotions 
to reduce the risk of UV damage.
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Figure 4. 1,25(OH)2D3 and JN protect against UV-induced edema. 
1,25(OH)2D3 and JN reduce UV-induced edema in Skh:hr1 mouse skin. 
Mice were exposed to 1 × 3 MEDs (minimal erythemal doses) of solar-
simulated UVR (3.98 kJ/m2 UVB and 63.8 kJ/m2 UVA) and were treated 
topically on the UV-irradiated dorsal surface immediately after UVR 
exposure with 100 mL of vehicle only, 1,25(OH)2D3, or JN. Edema was 
measured as dorsal skin-fold thickness in the mice 48 h after UVR expo-
sure. Significantly different from vehicle-treated UV-irradiated mice. **p 
< 0.01; n = 5. Reproduced from Cancer Prevention Research. K.M. Dixon, 
A.W. Norman, V.B. Sequeira, R. Mohan, M.S. Rybchyn, V.E. Reeve, G.M. 
Halliday, R.S. Mason (2011).
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