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A method for intelligent allocation of diagnostic testing by
leveraging data from commercial wearable devices: a case
study on COVID-19
Md Mobashir Hasan Shandhi 1,11, Peter J. Cho 1,11, Ali R. Roghanizad1,11, Karnika Singh 1, Will Wang1, Oana M. Enache 2,
Amanda Stern1, Rami Sbahi 1, Bilge Tatar1, Sean Fiscus1, Qi Xuan Khoo1, Yvonne Kuo1, Xiao Lu1, Joseph Hsieh1, Alena Kalodzitsa1,
Amir Bahmani 3, Arash Alavi 3, Utsab Ray3, Michael P. Snyder 3, Geoffrey S. Ginsburg 4, Dana K. Pasquale 5,6,
Christopher W. Woods7,8, Ryan J. Shaw9,10 and Jessilyn P. Dunn 1,2✉

Mass surveillance testing can help control outbreaks of infectious diseases such as COVID-19. However, diagnostic test shortages
are prevalent globally and continue to occur in the US with the onset of new COVID-19 variants and emerging diseases like
monkeypox, demonstrating an unprecedented need for improving our current methods for mass surveillance testing. By targeting
surveillance testing toward individuals who are most likely to be infected and, thus, increasing the testing positivity rate (i.e.,
percent positive in the surveillance group), fewer tests are needed to capture the same number of positive cases. Here, we
developed an Intelligent Testing Allocation (ITA) method by leveraging data from the CovIdentify study (6765 participants) and the
MyPHD study (8580 participants), including smartwatch data from 1265 individuals of whom 126 tested positive for COVID-19. Our
rigorous model and parameter search uncovered the optimal time periods and aggregate metrics for monitoring continuous digital
biomarkers to increase the positivity rate of COVID-19 diagnostic testing. We found that resting heart rate (RHR) features
distinguished between COVID-19-positive and -negative cases earlier in the course of the infection than steps features, as early as
10 and 5 days prior to the diagnostic test, respectively. We also found that including steps features increased the area under the
receiver operating characteristic curve (AUC-ROC) by 7–11% when compared with RHR features alone, while including RHR features
improved the AUC of the ITA model’s precision-recall curve (AUC-PR) by 38–50% when compared with steps features alone. The
best AUC-ROC (0.73 ± 0.14 and 0.77 on the cross-validated training set and independent test set, respectively) and AUC-PR
(0.55 ± 0.21 and 0.24) were achieved by using data from a single device type (Fitbit) with high-resolution (minute-level) data. Finally,
we show that ITA generates up to a 6.5-fold increase in the positivity rate in the cross-validated training set and up to a 4.5-fold
increase in the positivity rate in the independent test set, including both symptomatic and asymptomatic (up to 27%) individuals.
Our findings suggest that, if deployed on a large scale and without needing self-reported symptoms, the ITA method could improve
the allocation of diagnostic testing resources and reduce the burden of test shortages.
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INTRODUCTION
The COVID-19 pandemic has severely impacted our world, with
more than 562 million COVID-19 cases and 6.37 million deaths
estimated worldwide1. In the US alone, there have been more
than 90 million cases and 1 million deaths at the time of writing2.
Mass surveillance testing has been identified as the most effective
tool to monitor the spread of infectious diseases including COVID-
193. However, a combination of cost, availability, and impracti-
cality of frequent and widespread testing impedes the mass
epidemiologic surveillance needed to curb new disease outbreaks.
To date, COVID-19 diagnostic test shortages are still prevalent
globally, and shortages continue to occur in the US with the onset
of new variants (e.g, Delta, Omicron)4–6. For example, when the
Delta variant emerged in July 2021, daily demand for tests across
the US surged from 250k to 1.5 million in the span of 2 months7. A
similar circumstance occurred with the Omicron variant, where

testing capacity failed to meet the sudden demand8–10. Inefficient
diagnostic testing is also exacerbating the emerging threat of
monkeypox in the US11,12. Furthermore, rural-urban disparities in
testing access have worsened existing inequities resulting in
further harm to underserved communities13,14. In June 2020, it
was estimated that 64% of counties in the United States,
predominantly rural, did not have access to COVID-19 testing15.
Such circumstances lead to underreporting of COVID-19 incidence
and may lead to a premature sense of security and unwarranted
changes in public health measures14. Thus, there is an unprece-
dented need to improve our current and future methods for mass
COVID-19 surveillance testing, especially as stronger testing
capacity has been associated with reduced mortality and greater
pandemic control16.
By targeting surveillance testing toward individuals who are

more likely to be infected with the disease, more positive cases
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can be captured with the same number of tests, increasing the
positivity rate of the tested population (Fig. 1a)4. The positivity rate
(i.e., percent positive rate or percent positive) is the percentage of
all diagnostic tests performed that are positive. The likelihood of
disease presence prior to a diagnostic test, or the pretest
probability, is dependent on disease prevalence in the population
under surveillance. By filtering the broader surveillance population
to a subpopulation with a higher likelihood of infection, the
allocation and utility of tests can be improved (Fig. 1a). In other
words, more positive cases can be captured with the same
number of tests and, thus, the testing positivity rate is increased.
The development of tools to increase the testing positivity rate is
not only crucial in the early phase of an infectious disease
outbreak when the available clinical diagnostic testing tools are
inadequate to meet the existing demand, but also throughout
pandemics in remote locations, underserved communities, and
low- and middle-income countries where testing is known to be
particularly scarce17.
The rapid adoption of commercial wearable devices such as

smartwatches and activity trackers brings forth opportunities to
apply artificial intelligence methods toward the development of
novel tools to support an intelligent disease detection infra-
structure. Methods such as reinforcement learning or graph neural
networks have already been proposed to aid contact tracing and

surveillance testing18,19. Multiple studies suggest the utility of
digital biomarkers, objective and quantifiable digitally collected
physiological and behavioral data (e.g., resting heart rate (RHR),
step count, sleep duration, and respiratory rate), collected by
consumer devices along with patient-reported symptoms to
monitor the progression of respiratory and influenza-like ill-
nesses20–27. These studies emphasize the utility of wearables data
as compared with symptom surveys or known exposure to COVID-
19 as a result of its accessibility and scalability.
To determine who to test in settings where there are a limited

number of diagnostic tests available (i.e., limited testing capacity),
we explored whether information from wearables could help rank
individuals by their likelihood of a current COVID-19 infection. To
achieve this, we developed an Intelligent Testing Allocation (ITA)
model that leverages differences in digital biomarkers to
distinguish individuals who are likely positive or negative for
COVID-19 in order to improve current methods of diagnostic test
allocation and increase testing positivity rates.

RESULTS
We developed the CovIdentify platform in April 2020 to integrate
commercial wearable device data and electronic symptom surveys
to calculate an individual’s real-time risk of being infected with

Fig. 1 Overview of the Intelligent Testing Allocation (ITA) model, the CovIdentify cohort, and data. a Overview of the ITA model in
comparison to a Random Testing Allocation (RTA) model that demonstrates the benefit of using the ITA model over existing RTA methods to
improve the positivity rate of diagnostic testing in resource-limited settings. Human symbols with orange and blue colors represent
individuals with and without COVID-19 infection, respectively. b A total of 7348 participants were recruited following informed consent in the
CovIdentify study, out of whom 1289 participants reported COVID-19 diagnostic tests (1157 diagnosed as negative for COVID-19 and 132
diagnosed as positive for COVID-19). c The top panel shows the time-averaged step count and the bottom panel shows the time-averaged
resting heart rate (RHR) of all participants (n= 50) in the training set (Supplementary Fig. 3, blue) who were tested positive for COVID-19 with
the pre-defined baseline (between –60 and –22 days from the diagnostic test) and detection (between –21 and –1 days from the diagnostic
test) periods marked with vertical black dashed lines. The dark green dashed lines and the light green dash-dotted lines display the baseline
period mean and ± 2 standard deviations from the baseline mean, respectively. The light purple dashed vertical line shows the diagnostic
test date.
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COVID-19. A total of 7348 participants e-consented to the
CovIdentify study between April 2, 2020, and May 25, 2021,
through the secure Research Electronic Data Capture (REDCap)
system (Fig. 1b)28. Of those who consented, 6765 participants
enrolled in the study (Supplementary Table 1) by completing an
enrollment survey consisting of 37–61 questions that followed
branching logic (Supplementary Note 1)28. Of those enrolled, 2887
participants connected their smartwatches to the CovIdentify
platform, including 1689 Garmin, 1091 Fitbit, and 107 Apple
smartwatches. Throughout the course of the study, 362,108 daily
surveys were completed by 5859 unique participants, with a mean
of 62 and a median of 37 daily surveys completed per individual.
Of all CovIdentify participants, 1289 participants reported at least
one diagnostic test result for COVID-19 (132 positive and 1157
negative) (Fig. 1b). All survey and device data collected through
CovIdentify were transferred securely to a protected cloud
environment for further analysis. Out of the 1289 participants
with self-reported diagnostic test results, 136 participants (16
positive and 120 negative) had smartwatch data available during
the time periods needed for analysis. These 136 participants had
151 ± 165 days of wearable data before the corresponding
diagnostic test date. The relatively small number of participants
with available smartwatch data out of the larger population is
consistent with similar bring-your-own-device studies aimed at
COVID-19 infection prediction from personal devices22,23,27.

Development of the Intelligent Testing Allocation (ITA) model
A diagnostic testing decision support model was designed to
leverage real-world data to intelligently allocate diagnostic tests in
a surveillance population where there are insufficient tests
available to test all people in the surveillance group (Fig. 1a,
top). To increase the study population size, we augmented our
dataset with data from the MyPHD study. Similar to CovIdentify,
MyPHD collected simultaneous smartwatch, symptom, and
diagnostic testing data during the COVID-19 pandemic23,27. The
wearables and diagnostic testing data were publicly available23,27

while symptom data were added for this work. From the MyPHD
study, smartwatch, symptom, and diagnostic testing data from an
additional 1129 participants (110 positive and 1019 negative) were
included in this analysis, including 53 ± 52 days of wearable data
before corresponding diagnostic test dates.

Differences in resting heart rate (RHR) and steps measured by
smartwatches well before and immediately prior to a COVID-
19 diagnostic test
To compare digital biomarkers between healthy and infected
states, data were segmented into two time periods: a baseline
period (22–60 days prior to the diagnostic test date) and a
detection period (21 days prior to the diagnostic test date). We
chose this window for the detection period to encompass the
COVID-19 incubation period (2–14 days) reported by the CDC as
well as the common delay between symptom onset and
diagnostic testing. Consistent with prior literature20,24, daily RHR
increased significantly during the detection period from baseline
for those who were COVID-19 positive, with an average difference
(±SD) of 1.65 ± 4.63 bpm (n= 117, p value <0.001, paired t-test)
over the entire time periods. On average, daily RHR values more
than two standard deviations from the baseline mean were
present as early as 13 days prior to the positive test, with an
increasing trend that peaked at 1 day prior to the test date (Fig. 1c,
bottom). Conversely, the step count during the detection period
decreased significantly from baseline, with a difference of
–854 ± 2386 steps/day (n= 125, p value <0.0001, paired t-test).
On average, step counts less than two standard deviations from
the baseline mean were present as early as 10 days prior to the
positive test and reached the minimum value 2 days after the test
date (Fig. 1c, top). For the subset of participants in our dataset

with available symptom onset dates, daily RHR and step count
that differed beyond two standard deviations from the baseline
mean occurred as early as 5 days before the symptom onset date
(Supplementary Fig. 1). Timelines for this and other real-world
infection studies should be considered as rough estimates
because exact dates of exposure and symptom onset are
unknown, unlike in controlled infection studies26,29. Our findings,
however, are consistent with the 2–14-day COVID-19 incubation
period reported by the CDC30.
There was also a significant difference in digital biomarkers

between the baseline and detection periods of participants who
tested negative, but it was less pronounced than for those who
tested positive. Specifically, the daily RHR difference was
0.58 ± 4.78 bpm (n= 1094, p value <0.05, paired t-test) and the
step count difference was –281 ± 2013 steps/day (n= 1136,
p value <0.0001, paired t-test). We hypothesized that the digital
biomarker differences in the COVID-19-negative group were
because a subset of the negative group may have experienced
a health anomaly other than COVID-19 (e.g., influenza) that
resulted in physiological differences between the baseline and
detection periods. Another recent study also observed RHR
elevation and activity reduction in individuals who were COVID-
19 negative but flu positive, and the magnitudes of these
differences were lower than in individuals who were COVID-19
positive22. To explore the possibility that our COVID-19-negative
group contains false negatives due to test inaccuracies or
physiological differences due to a health anomaly besides
COVID-19, we performed hierarchical clustering on the symptom
data from individuals who reported negative tests and found a
trend toward multiple subgroups (Supplementary Fig. 2). This
finding supports the existence of COVID-19-negative subgroups. It
should also be noted that the highly significant p value for the
digital biomarker differences in the COVID-19-negative group is
likely attributable to the higher number of participants (9-fold
higher) compared with the COVID-19-positive group.

Cohort definition
For the ITA model development, we only included subjects with
sufficient wearable data (≥50% days with a device-specific
minimum amount of data availability during periods of sleep for
participants with high-frequency wearable data or ≥50% days with
device-reported daily values for participants without high-
frequency wearable data) in each of the baseline and detection
periods. Sleep periods were defined as epochs of inactivity that
occurred between midnight and 7 AM on a given day27.
Consequently, 83 participants from CovIdentify (9 COVID-19
positive and 74 COVID-19 negative) and 437 participants from
MyPHD (54 COVID-19 positive and 383 COVID-19 negative) were
included in the ITA model development process (Table 1). Of the
63 COVID-19-positive cases, 24 had a clinically documented
diagnosis, while the remainder were self-reported. Of the 520
participants with sufficient wearable data, 469 had high-frequency
minute-level wearable data (280 from Fitbits) from which we
calculated daily RHR and step counts. Device-reported daily values

Table 1. Summary of the cohorts.

Cohort Total N (Test N) Total COVID
+ (test)

Total
COVID– (test)

All-Frequency (AF) 520 (105) 63 (13) 457 (92)

All-High-
Frequency (AHF)

469 (97) 54 (11) 415 (86)

Fitbit-High-
Frequency (FHF)

280 (63) 40 (7) 240 (56)

Total refers to training + test data.
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were available for the remaining 51 participants. To explore
whether high-frequency wearable data or high-frequency wearable
data from a single device type could improve the performance of
digital biomarkers for ITA, we developed and validated our ITA
model using three cohorts, which we refer to as (1) the All-
Frequency (AF) cohort: participants with both high-frequency and
device-reported daily values, (2) the All-High-Frequency (AHF)
cohort: participants with high-frequency data only, and (3) the
Fitbit-High-Frequency (FHF) cohort: participants with high-
frequency Fitbit data only (Supplementary Fig. 3 and Supplemen-
tary Table 2). We analyzed these three cohorts separately in the
subsequent analysis and compared the resulting ITA model
performance. We divided each cohort into an 80% train and 20%
test split, with FHF as a subset of AHF, which itself is a subset of AF
to ensure that no observations in the training set of one cohort
existed in the test set of another (Supplementary Fig. 3).
To explore differences in digital biomarkers (median or mean)

between the detection and baseline periods that may be useful
for the development of ITA model features, we designed four
deviation metrics including (1) Δ (detection – baseline), (2)
normalized Δ, (3) standardized Δ, and (4) Z-score ((detection –
baseline mean) / baseline standard deviation) (Table 2). Each of
the four deviation metrics was calculated on the training data by
digital biomarkers (RHR and step count), day in the detection
period, and cohort (examples in Supplementary Figs. 4 and 5),
resulting in four calculated metrics per cohort per biomarker.
These training data deviation metrics were used as inputs into the
subsequent statistical analysis for feature extraction and the ITA
model training. We extracted the same resultant features from the
independent test set for subsequent ITA model evaluation.
On average, step count decreased (ΔSteps) significantly from

baseline to the detection period in COVID-19-positive versus
-negative participants (574 vs. 179, 479 vs. 234, and 601 vs.
216 steps per day for the AF, AHF, and FHF training data,
respectively; p value <0.05, unpaired t-tests) (Fig. 2a and
Supplementary Figs. 6a and 7a, top plots). Conversely, RHR
increased (ΔRHR) significantly from baseline to the detection
period in COVID-19-positive versus -negative participants (1.8 vs.
0.7, 1.9 vs. 0.8, and 1.8 vs. 0.7 bpm for the AF, AHF, and FHF
training data, respectively; p value <0.05, unpaired t-test) (Fig. 2a
and Supplementary Figs. 6a and 7a, bottom plots). The 95%
confidence intervals of the mean ΔSteps and the mean ΔRHR
overlap considerably between positive and negative participants
for the initial phase of the detection period (approximately
21–5 days prior to the test date). However, closer to the diagnostic
test date (approximately 4–1 day prior to the test date) the 95%

confidence intervals of mean ΔSteps largely do not overlap, and
the 95% confidence intervals of mean ΔRHR do not overlap at all
(Fig. 2a). The fact that the 95% confidence intervals of mean
ΔSteps and mean ΔRHR do not overlap later in the detection
period is consistent with prior literature31 and suggests that it is
possible to aggregate data into summary statistics to develop a
decision boundary that effectively separates COVID-19-positive
and -negative cases. However, the overlap in estimated mean
values prior to day 5 suggests that separation between positive
and negative cases may be more challenging prior to that point in
time. Although the 95% confidence intervals closer to the test
date were non-overlapping, there was overlap in the variance of
the digital biomarkers between the two groups during that time
period (Supplementary Fig. 8), which may hinder model perfor-
mance as separation of the 95% confidence intervals does not
necessarily imply significant differences between the groups32.
Similar estimates of variability have not been reported prior, so we
were unable to compare our mean statistics variability to prior
literature.
To maximize the separability of the COVID-19-positive and

-negative groups in the training set, we performed statistical
analysis to explore how different lengths and start times of the
detection window, parametrized respectively by two variables (the
detection end date, defined by days prior to the diagnostic test
date, and the detection window length defined by number of
days), would affect the separation between these two groups. We
performed a combinatorial analysis across these two parameters
(detection end date and detection window length) to calculate
five summary statistics (mean, median, maximum, minimum, and
range) of the four deviation metrics (Table 2) to be used as
features for model building. This resulted in 40 total summary
statistics (20 each from steps and RHR), which we refer to as steps
and RHR features, respectively. Statistical comparison of the steps
and RHR features between the COVID-19-positive and COVID-19-
negative groups was performed on the training data for the AF,
AHF, and FHF cohorts separately to uncover the statistically
significant features (unpaired t-tests; Benjamini–Hochberg cor-
rected p value <0.05).
A systematic grid search to optimize the detection end date and

detection window length demonstrated that the closer the
detection period is to the diagnostic test date, the larger the
number of features that are significantly different between the
COVID-19-positive and -negative groups (Fig. 2b and Supplemen-
tary Figs. 6b and 7b). Across all evaluated detection end dates, the
day prior to the diagnostic test date (detection end date= –1)
generated the largest number of significant features for all

Table 2. Features extracted from the digital biomarkers (DBs) for the development of ITA algorithm.

Metric Definition Equation

Deviation metrics

Delta (Δ) Deviation in digital biomarker from baseline median value DBDetection – DBBaseline, Median

Delta_Normalized Delta normalized by baseline median value ((DBDetection – DBBaseline, Median) / DBBaseline,
Median)

Delta_Standardized Delta standardized by baseline median and interquartile range (IQR) ((DBDetection – DBBaseline, Median) / DBBaseline,
IQR)

Z-score Deviation in digital biomarker from baseline mean, standardized by baseline
standard deviation (SD)

((DBDetection – DBBaseline, Mean) / DBBaseline, SD)

Summary statistics (features)

Average Average of interday deviation metrics

Median Median of interday deviation metrics

Maximum Maximum of interday deviation metrics

Minimum Minimum of interday deviation metrics

Range Range of interday deviation metrics

M.M.H. Shandhi et al.
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cohorts. Also, across all cohorts, there were more significant RHR
features than steps features (Fig. 2b and Supplementary Figs. 6b
and 7b). Additionally, RHR features became significant earlier in
the detection period than steps features (detection end date as
early as –10 vs. –5 days, respectively), which indicates that
changes in RHR occur earlier than steps during the course of
infection. Comparison across the three cohorts revealed AF
generated the highest number of significant features compared
with the AHF and FHF cohorts, which may be attributable to the
larger population size of AF. This demonstrates the tradeoff in
wearables studies between high-frequency data, which is less
common but contains more information, and larger population
data, which contains data at a variety of sampling frequencies but
overall more data to train the models. Across detection window
length values, 3 and 5 days generated the largest number of
significant features for all cohorts (Fig. 2c and Supplementary Figs.
6c and 7c), while 5 days also corresponded to the date of the
maximum divergence between ΔSteps and ΔRHR (Fig. 2a).
Ultimately, this systematic analysis pointed to an optimal
detection end date of 1 day prior to the diagnostic test date
and an optimal detection window length of 5 days for the

detection window duration, both of which were used to generate
features for the ITA model.
When implementing the detection end date timepoint and

detection window length duration that best separated the COVID-
19-positive and -negative groups, there were 28–31 significant
features (p value <0.05; unpaired t-tests with Benjamini–Hochberg
multiple hypothesis correction) that overlapped across the three
cohorts, indicating their robustness to differences in data
resolution and device types (Supplementary Table 3). The top
7–9 features, ranked in order of significance, originated from the
RHR digital biomarker. To gain a more mechanistic understanding
of the RHR and step digital biomarkers, we explored the top two
most significantly different (lowest p value) features for each
digital biomarker between those who were COVID-19-positive or
-negative in the AF cohort (Fig. 2d). The decrease in steps during
the detection period as compared to baseline was greater in those
with COVID-19, with a 2054 vs. 99 median decrease in steps
(median ΔSteps) and a 1775 vs. 64 mean decrease in steps for
those who were COVID-19 positive vs. those who were COVID-19
negative, respectively (p values <0.0001; unpaired t-tests with
Benjamini–Hochberg multiple hypothesis correction). Conversely,

Fig. 2 Overview of digital biomarker exploration and feature engineering for the ITA model development on the AF cohort. a Time-series
plot of the deviation in digital biomarkers (ΔSteps and ΔRHR) in the detection window compared to baseline periods, between the
participants diagnosed as COVID-19 positive and negative. The horizontal dashed line displays the baseline median and the confidence
bounds show the 95% confidence intervals. b Heatmaps of steps and RHR features that are statistically significantly different (p value <0.05;
unpaired t-tests) in a grid search with a different detection end date (DED) and detection window length (DWL) combinations, with green
boxes showing p values <0.05 and gray boxes showing p values ≥0.05. The p values are adjusted with the Benjamini–Hochberg method for
multiple hypothesis correction. c Summary of the significant features (p value <0.05; unpaired t-tests) from b, with each box showing the
number of statistically significant features for the different combinations of DED and DWL. The intersection of the significant features across
DWL of 3 and 5 days with a common DED of 1 day prior to the test date (as shown using the black rectangle) was used for the ITA model
development. d Box plots comparing the distribution of the two most significant steps and RHR features between the participants diagnosed
as COVID-19 positive and negative. The centerlines denote feature medians, bounds of boxes represent 25th and 75th percentiles, whiskers
denote nonoutlier data range and the diamonds denote outlier values.
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the increase in maximum deviation in RHR in the detection period
as compared to baseline (maximum ΔRHR) and the increase in
mean of Z-scores in the detection period as compared to baseline
(mean of Z-score RHR) were both significantly higher for COVID-
19-positive participants compared to COVID-19-negative partici-
pants (8.4 vs. 4.3 bpm for maximum ΔRHR and 0.9 vs. 0.2 for the
mean of Z-score-RHR; p values <0.0001; unpaired t-tests with
Benjamini–Hochberg multiple hypothesis correction). Consistent
across all three cohorts, the median and mean ΔSteps were the
most significant (lowest p value) steps features (Supplementary
Figs. 6d and 7d). However, the top two RHR features differed,
which were median and mean Z-score-RHR, and maximum ΔRHR
and maximum of normalized ΔRHR for the AHF and FHF cohorts,
respectively (Supplementary Figs. 6d and 7d and Supplementary
Table 3). The observation of the same top two steps features given
the differences in the top two RHR features across the three
cohorts may originate from the resolution and device-reported
digital biomarkers. For example, the definition of a step and the
calculation of the daily step count may be more similar across
different device types, while the RHR definition and available HR
data resolution may vary more substantially across device types.
Although these top features are significantly different between
those who are COVID-19 positive and negative, their distributions
do overlap, even though the tailedness varies in direction and
extent (Fig. 2d and Supplementary Figs. 6d, 7d, and 9), which
points to broader challenges surrounding predictive modeling
efforts using standard consumer wearable device data for COVID-
19 infection detection.
To achieve our broader goal of determining who should

receive a diagnostic test under circumstances where there are
limited tests available, we aimed to design a model that outputs
the probability of a person being infected. However, because our
ground truth information is binary (positive or negative for
COVID-19), we designed this model as a binary classifier that
enabled a straightforward evaluation of its performance. We used
the features that were significantly different in the training data
between those who were COVID-19 positive and negative
(29 features for AF, 28 for AHF, and 31 for FHF) as inputs into
five machine learning classification models: logistic regression,
k-nearest neighbors, support vector machine, random forest, and
extreme gradient boosting (Supplementary Table 4). We chose
these five well-established classification models to explore how
increasing model complexity and the addition of non-linearity
impact the model performance. We trained these classification
models on the training data using nested cross-validation (CV)
with an inner loop for hyperparameter tuning and an outer loop
for model selection. We chose recall as our preferred scoring
metric for model selection and evaluation to emphasize the
relative impact/cost of false negatives compared to false
positives, as an individual who is truly positive for COVID-19
and is wrongly classified as negative (or healthy) would further
spread disease.
Following training, we evaluated the performance of the trained

model on the independent test set and used two well-established
reporting metrics, including the most commonly reported metric
for studies of this kind (the area under the curve for the receiver
operating characteristic curve (AUC-ROC))24,33–37, and the metric
that is most appropriate for this classification task (AUC for the
precision-recall curve (AUC-PR))38 (Supplementary Table 3, Figs. 3
and 4, and Supplementary Fig. 10). AUC-PR is more appropriate
with class-imbalanced data38,39, which is the case here (12–15%
COVID-19 positive and 85–88% negative in each of the three
cohorts). The class imbalance in our dataset was not correctable
through resampling methods—we have observed that distribu-
tions of features overlap between the COVID-19-positive and
-negative participants, as demonstrated in the individual feature
comparison (Fig. 2d and Supplementary Figs. 6d and 7d), as well
as in the low dimensional representation (using principal

component analysis and t-stochastic neighbor embedding) of all
the features in the training set of the AF cohort (Supplementary
Fig. 11).
Of the five models tested, logistic regression outperformed all

other models based on the training AUC-PR for all three cohorts
and was also the best performing model based on the training
AUC-ROC for the AF and FHF cohorts. The superior performance of
the logistic regression among other (more complex and nonlinear)
models may be attributed to the tendency of more complex and
nonlinear models to overfit the training data40, which comes to
light with our CV methods. The superior performance of the
logistic regression also points to the potential to develop
explainable machine learning predictive models for the ITA model
that enables rapid translation from bench to bedside. Overall, the
classifier performed best in the FHF cohort (Supplementary
Table 3, Fig. 3c, f, and Supplementary Fig. 10c, f), followed by
the AHF cohort, (Fig. 3b, e and Supplementary Fig. 10b, e) and
finally the AF cohort (Fig. 3a, d and Supplementary Fig. 10a, d).
These performance differences indicate that device-related and
data resolution differences may confound disease-related physio-
logical differences captured by digital biomarkers. Therefore,
building models using a single device type and with higher
resolution data improves performance. For the FHF cohort, the
logistic regression model resulted in an AUC-ROC of 0.73 ± 0.12
and AUC-PR of 0.55 ± 0.21 on the cross-validated training set
(Fig. 3c, f), and AUC-ROC of 0.77 and AUC-PR of 0.24 on the test set
(Supplementary Fig. 10c, f). The AUC-ROC from the models were
similar to those reported in recent similar studies24,34,37.
However, the performance of the models based only on AUC-

ROC in the context of imbalanced data can be misleading, as a
large change in the number of false positives may have a small
effect on the false-positive rate39. The precision metric, which
integrates both true positives and false positives, can mitigate the
effect of an imbalanced dataset (e.g., the higher proportion of
negatives seen in this type of data) on a model’s performance. Our
precision-recall analysis (Fig. 3d–f and Supplementary Fig. 10d–f)
demonstrates that we can improve the recall (minimizing false
negatives) at the expense of precision. In an extreme example, we
were able to achieve 100% recall with a precision of 0.4 on the
cross-validated training set of the FHF cohort, whereas, a dummy
classifier with random chance (i.e., Random Testing Allocation
(RTA)) can achieve a precision of 0.15 on this dataset. It is also
important to note that we are not considering resource-limited
settings in the ROC and PR analysis; instead, it is assumed that
there are a sufficient number of diagnostic tests available for the
entire surveillance group. In a resource-limited setting, 100% recall
may not be achievable due to the shortage of diagnostic testing.
To understand the relative contribution of the steps and RHR

digital biomarkers to the ITA model performance, we developed
two separate sets of models using features based only on either
steps or RHR using the training set data with logistic regression,
and later validated on the test set. Consistent with previous
literature24,34 the models using steps-based features alone had a
higher AUC-ROC than models using RHR-based features alone
(cross-validated AUC-ROC of 0.67 vs. 0.64, 0.69 vs. 0.63, and 0.72
vs. 0.68 for steps vs. RHR features for the AF, AHF, and FHF training
sets, respectively) (Fig. 3). Interestingly, when using the AUC-PR as
the performance metric, models using features based on RHR
digital biomarkers outperformed models using features based on
steps digital biomarkers, a finding that has not been previously
reported (cross-validated AUC-PR of 0.30 vs. 0.38, 0.28 vs. 0.37, and
0.40 vs. 0.49 for steps and RHR features for the AF, AHF, and FHF
training datasets, respectively) (Fig. 3). The validation on the test
sets also demonstrated similar results (AUC-ROC of 0.61 vs. 0.60,
0.66 vs. 0.58, and 0.71 vs. 0.70 and AUC-PR of 0.16 vs. 0.18, 0.17 vs.
0.17, and 0.18 vs. 0.22 for steps vs. RHR features for the AF, AHF,
and FHF test sets, respectively) (Supplementary Fig. 10). Overall,
the addition of steps features increased the AUC-ROC of the ITA
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Fig. 4 Prediction and ranking results of the ITA models on the test set of the FHF cohort using RHR digital biomarkers. a ROC and b PRC
for the discrimination between COVID-19-positive participants (n= 7) and -negative participants (n= 56). The red dashed line shows the
results based on an RTA model. c Positivity rate of the diagnostic testing subpopulation as determined by ITA given a specific number of
available diagnostic tests. The red dashed line shows the positivity rate of an RTA (null) model.

Fig. 3 Prediction and ranking results of the ITA models on the training sets for the AF (a, d, and g), AHF (b, e, and h), and FHF (c, f, and i)
cohorts using features from a combination of Steps and RHR (blue), Steps (green), and RHR (violet) digital biomarkers. a–c Receiver
operating characteristics curves (ROCs) and d–f precision-recall curves (PRCs) for the discrimination between COVID-19-positive participants
and -negative participants in the training set. The light blue, light green, and light violet areas show one standard deviation from the mean of
the ROCs/PRCs generated from 10-fold nested cross-validation on the training set and the red dashed line shows the results based on a
Random Testing Allocation (RTA) model (the null model). g–i The positivity rate of the diagnostic testing subpopulation as determined by ITA
given a specific number of available diagnostic tests. The red dashed line displays the positivity rate/pretest probability of an RTA (null) model.
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model by 7–11% compared with RHR features alone, while RHR
features improved the AUC-PR of the ITA model by 38–50%
compared with steps features alone on the training set. In other
words, the exclusion of each steps and RHR features individually
decreased the AUC-ROC of the ITA model by 7–10% and 1–3% for
the training set (5–11% and 2–9% for the test set), respectively,
compared to the ITA model with both steps and RHR features (Fig.
3a–f and Supplementary Fig. 10a–f). On the other hand, the
exclusion of each steps and RHR features individually decreased
the AUC-PR of the ITA model by 10–12% and 19–27% for the
training set (5–15% and 5–25% for the test set) compared to the
ITA model with both steps and RHR features. These results suggest
that, while steps features provide more salient information on the
tradeoff between the true-positive rate and false-positive rate,
RHR features provide more salient information on the tradeoff
between the true-positive rate and the precision (positive
predictive value). In other words, while steps features improved
the specificity of the predictive model, RHR features improved the
precision.
In addition to comparing the performance of ITA models with

steps and RHR features alone to ITA models with both steps and
RHR features on both training and test set, we also compared the
relative feature importance in the logistic regression model using
both steps and RHR features on the training set. Our results
demonstrated that two, one, and four of the top five features
originated from RHR in the AF, AHF, and FHF cohorts, respectively,
with the remaining features originating from steps (Supplemen-
tary Fig. 12). In all three cohorts, median ΔSteps and mean ΔSteps
were the two most important steps features, which was consistent
with our earlier statistical analysis. Maximum ΔRHR was the most
important RHR feature for the AF and AHF cohorts and the second
most important RHR feature for the FHF cohort, and was also one
of the top two most significant features in our earlier statistical
analysis for the AF and FHF cohorts.

Improvement in positivity rate for COVID-19 diagnostic
testing using the ITA method
We next evaluated how the ITA model can improve the current
standard of practice for COVID-19 infection surveillance. Under
current surveillance testing methods in the US, while some tests
are taken due to symptoms or possible exposure, many are taken
as precautionary measures for traveling or for surveillance in
schools and workplaces30. While such forms of widespread RTA
surveillance are beneficial, the positivity rate of widespread
diagnostic testing is typically low and, thus, requires sufficient
testing capacity in order to prevent testing shortages (e.g., sold
out at-home testing kits). Applying an equivalent RTA surveillance
approach to our study population results in a 12% positivity rate in
both our AF-training (50 COVID-19-positive participants out of 365
participants in total) and AF-test (13 COVID-19-positive partici-
pants out of 92 participants in total) datasets. It is important to
note that the 12% positivity rate is consistent for all levels of
diagnostic testing capacity (0–100% of population). When
employing ITA with both steps and RHR features, and adding
the constraint of limited diagnostic testing capacity (10–30% of
population), the testing positivity rate of the cross-validated
model increased 2–3 fold (21–36% positivity rate) for the training
dataset (Fig. 3g) and 1.5–2.5 fold (19–29% positivity rate) for the
testing dataset (Supplementary Fig. 10g).
A comparison of the three cohorts demonstrated that the best

performing ITA model with both steps and RHR features stemmed
from the FHF cohort and was followed by the AHF cohort (Fig. 3h, i
and Supplementary Fig. 10h, i). By utilizing ITA and assuming a
diagnostic testing capacity at 10–30% of the population, the
positivity rate of the FHF and AHF cross-validated training datasets
increased by 4 fold (64% positivity rate) and 3 fold (35% positivity
rate) when compared to the RTA positivity rates of 15% and 12%

for FHF and AHF cohorts, respectively. For the FHF cohort, the
positivity rate further increased up to 6.5 fold (100% positivity
rate) in the cross-validated training dataset when the diagnostic
testing capacity was reduced to 2.5–5% of the population (5–11
diagnostic tests to be allocated to individuals in the training
dataset) (Fig. 3i). Using the independent test dataset with both
steps and RHR features, the positivity rate of the FHF and AHF
cohorts increased by 1.5–3 fold (17–31% positivity rate) and 2–3
fold (21–32% positivity rate), respectively, compared to the RTA
positivity rate of 11%, when the diagnostic testing capacity was
10–30% of the population. These results indicate the potential of
the ITA model to target diagnostic testing resources toward
individuals who have a higher likelihood of testing positive (i.e.,
increasing the positivity rate of diagnostic testing) and enable
more efficient allocation of testing capacity. When we compared
the ITA model performance in terms of improving the positivity
rate of the diagnostic testing in a resource-limited setting among
models with steps and RHR features separately and together, the
results demonstrated that ITA models using only RHR features
often achieved similar performance (similar positivity rate) on the
training set and similar and in some cases even better
performance (further improved positivity rate) on the test set in
comparison with the models that used both steps and RHR
features together (Fig. 3g–i and Supplementary Fig. 6g–i). For
example, the ITA model using only RHR features improved the
positivity rate up to 4.5 fold (positivity rate of 50%) compared to
the RTA positivity rate of 11% on the test set of FHF cohort
(Supplementary Fig. 10i). The superior performance of the ITA
model using RHR-only features over the ITA model using steps-
only and the ITA model using both steps and RHR features may be
attributed to the nonspecific nature of the steps features, which
can experience changes unrelated to COVID-19 (other diseases,
quarantine, stress, etc.). These results demonstrate the potential to
develop an ITA system to allocate diagnostic testing in limited
resource settings only using physiological digital biomarkers
without relying on potentially nonspecific activity digital biomar-
kers, which is a key finding from our work.
We further explored how the ITA model performs in sympto-

matic versus asymptomatic COVID-19-positive individuals in each
cohort. We considered participants to be symptomatic who
reported any symptoms in the detection period or on the
diagnostic test date. Assuming a diagnostic testing capacity of
30%, ITA indicates testing for 19 of 29 symptomatic and 7 of 21
asymptomatic COVID-19-positive individuals in the cross-validated
model using both steps and RHR features, and 5 of 8 symptomatic
and 1 of 5 asymptomatic COVID-19-positive individuals in the
independent test set of the AF cohort. In other words, 7 of 26
(27%) and 1 of 6 (17%) COVID-19-positive individuals were
asymptomatic in the ITA-determined subpopulation for the
cross-validated training set and an independent test set of the
AF cohort, respectively. Results were similar for the AHF and FHF
cohorts (Supplementary Table 5). These findings indicate that the
ITA model can not only target diagnostic testing resources toward
individuals with symptoms, but also those without any reported
symptoms, further increasing the utility of this method.

DISCUSSION
The COVID-19 pandemic revealed the fragility of our existing
healthcare infrastructure to detect the virus and prevent its
spread. One key tool for reducing disease spread is bringing
diagnostic testing to the right people at the right time and
ensuring appropriate interpretation of the diagnostic testing
results based on the prevalence of the disease in the population4.
In light of this need, in April 2020 we developed CovIdentify to
integrate commercial wearable device data and electronic
symptom surveys to assess the real-time risk of being infected
with COVID-19. We envisioned two possible scenarios where
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CovIdentify would be useful for informing intelligent testing
decisions, including (1) ranking individuals in a group by likelihood
of current infection with COVID-19 to determine who to test, and
(2) tracking a single individual over time for evidence of new
infection onset to determine when to test. In our initial
development of the ITA model, we focused on the first question,
and ultimately improved the positivity rate of COVID-19 diagnostic
testing up to 6.5 fold when compared against RTA. These results
indicate that if deployed on a large scale, the ITA model could
potentially be used to better allocate diagnostic testing resources.
To test the real-world efficacy of the ITA model, a simple approach
may be to compare the positivity rate of ITA recommended
diagnostic testing versus traditional surveillance testing in cohorts
of school teachers in the same jurisdiction or school (i.e., similar
prevalence rate). This method is likely applicable to other
diagnostic areas as well, where digital biomarkers can be used
to indicate the likelihood of disease.
In this work, we demonstrated that wearable device data can be

used to strategically target the allocation of diagnostic tests to
where they are most useful. This approach not only increases
testing efficiency and allocation but also reduces the costs and
supply chain burden of surveillance testing which is an ongoing
challenge. Our results further demonstrate that the ITA method is
able to filter a surveillance population to generate a subpopula-
tion with a higher density of true positives, regardless of the
prevalence and pretest probability of COVID-19 infection in the
population under surveillance for the disease, and, thus, increases
testing positivity rates. We note that, although there is a possibility
that our COVID-19-negative group may contain other illnesses
(e.g., flu) which also reflects a more realistic setting, we were still
able to improve resource allocation by over 450% in the
independent test set. Another key contribution of our work is
the utility of the ITA model using only physiological digital
biomarkers (RHR). As steps (and other physical activity) may be
reduced due to other reasons than COVID-19 infection, steps may
result in nonspecific models, as we have observed from our results
on the independent test set. For that reason, an ITA model using
more specific digital biomarkers (e.g., RHR) demonstrates the
potential of solely relying on physiological data from wearables to
develop such an ITA model in a resource-limited setting. We also
demonstrate the utility of the ITA to filter individuals for allocating
diagnostic tests not only in cases of symptomatic individuals but
also for asymptomatic individuals who may not be tested and
diagnosed otherwise. While the sensitivity and specificity of
diagnostic tests are not affected by ITA, this more efficient testing
allocation approach identifies more cases in less time and with
fewer resources41–44.
The basis of the ITA method is the detection of physiological

changes associated with infection onset, which are well estab-
lished to be detectable by biometric sensors20–24,26,34–37. Con-
sistent with prior literature, we demonstrate here that digital
biomarkers derived from heart rate and physical activity are
indicative of infection onset. A unique contribution of our work is
the demonstration of differences in digital biomarker significance
with respect to time prior to the diagnostic test date; specifically,
we show that differences in RHR features were significant between
COVID-19-positive and -negative groups as early as 10 days prior
to the diagnostic test date whereas differences in most steps
features were not significant until 5 days prior to the diagnostic
test date. One steps feature, minimum ΔSteps, was significant up
to 9 days prior to the diagnostic test date, potentially
demonstrating a link between activity levels (and perhaps
noncompliance with lockdown measures) and COVID-19 exposure.
Furthermore, RHR begins to deviate from baseline earlier than
steps (as early as 13 vs. 10 days prior to the diagnostic test date,
respectively), and the peak effect (maximum deviation from
baseline) of infection also occurs earlier in RHR than steps (1 day
prior vs. 2 days after the diagnostic test date, respectively) for

those who were COVID-19 positive. These results indicate that
changes in physiology (RHR) occur earlier in the infection period,
while symptoms and reduced physical activity (steps) transpire
later in the infection period, when people may limit their
movement due either to illness or mandatory quarantine. A
recent COVID-19 study assessing prolonged physiological and
behavioral changes using wearables also observed that COVID-19-
positive individuals took more time to return to their RHR baseline
values compared to their step and sleep baseline values following
the acute COVID-19 infection period31; however, this work
explored the post-infection period of the data whereas here we
explore the pre-infection period as well as the acute infection
period using a systematic grid search approach. Another recent
study34 that developed machine learning models to passively
detect COVID-19 using wearable data noted relative changes in
feature importance when including data post-diagnosis. However,
to our knowledge, we are the first to demonstrate and establish
the dynamics of feature importance over time prior to the
diagnostic test date, indicating which features should be weighted
more heavily in prediction models and when.
Another important contribution of our work is demonstrating

the utility of RHR and steps features in the tradeoff between the
true-positive rate and false-positive rate (ROC analysis) and the
tradeoff between the true-positive rate and the positive predictive
value (PR analysis). Specifically, we show that while steps features
provide more salient information on the tradeoff between the
true-positive rate and false-positive rate, RHR features provide
more salient information on the tradeoff between the true-
positive rate and the precision (positive predictive value). To our
knowledge, this is the first demonstration of this tradeoff in
predictive model development for COVID-19 infection detection.
The ITA model, in addition to using features of RHR and steps, can
likely be further extended and improved with features from other
digital biomarkers such as skin temperature, respiratory rate,
blood oxygen saturation, and sleep duration25,26,35,36. It is
anticipated that each of these distinct digital biomarkers would
capture a physiological response to infection at different times
during the detection period, thus improving the robustness and
overall performance of the ITA approach.
One of the important observations from our work was the clear

separation of the 95% confidence intervals of the means of digital
biomarkers between COVID-19-positive and -negative populations
as early as 5 days prior to the test date (Fig. 2a and Supplementary
Figs. 6a and 7a), while the variances of the groups have
overlapping distributions in the same time window (Supplemen-
tary Fig. 8). Notably, a lack of overlap in 95% confidence intervals
does not necessarily imply significant differences between the
groups32 as standard deviation is a valuable descriptive measure
of the data that should be considered as well. There are many
possible sources of variance in studies involving wearable data,
including the inclusion of different device types and technologies,
contexts of measurement (e.g., time of day, activity type, etc.),
differences in physiological response to infection, etc. We
mitigated this issue by segmenting by device type and data
resolution, as well as by utilizing measurements during resting
periods only for the RHR calculation. In the future, larger datasets
can enable segmentation by demographics (e.g., age, sex, weight,
etc.) that would likely further reduce the variance. Sharing
datasets between studies, as demonstrated here, can also
augment the study population and further reduce the variance.
An open question is whether the resolution of current
photoplethysmography-based wearable heart rate technologies
is high enough to adequately detect signals above the population
variance.
Here, we did not deploy the ITA method in real-time and, thus,

its performance in practice still remains to be tested. Both the
CovIdentify and MyPHD studies were primarily bring-your-own-
device study designs, in which people who already own smart
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devices are recruited to participate. The bring-your-own-device
design presents two major challenges: (1) participants must own a
smart device, which limits eligibility to those who can afford
devices, and (2) many different types of devices are used,
introducing an additional source of noise in the analysis. We
mitigated the first challenge by developing and implementing the
Demographic Improvement Guideline, which resulted in a 250%
increase in the representation of black and African American
participants and a 49% increase in the Latinx and Hispanic
population within 4 months of the implementation of the
guideline45. The second challenge by dividing our overall dataset
into cohorts with homogeneous sampling frequencies and/or
device types. Although we recognize that certain factors decrease
the likelihood of wearable device ownership, such as lower
income or living in a rural area46–48, the precipitously decreasing
cost of wearable technology is rapidly increasing the equitable
distribution of these technologies49.
Another limitation of the study is the data missingness and its

impact on the deviation of the digital biomarkers, as the source of
missingness may confound the disease-related physiological
variation. For example, we observed that some participants in
our study did not wear their devices when they were feeling sick
and/or during sleep, as observed in other studies23, which resulted
in a reduction in data availability as a result of our rigorous data
inclusion criteria. For that reason, it can be a challenge to isolate
the effects of physiological and behavioral changes on the digital
biomarkers. Furthermore, some devices require more frequent
charging (e.g., Apple Watch), which results in more missing data
that may also impact model performance. We mitigated this
challenge by further developing our model on a single device and
homogeneous sampling frequency (FHF) cohort.
Another limitation of the study is the self-reported diagnostic

testing results from the majority of our study participants. While
we acknowledge that self-reported COVID-19 testing results can
be less reliable than clinically documented results, similar COVID-
19 digital health studies23,24,27 utilized self-reported diagnostic
testing results for their algorithm development. To instill further
confidence in this approach, it is worth noting that if any
inaccuracies do exist in the reported testing, which is to be
expected in a real-world setting where inaccurate diagnostic
testing can occur regularly, our study population was sufficiently
large to be powered to handle such noise and variance as
demonstrated by the strength of the results.
The recent body of work on COVID-19 detection using

smartwatches uses AUC-ROC to evaluate model perfor-
mance24,34–37, which is only an appropriate metric for class-
balanced data, and is otherwise misleading38,39. In these large-
scale studies conducted on a convenience sample of the
population for a disease with low prevalence, there exists an
inherent challenge of class imbalance because most of the study
population does not contract the disease. This was a challenge
that we faced in our study, and, further complicating matters,
many of the COVID-19-positive participants did not wear their
wearable devices at the start of their infection, exacerbating the
class imbalance. While less frequently reported than AUC-ROC, the
AUC-PR is the correct evaluation metric for evaluating a classifier
on imbalanced data38, which is what we report here. We show
that even with a strong AUC-ROC, the AUC-PR demonstrates the
limitations of performance. Methods to resolve class imbalance,
especially when working with wearable device data, can be further
investigated for future studies. Furthermore, more advanced
artificial intelligence methods such as reinforcement learning or
graph neural networks may further enhance the performance of
the ITA model and is a topic that will be further explored in future
studies.
While our study focused on improving testing allocation for

COVID-19, the methods developed herein are extensible to other
types of infections and could be used to fortify our future

pandemic preparedness. Using ITA to improve disease surveillance
could be especially important in underserved communities that
may benefit from the fact that the ITA method is useful even with
only steps digital biomarkers which may be obtained from
smartphones which are owned by 85% of the population in the
US50 and up to 76% globally51. By targeting diagnostic testing
toward individuals who are more likely to truly be infected with a
disease, we can improve the allocation and utility of diagnostic
tests, ultimately reducing mortality and increasing our ability to
control current and future pandemics.

METHODS
Participant recruitment and data collection
The CovIdentify study launched on April 2, 2020 (Duke University
Institutional Review Board #2020-0412). Eligibility criteria included age
over 18 years and internet access. Social networks and social media
advertising were used to recruit participants. By May 25, 2021, a total of
7348 participants were recruited and e-consented through the REDCap
system28. During enrollment, participants were given the option to donate
12 months of retrospective wearable data and 12 months of prospective
wearable data. Wearable data was collected via the CovIdentify iOS app for
devices connected to the Apple Health kit (e.g., Apple Watch) or via
Application Programming Interfaces for other devices (e.g., Garmin and
Fitbit devices). The participants were also asked to complete an
onboarding (enrollment) survey and daily surveys. The surveys were in
English or Spanish and included questions on symptoms, social distancing,
diagnostic testing results, and related information (Supplementary Note 1).
Surveys were collected using the CovIdentify iOS app, text messaging, and/
or emails. All wearable data and survey results were stored in a secured
Microsoft Azure data platform and later analyzed in the Microsoft Azure
Machine Learning environment. Soon after CovIdentify was launched,
exploratory data analysis (EDA) revealed major differences between
CovIdentify demographics and the demographics of COVID-19-positive
cases and deaths in the U.S., as well as overall U.S. demographics based on
the 2020 U.S. Census52,53. We sought to mitigate the imbalance throughout
the duration of the study by providing wearable devices to under-
represented populations45. COVID-19 vaccine reporting was added to the
daily surveys in February 2021, where we asked questions regarding the
vaccination date, vaccine brand, vaccine-related symptoms, and dose
number.

Wearable data processing and analysis
Participants were asked to fill out an enrollment survey following the
informed e-consent. Daily symptom surveys and wearable data from the
participants were analyzed both separately and together. For the overall
analysis, we only included participants with self-reported diagnostic test
results for COVID-19. These participants were further divided into two
categories based on the self-reported diagnostic test results: COVID-19
positive and COVID-19 negative.
In addition to the data collected via CovIdentify, we augmented our

analysis by including data from the MyPHD study, as reported in the two
recent publications by Mishra et al.23 and Alavi et al.27. The data from
Mishra et al. included heart rate, step count, and sleep data for 27 COVID-
19-positive cases. It also included metadata of symptom onset and test
dates. The data from Alavi et al. included heart rate and step count data for
83 COVID-19-positive cases and 1019 COVID-19-negative cases as well as
metadata including symptom onset and test dates.
For wearable data analysis, we only included days of wearable data

when both heart rate and step count were available. Out of the 1239
participants (113 from CovIdentify and 1126 from MyPhD study) who had
both heart rate and step count data available, we had device-reported
daily values of RHR and step count for 67 participants, and high-frequency
(second or minute level, depending on device types) wearable data for
1172 participants. For participants with high-frequency heart rate data, we
calculated daily RHR from the heart rate data points recorded between
midnight and 7 AM, when there were no steps recorded. For those
participants with available high-frequency wearable data, we chose a data-
driven threshold (i.e., a minimum number of heart rate data points
between midnight and 7 AM with zero recorded steps) to include our
calculated RHR data from that day in the subsequent analysis. As the
sampling rate varies by device type (Fitbit, Garmin, and Apple Watch), we
generated separate data distributions of the datasets for these three
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device types and selected the first quartile of heart rate data points per
device as the data-driven threshold, which resulted in a threshold of 2630,
19, and 1389 heart rate data points for Fitbit, Apple Watch, and Garmin
devices, respectively. In other words, on a given day, a participant with
Fitbit wearable data required at least 2630 heart rate data points between
midnight and 7 AM with zero recorded steps to be included in the
subsequent analysis. Following this intraday data point threshold, we used
an interday data threshold: a minimum number of days with available
wearable data to be included in the analysis (50% in the baseline period
and 50% between 9 days and 1 day prior to the diagnostic test date in the
detection period). We explored different minimum number of days of
available wearable data in the baseline and detection periods and selected
these two thresholds to maximize the number of participants while
keeping the performance of the ITA model on the training dataset
consistent, defined as less than 10% variation of the performance metrics
(AUC-ROC and AUC-PR)).

Cohort definition
The wearable data availability thresholds (both intraday and interday)
resulted in an AF cohort of 520 participants (83 from CovIdentify and 437
from MyPHD) with sufficient wearable data (63 COVID-19 positive and 457
COVID-19 negative). 24 of the 63 COVID-19 positive cases had clinical
documentation for their diagnosis while the others were self reported. We
then created two more subsets from this cohort (Supplementary Fig. 3): (1)
AHF cohort: participants with high-frequency wearable data (469
participants, 54 COVID-19 positive and 415 COVID-19 negative), and (2)
FHF cohort: participants with high-frequency wearable data from a single
source (Fitbit) (280 participants, 40 COVID-19 positive and 240 COVID-19
negative) to explore the impact of utilizing wearable data from different
sources and resolutions on the ITA model development. We employed
these three cohorts separately for the ITA model development and
compared the resulting models’ performance in the corresponding
training and test datasets of these cohorts. We divided each cohort into
an 80% train and 20% test split, with FHF as a subgroup of AHF (which
itself is a subset of AF) to ensure that no observations in the training
dataset of one cohort existed in the test dataset of another (Supplemen-
tary Fig. 3).

Digital biomarker definition
Given the use of datasets with different device types, a consistent RHR
definition was used in order to harmonize the cohorts with high-frequency
wearable data. We calculated the daily RHR digital biomarker by
aggregating the high-frequency heart rate data points available between
midnight and 7 AM, when there were no steps recorded. Step count was
calculated by summing all recorded step values during a 24-h period in
order to produce a daily step count digital biomarker.

Feature engineering and extraction
Following the creation of three cohorts (AF, AHF, and FHF) and their
corresponding training and test sets, we performed EDA and extracted
features from the time-series digital biomarkers (RHR and step count). For
the EDA on the time-series digital biomarkers, we explored the difference
in trajectories of digital biomarkers between COVID-19-positive and
COVID-19-negative participants (Fig. 2a and Supplementary Figs. 6a and
7a). Following the EDA, we extracted the features mentioned in Table 2
from the raw digital biomarkers. We first calculated four deviation metrics,
which capture the deviation in digital biomarkers from participants’
baseline during the detection phase. Following the deviation metrics
calculation, we calculated summary statistics of these four deviation
metrics which we refer as to features for this manuscript. We extracted the
same features from the training and test datasets. Following the feature
extraction, we performed statistical analysis on the features from the
training datasets of the three cohorts to see which features are statistically
different between the two groups and how their significance levels vary
with different detection period combinations (detection end date and
detection window length) using a systematic grid search to optimize
detection end date and detection window length (Fig. 2b and
Supplementary Figs. 6b and 7b). We utilized multiple hypothesis testing
with Benjamini–Hochberg adjusted p values for this statistical analysis.
Following the statistical analysis and systematic grid search to obtain the
optimal detection period to extract the features, we only utilized the
intersection of the statistically significant features (p value <0.05; unpaired
t-tests with Benjamini–Hochberg multiple hypothesis correction) extracted

from digital biomarkers recorded between 5 days and 1 day and 3 days
and 1 day prior to the diagnostic test date for the development of the
ITA model.

ITA model development
Following feature extraction, we developed predictive models to classify
COVID-19-positive and -negative participants in the training dataset of
each cohort (AF, AHF, and FHF) using nested CV and later validated the
models on corresponding independent test datasets. We chose five state-
of-the-art machine learning models (logistic regression, K-nearest neigh-
bor, support vector machine, random forest, and extreme gradient
boosting54,55) for the development of the ITA models to explore how
increasing model complexity and adding non-linearity would impact the
model performance. We trained these classification models on the training
dataset using nested CV with an inner CV loop for hyperparameter tuning
and an outer CV loop for model selection. For model training, we selected
recall as our preferred scoring metric for model selection to emphasize the
relative impact/cost of false negatives compared to false positives, as an
individual who is truly positive for COVID-19 and is wrongly classified as
negative (or healthy) would further spread disease. For model performance
evaluation, we used two well-established reporting metrics, including the
most commonly reported metric for studies of this kind (AUC-ROC)24,33–37,
and the metric that is most appropriate for this classification task (AUC-
PR)38 (Supplementary Table 3, Figs. 3 and 4, and Supplementary Fig. 10).
AUC-PR is more appropriate with class-imbalanced data38,39, which is the
case here (12–15% COVID-19 positive and 85–88% negative for each of the
three cohorts). The results reported for the training dataset (Supplemen-
tary Table 3 and Fig. 3a–f) were generated from the validation on the held-
out dataset (fold) from each iteration of the outer CV loop which was not
used in the model training. Based on the CV results of the five machine
learning models on the training dataset, we chose the logistic regression
model to further evaluate performance on the independent testing dataset
(Supplementary Fig. 10a–f). For validation on the independent test dataset,
we trained the logistic regression model on the entire training dataset
using a grid search with five stratified folds for hyperparameter tuning and
selected the best model (with tuned hyperparameters) to validate on the
test dataset.

Nested cross-validation
For model development with the training dataset, we utilized nested CV
over traditional CV, which is a common approach in similar stu-
dies24,34,36,37, because it uses the same data for hyperparameter tuning
and model performance evaluation56. In nested CV (also called double CV),
the hyperparameter tuning procedure is nested (inner loop) under the
model selection procedure (outer loop) and the inner loop is used for
optimizing the hyperparameters of the model with inner CV, and the outer
loop is used to compute the error of the optimized model with outer CV57.
For the nested CV, we divided the training set into ten stratified folds
(keeping the ratio of COVID-19-positive and -negative participants the
same across each fold) for the outer loop. For each iteration of the outer
loop, the model was trained on data from nine folds by optimizing the
hyperparameters of the model with inner CV, and validating on the left-out
fold, a process which was repeated nine more times. In each iteration of
the outer loop, the outer training data (from nine folds) were further
divided into five stratified folds (inner loop) to tune hyperparameters using
a grid search. Out of the five iterations with the grid search in the inner
loop, the best model (including hyperparameters) was selected, and this
model was used in the model performance evaluation in the outer loop.
This way of model development using two CV steps separates
hyperparameter tuning and model selection in order to reduce bias in
model performance.

Feature importance ranking
To calculate the feature importance ranking, we trained the logistic
regression model using a grid search with five stratified folds for
hyperparameter tuning and selected the best model (with optimized
hyperparameters) to train on the entire training set of each cohort, and
extracted the coefficients for each feature used in the optimized model.
We reported the absolute value of each coefficient as the relative
importance of the features (Supplementary Fig. 12).
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Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The de-identified CovIdentify dataset generated and/or analyzed during the current
study will be submitted 1 year from the publication date to the Digital Health Data
Repository (DHDR) repository (https://github.com/DigitalBiomarkerDiscoveryPipeline/
Digital_Health_Data_Repository) under the title BigIdeasLab_CovIdentify. The de-
identified MyPHD dataset used in Alavi et al. (Nature Medicine 2021) study can be
downloaded at the following publicly available link: https://storage.googleapis.com/
gbsc-gcp-project-ipop_public/COVID-19/COVID-19-Wearables.zip and the dataset
used in Mishra et al. (Nature Biomedical Engineering 2020) study can be downloaded
at the following publicly available link: https://storage.googleapis.com/gbsc-gcp-
project-ipop_public/COVID-19-Phase2/COVID-19-Phase2-Wearables.zip.

CODE AVAILABILITY
ITA model development code used for this manuscript is available on the digital
biomarker discovery pipeline (DBDP) GitHub repository (https://github.com/
DigitalBiomarkerDiscoveryPipeline/CovIdentify).
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