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An augmented reality (AR) platform combines several technologies in a 
system that can render individual “digital objects” that can be manipu-
lated for a given purpose. In the audio domain, these may, for example, 
be generated by speaker separation, noise suppression, and signal en-
hancement. Access to the “digital objects” could be used to augment 
auditory objects that the user wants to hear better. Such AR platforms in 
conjunction with traditional hearing aids may contribute to closing the 
gap for people with hearing loss through multimodal sensor integration, 
leveraging extensive current artificial intelligence research, and machine-
learning frameworks. This could take the form of an attention-driven 
signal enhancement and noise suppression platform, together with con-
text awareness, which would improve the interpersonal communication 
experience in complex real-life situations. In that sense, an AR platform 
could serve as a frontend to current and future hearing solutions. The AR 
device would enhance the signals to be attended, but the hearing amplifi-
cation would still be handled by hearing aids. In this article, suggestions 
are made about why AR platforms may offer ideal affordances to com-
pensate for hearing loss, and how research-focused AR platforms could 
help toward better understanding of the role of hearing in everyday life.
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INTRODUCTION

Cochlear damage and detrimental changes in central audi-
tory system processing have consequences that reach far beyond 
a poor speech reception threshold in noise. The effects of coch-
lear damage are multifaceted, including impairments in absolute 
sensitivity, frequency selectivity, loudness perception and inten-
sity discrimination, temporal resolution, temporal integration, 
pitch perception and frequency discrimination, as well as sound 
localization and other aspects of binaural and spatial hearing 
(Moore 1996). People with hearing loss have a higher suscepti-
bility to noise or competing source interference, often requiring 
5 up to 10 dB better signal-to-noise ratios (SNRs) compared to 
the normal hearing (NH) listener with the same speech-in-noise 
performance (e.g., Killion & Niquette 2000), even if the loss of 
sensitivity/audibility is rectified (Humes 2007).

Inability to hear well has behavioral, social, and cognitive 
consequences that reach far beyond a poor speech reception in 

noise. People with hearing loss carry more cognitive load to cope 
with complex acoustic environments like noisy restaurants. Even 
when speech is fully understood, the listener must spend more 
effort than NH listeners (Pichora-Fuller et al. 2016; Ohlenforst et 
al. 2017). Given this increased mental load, it is no surprise that 
overcoming hearing loss (HL) consumes more working memory 
resources, and consequently reduces memory (Rönnberg et al. 
2013). Additionally, the impaired auditory system cannot resolve 
auditory objects in the same way as NH listeners (Shinn-Cun-
ningham & Best 2008). Choi et al. (2014) have shown that for 
NH listeners, attended auditory objects can obtain 10 dB higher 
neural gain than unattended sources. This neural gain is compro-
mised with HL (Petersen et al. 2017). The high demands on the 
person with hearing loss’ brain will, in many instances, create 
social withdrawal (Rutherford et al. 2018).

The most common treatment for hearing loss is fitting with 
hearing aids. In particular, multichannel wide dynamic range 
compression is the tool of choice to solve the audibility problem 
in modern hearing aids. This approach enhances the perception 
of soft sounds while keeping louder sounds within a comfort-
able range; however, sufficiently increasing the intelligibility 
of speech in noisy environments remains a challenge. Today’s 
digital hearing aids have solved acoustic feedback and own 
voice perception problems and are able to present the dynamic 
changes of various environments at comfortable loudness levels 
(Kollmeier & Kiessling 2018).

However, current hearing aid technologies cannot match the 
user’s needs in complex everyday situations such as conversa-
tion with several persons at a cocktail party, in a restaurant or 
pub, or in a vehicle. Even with additional features like speech 
processors, directional microphones, frequency transpositions, 
etc., the most advanced devices provide only modest additional 
benefits (Humes et al. 1999; Larson et al. 2000; Magnusson 
et al. 2013; Brons et al. 2014; Cox et al. 2014; Picou et al. 
2015). Current ear-centered, multimicrophone hearing aid solu-
tions have limited spacing between microphones, and current 
state-of-the-art beamforming and machine-learning technolo-
gies do not allow for the required source separation (Kollmeier 
& Kiessling 2018) and sound enhancement (Denk et al. 2019). 
This ear-centric form factor also puts tight constraints on the 
computation and memory resources available due to limited 
battery capacity and power budget.

There is thus a genuine need for new technologies that help the 
people with hearing loss to give additional benefit in a cocktail 
party, in a restaurant or pub, or in a vehicle. From here on, we will 
simply refer to such situations as problematic listening situations.

Here, we suggest that an augmented reality (AR) platform 
may give such additional benefits. An AR platform is an in-
terdependent hardware, software, and algorithmic system that 
consists of a collection of constituent technologies (optics and 
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displays, graphics, audio, eye-tracking, and computer vision). 
An AR platform can either be a single device or collection of 
interlinked wearable devices working together. Typical form 
factor manifestations of an AR device could be glasses with 
additional accessories like headsets or hearables. Various con-
figurations may support a wide range of sensing, inference, 
computation, and display capabilities.

We first present a section where AR is introduced and how 
AR could support compensation for hearing loss, followed by a 
section where the main AR technologies are outlined. Last, we 
present a section with perspectives about how an AR platform 
striving for more ecological validity could be used in hearing 
research, and some of the challenges and unresolved issues for 
AR platforms.

Our focus is on technical solutions for mitigating the neg-
ative consequences of hearing loss and ignore other potential 
means such as professional counseling and communication 
training (e.g., Hickson et al. 2007; Oberg et al. 2014).

AUGMENTED REALITY: COMPENSATING FOR 
HEARING LOSS

AR is a class of technologies, which enables us to create 
virtual stimuli that can be merged with our real world. This con-
trasts with the accompanying term Virtual Reality, where the 
virtual stimuli completely replace the real-world stimuli, see 
Hohmann et al. (this supplement, pp. 31S-38S) for a discussion 
of this concept.

These virtual stimuli can be in the form of digital objects 
placed in our real-world surroundings (e.g., virtual television 
on the living room wall) or could be a digital representation of 
a person (also known as a virtual avatar) at a distance, com-
municating with us via a telepresence application (virtual tele-
presence). Done well, these virtual avatars could be so realistic 
that our brains believe the person is in our real-world space; a 
much better way to communicate than over the phone or even 
video calling. Assistive features may enable us to see or hear 
with higher fidelity by overlaying enhancements to natural sig-
nals, or just enhance real auditory objects in the scene. With the 
help of assistive hints, we may be able to process information 
faster and remember more information longer. In the case of 
impaired sensory modalities, this would enable us to improve 
sensory abilities (perceptual superpowers).

Solving the Cocktail-Party Problem
Figure 1 describes the principal issues that need to be con-

sidered to solve the cocktail-party problem technically: (1) a 
system that detects the listener’s intent (which sound sources 
could be of interest and which are of interest at the moment); 
(2) a speaker separation system that isolates the speakers (“dig-
ital objects”) with sufficient signal-to-noise improvement*; (3) 
a system that exploits noise suppression which could be a pair 
of headphones or hearables that attenuates external sounds; and 
(4) a signal enhancement system that recombines the “digital 

objects” based on the listener’s intent, with an enhancement of 
X dB of the currently attended “digital object.” The extraction 
of digital objects is a key feature of AR and is distinct from what 
is possible in noise-reduction hearing aids or remote micro-
phones that merely enhance one object at a time, or the object 
in front of the listener.

Multimodal, Ego-Centric Sensing
This is where the idea of an AR platform in support of hear-

ing aids really begins to take shape. New AR glasses could 
support a larger number of microphones. Additionally, an AR 
platform could include multimodal sensors, including video, 
depth, and infrared cameras; inertial measurement units, mag-
netometers and other motion tracking systems; and many other 
sensors, which could be used to tackle the hard problems of 
intent detection, speaker separation, and noise suppression. The 
section “AR: Hearing-Enhancing Devices” below describes in 
more detail how these sensors could work together, see espe-
cially Figure 2 for an overview.

If successfully implemented, the system could also be used 
to gather more ecologically valid data in research projects that 
aim to better understand the role of hearing in real life, that is 
supporting Purpose A (Understanding) in the current workshop 
(Keidser et al. this supplement, pp. 5S-19S).

An AR platform could serve as a frontend to current and fu-
ture hearing solutions. The path for the proposed AR platform 
would follow years of development and evaluation of research 
platforms. During this time, the AR platform could serve as a 
technological enabler for improved hearing-related interven-
tions, that is, supporting Purpose B (Development) of the cur-
rent workshop (Keidser et al. this supplement, pp. 5S-19S).

Machine-Learning Backbone
Strong artificial intelligence and machine learning frame-

works unleash the potential to present completely new solutions 

Fig. 1. The cocktail-party problem lies at the intersection of multiple re-
search problems, such as intent detection, speaker separation, noise sup-
pression and signal enhancement.

*A sufficient SNR improvement would, in this context, probably be an im-
provement in the range of 10 to 12 dB, to raise the listener from low speech 
intelligibility scores to close to 100% speech intelligibility in problematic 
listening situations, assuming a psychometric function with a typical slope 
of about 10%/dB. Further SNR improvements may be counterproductive 
because these may break the “connected discourse between parties in the 
conversation (Archer-Boyd et al. 2018).”
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for problematic listening situations. For example, in the Look-
ing to Listen at the Cocktail-Party project, Ephrat et al. (2018) 
presented a deep network-based model that incorporates both 
visual and auditory signals to solve the problems presented in 
a cocktail-party situation. The method demonstrated a clear ad-
vantage over state-of-the-art audio-only speech separation in 
cases of mixed speech. Furthermore, other recent developments 
in deep learning single-channel source separation are promising 
for HL compensation applications (Chen et al. 2016; Chen et 
al. 2017; Wang & Chen 2018), especially if combined with an 
AR platform.

Another way to support people with hearing loss in problem-
atic listening situations would be to give real-time speech-to-
text captioning displayed in the AR glasses display system (e.g., 
Dufraux et al. 2019). In Live Transcribe [a mobile accessibility 
app designed for the deaf and people with hearing loss (Slaney 
et al. this supplement, pp. 131S-139S)], the researchers demon-
strated real-time transcription of speech and sound to text on the 
screen. Even when acoustic transmission to the listener fails, 
AR glasses coupled with hearing aids could still allow the lis-
tener to participate, if not directly hear.

Socially Acceptable Form Factor
Self-stigmatization reduces the uptake and use of devices 

that are perceived as making one look aged, or handicapped. 
These perceptions potentially influence the 75% of those who 
could benefit from hearing aids, but do not use them (e.g., 
Kochkin 2000; Meister et al. 2008).

Here, we assume that a pair of AR glasses connected to the 
cloud (the AR platform) and connected to a pair of hearing 
aids is used as a communication platform, which would offer 

a socially accepted platform that has widespread use. Though 
glasses and hearing aids both serve to assist the senses, eye-
glasses carry much less stigma (Dos Santos et al. 2020), and are 
often a fashion statement. Piggybacking on a fashionable form 
factor could reduce social stigma and encourage the use of AR 
glasses with hearing aids.

Summary of Arguments in Favor of the use of AR 
Glasses to Support Compensation for Hearing Loss

A combination of multimodal ego-centric sensing, a 
machine-learning (ML) backbone, and a socially acceptable 
form factor point toward a future where an AR platform could 
become the ideal choice to help overcome challenges in com-
pensating for hearing loss; at least, there seems to be high po-
tential for the proposed framework. In the remainder of this 
paper we will elaborate on the above factors and their integra-
tion as a system to offer solutions to the cocktail-party problem.

AR: HEARING-ENHANCING DEVICES

An AR platform could provide an ideal framework to sup-
port hearing aids. The ideal configuration of such a framework, 
however, is an open question, because what we do with its ad-
ditional capabilities will determine the utility of the resulting 
framework. Here we detail one potential configuration of the 
AR platform, see Figure 2, that is a pair of AR glasses con-
nected to the cloud and some input device (e.g., a smartphone), 
as well as a connection to a pair of hearing aids. This version 
of the AR platform (AR glasses, cloud, hearing aids, and input 
device) is in this section called AR hearing-enhancing device 
to not confuse with other AR platforms intended for other 

Fig. 2. A proposed AR hearing-enhancing device framework for solving the cocktail-party problem



 MEHRA ET AL / EAR & HEARING, VOL. 41, SUPPLEMENT 1, 140S–146S 143S

purposes. This section is divided into eight subsections, each 
discussing a separate set of capabilities.

Intelligent Initial Fitting and Ongoing Parameter 
Adjustment

To match the AR hearing-enhancing device well to the listen-
ers’ needs, it should be able to import settings from a qualified 
audiologist, or have self-adjustment properties (e.g., Sabin et 
al. 2020). An AR hearing-enhancing device would also be able 
to conduct its own assessment of a listener’s needs and adjust 
its settings to approach the optimal values for the current situa-
tion. Here, we describe two categories of interactive parameter 
manipulations, user-driven input and automatic inference.

For the first category there is growing evidence that users 
can reach a setting that they are seemingly satisfied with and 
that differs from a prescribed setting (Kuk & Pape 1992; Moore 
et al. 2005; Dreschler et al. 2008; Abrams 2017; Boymans & 
Dreschler 2012; Boothroyd & Mackersie 2017; Mackersie et al. 
2019; Sabin et al. 2020).

The second category of interactive parameter manipulations 
should be ongoing assessment of settings; the AR device should 
be capable of automatic inference from the user’s hearing per-
formance and make adjustments without requiring any explicit 
interaction from the user. One example could be where the hear-
ing-enhancing device itself discovers the hearing thresholds. 
Christensen et al. (2018a,b) have shown that using ear-EEG 
is a feasible method for hearing threshold-level estimation in 
subjects with sensorineural hearing loss. Another way to assess 
hearing performance would be to make direct EEG measure-
ments of speech intelligibility from an AR hearing-enhancing 
device. Several research reports indicate the possibility of 
attaining reliable correlation between physiological EEG sig-
nals and behavioral speech intelligibility (Vanthornhout et al. 
2018; Das et al. 2018).

High-Order Microphone Arrays
Multichannel enhancement via multimicrophone beamform-

ing (e.g., Aroudi et al. 2018; Moore et al. 2018, 2019) and deep 
learning (e.g., Chen et al. 2016, 2017; Wang & Chen 2018) have 
been suggested to capture and enhance the signals. The glasses 
form factor allows for multichannel speech enhancement, 
where improvements in the SNR can be on the order of 10 to 
20 dB under certain circumstances (see Doclo, 2003). Accuracy 
is paramount, and it should go without saying that the greater a 
device’s capacity for increasing the SNR, the more catastrophic 
the consequences of a misidentification of the signal of in-
terest. To solve this problem, which is a restated version of the 
cocktail-party problem, the device must determine what signal 
its user is attempting to attend to. Leveraging information from 
many microphones, both locally and remotely located, to deter-
mine the conversational state, what sources are available in the 
environment, and which ones the user is interacting with most, 
is just one of a host of other tools at the disposal of a full AR 
hearing-enhancing device. Multimodal sensing is central, but its 
integration remains a significant challenge to achieve a highly 
reliable prediction of listener attention. Sophisticated statistical 
models must be constructed to accept all these data and output a 
trustworthy estimate of the currently attended sound or sounds. 
Such a model must also be able to take into account new noises 
that suddenly appear, or signals that emerge, such as someone 

new calling the user’s name, or a waiter approaching the table 
with a menu.

To enable explicit control, the AR hearing-enhancing device 
must also allow user-interface-driven source selection, pro-
viding a means for the user to actively select desired sources. 
This could take many forms, from a tap to a gaze-based inter-
face, but is necessary for scenarios where the device, however 
sophisticated, is unable to establish what the user wishes to hear.

Context Awareness
A listener will have different needs based on whether they are 

at home watching TV, driving a car, or sitting in a lively restau-
rant with many friends and family. A successful AR-enhanced 
hearing device must be able to adaptively adjust and adapt its 
settings based on knowledge of its surroundings, and real-time 
noninvasive evaluation of listener performance. This will re-
quire awareness of the device’s physical surroundings, such as 
the user’s location (home, supermarket, restaurant, bus, etc.); 
its own position, orientation, and velocity within the local en-
vironment; the position and orientation of other sound sources 
in space; and the characteristics of the reverberation and noise 
properties of the space it is occupying. Scene classification in 
hearing aids is currently based on traditional parameter estima-
tions (Büchler et al. 2005) or small feature sets (Townend et al. 
2018). With large feature sets, deep neural network models out-
perform traditional parametric estimation methods and achieve 
the best performance (Li et al. 2017).

Knowing the user’s location is not very useful without also 
knowing what they are trying to do in that place. Is the user in 
a car straining to concentrate on driving in the rain, or casu-
ally talking to a fellow passenger? This second class of con-
text awareness is behavioral state. The AR hearing-enhancing 
device must be able to determine whether the user is engaged 
in conversation with one or more people, either locally or re-
mote. This must be updated in real-time to cope with changes in 
conversation partner locations, as well as new partner additions 
or subtractions. Such sophisticated systems are not implau-
sible: Fridman et al. (2018) showed that using 3D convolutional 
neural networks achieves 86.1% accuracy for predicting task-
induced cognitive load in a sample of 92 subjects from video 
alone.

Listener Intent
Listener intent, or what a listener wants to hear at any moment, 

is an elusive signal; we need a technical solution that can learn 
its markers. Untangling this knot is no trivial task, but an AR 
platform offers capabilities that may help. Several studies have 
suggested utilizing eye-tracking (Hart et al. 2009; Hládek et al. 
2016; Kidd 2017; Favre-Felix et al. 2017, 2018, Reference Note 
1; Hládek et al. 2018; Roverud et al. 2018) or wearable electro-
encephalography (EEG) solutions (O’Sullivan et al. 2015; Van 
Eyndhoven et al. 2017; Fuglsang et al. 2017; Fiedler et al. 2017; 
Han et al. 2019) to determine which sound source in a complex 
scene a listener would like to attend. Not only is this a tricky task, 
we need to do it quickly enough to follow turn-taking actions 
and task switches (Monsell 2003) in a conversation. If the AR-
enhanced device can make this determination accurately, all man-
ners of digital signal processing, noise reduction, and machine 
learning-based speech enhancement techniques could be more 
effectively leveraged for the hearing aid (e.g., Chen et al. 2016; 
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Chen et al. 2017; Aroudi et al. 2018; Wang & Chen 2018). If the 
process is too slow, an unsatisfactory new version of the awkward 
turn taking that happens on laggy video conferences will result. 
While the means to track listener intention quickly and accurately 
enough to keep up with a dynamic communication situation is an 
as-yet unsolved research problem, speech-in-speech performance 
improvements by enhancing the “digital objects” steered by eye-
tracking have been demonstrated (e.g., Favre-Felix, Reference 
Note 1). Although promising, EEG solutions are still in their in-
fancy due to robustness issues (Alickovic et al. 2019). Nonethe-
less, eye-tracking cameras and/or electrodes may be part of the 
technical solution to solve the cocktail-party problem.

High-Output High-Fidelity Spatial Render
A good AR hearing-enhancing device would require acoustic 

drivers that are efficient and low distortion, even at high sound 
pressure levels.

Excellent spatial rendering, with full environmental context aware-
ness is also required. Wang et al. (2020) showed that beamforming 
with full-bandwidth spatialization supported speech localization and 
produced better speech reception thresholds than conditions without 
spatial rendering or with rendering only in the high-frequency region. 
Spatial rendering includes the ability to spatialize arbitrary signals to 
world-fixed and sound source-fixed locations.

The auditory system has been shown to adapt to altered spec-
tral cues of sound location, which presumably provides the basis 
for recalibration to changes in the shape of the ear over a lifetime 
(Carlile 2014). Thus, such spatialization would be best performed 
with individualized head-related transfer functions (HRTFs) 
(Middlebrooks 1999) and perceptually correct estimation of 
room acoustics. This information can be preprocessed in the AR 
hearing-enhancing device and transmitted to the hearing aid.

Universal “No-Latency” Encrypted Wireless 
Connectivity

The device should be able to connect to as many audio sources 
as possible. Device pairing should be intuitive and secure, and the 
connections established must be bidirectional, transmitting and re-
ceiving with no latency. In this case, “no-latency” is ideally less than 
1 ms, which would remove the practical constraints that are imposed 
by the transmission of audio, leaving more time to perform sophis-
ticated digital signal processing and machine learning-based signal 
enhancement. Giordani and Polese (2020) reviewed the state-of-
the-art latencies and found that while 5G is currently above1 ms, 
6G will be significantly below 1 ms. Critically, all connections must 
be encrypted to ensure security and privacy. Examples of required 
connections include smartphones, public address and information 
systems, emergency broadcasts, remote microphones, and other 
consumer electronics. Special connections to other devices such as 
power aids and cochlear implants must be enabled for cases when 
the user’s hearing damage is too extensive to be remediated acous-
tically. For ideal operation, the system would be paired with a next-
generation T-loop system. The most likely candidate to replace it is 
WiFi due to its ubiquity, but there are connection, interfacing, and 
transmission latency issues that would have to be solved.

Extended AR Capability
An ideal AR hearing-enhancing device would be capable 

of leveraging both multisensory input and output to increase 

intelligibility. Speech understanding is not a purely acoustic 
phenomenon, and many other sensory modalities can contribute 
to or detract from intelligibility. Being able to see lip move-
ments (e.g., MacLeod & Summerfield 1987; Grant 2001) or re-
lated head movements (Hadley et al. 2019) significantly aids in 
speech comprehension. AR is inherently multisensory, so the 
device should make full use of all the systems, such as cameras 
for scene understanding and motion tracking systems, for mul-
timodal integration to improve intelligibility.

Challenges to Be Met
Given the above framework for AR hearing-enhancing 

devices, there are many aspects that need research and matura-
tion of technologies; some technologies are more mature than 
others. For example, beamforming has already been imple-
mented in teleconferencing systems, while individualized HRTF 
spatialization and machine learning-based multichannel micro-
phone processing for speech enhancement are both still active 
research fields. Deep learning for context awareness is similarly 
only at the research stage. Cloud connectivity with 5G systems 
is being implemented worldwide, but as discussed above, pro-
cessor-heavy speech processing algorithms need cloud connec-
tions with less than 1 ms latency, which likely means waiting for 
6G cloud connectivity.

AR: ECOLOGICAL VALIDITY IN HEARING 
RESEARCH

AR hearing-enhancing devices as described above needs a 
lot of research before being ready for everyday use. AR plat-
forms could be used in research contexts, and with further eval-
uation, the platforms could provide data of progressively more 
ecological validity.

For example, in laboratory experiments with eye-trackers and 
motion trackers in realistic multiperson situations, Hadley et al. 
(2019) found that increased background noise led to increased 
gaze to the speaker’s mouth. To strive for even more ecologically 
valid findings, a research AR platform with eye-tracking and 
motion tracking, as sketched above, could be used to collect com-
parable everyday life data. Everyday life representing the highest 
possible ecological validity across sources of stimuli, environ-
ment, context of participation, task, and individual variables has 
been defined by Keidser et al. in this supplement, pp. 5S-19S.

Hohmann et al. (this supplement, pp. 31S-38S) describe how 
virtual reality could be used to obtain more ecologically valid 
findings in the laboratory by introducing more realistic test envi-
ronments. Creating avatars in a research AR platform, one could 
strive for even more ecological validity in hearing research, be-
cause such studies could be performed in everyday life settings.

Grimm et al. (this supplement, pp. 48S-55S) showed that body 
motion captured by sensors can be used in the laboratory to better 
understand the role of hearing. A research AR platform could in 
principle capture the same kind of motion data in everyday life 
and thus strive for even more ecologically valid outcomes.

Ecological momentary assessment (Holube et al. this sup-
plement, pp. 79S-90S; Smeds et al. this supplement, pp. 20S-
30S) has been proposed as a highly desirable development in 
hearing research to obtain more ecologically valid findings. 
However, the ecological momentary assessments may tempo-
rarily take the listener out of (e.g., social) context when making 
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the assessments, and valuable everyday life factors could be 
lost. Using a research AR platform would make it possible to 
study hearing behaviors in real life without having to interfere 
with the listener’s natural behavior.

CONCLUSION

If an AR framework as proposed in this paper becomes a 
reality in the future, it could impact the 30 million people with 
hearing loss in the United States, and the 466 million people in 
the world with disabling hearing loss (6.1% of the world’s pop-
ulation, WHO, 2020), affording many advantages to the expe-
rience of traditional hearing aids alone. The advantages include 
significantly improved speech intelligibility in problematic lis-
tening environments where the device understands the listener’s 
intent. The combination of AR glasses, cloud computing, and 
traditional hearing aids to an AR hearing-enhancing device has 
the potential help people with hearing loss beyond what is pos-
sible with current hearing aids.

As a research tool, AR platforms in the form of AR hearing-
enhancing devices could help the field of hearing science strive 
toward greater ecological validity with the goals of better un-
derstanding hearing in everyday life and of improved hearing 
interventions.

To achieve the potential benefits outlined in this article, there 
are major challenges still to be solved in the development of 
AR hearing-assistance platforms. That said, progress is being 
made, and we believe that AR devices will remove the serious 
constraints posed by the form factor of current hearing aids, 
while adding leaps in functionality that will constitute a step-
change in terms of a listener’s ability to follow speech in noisy 
reverberant backgrounds.
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