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Determining the rotation direction in pulsars
Renaud Gueroult 1, Yuan Shi 2, Jean-Marcel Rax3 & Nathaniel J. Fisch 4

Pulsars are rotating neutron stars emitting lighthouse-like beams. Owing to their unique

properties, pulsars are a unique astrophysical tool to test general relativity, inform on matter

in extreme conditions, and probe galactic magnetic fields. Understanding pulsar physics and

emission mechanisms is critical to these applications. Here we show that mechanical-optical

rotation in the pulsar magnetosphere affects polarisation in a way which is indiscernible from

Faraday rotation in the interstellar medium for typical GHz observations frequency, but which

can be distinguished in the sub-GHz band. Besides being essential to correct for possible

systematic errors in interstellar magnetic field estimates, this result offers a unique means to

determine the rotation direction of pulsars, providing additional constraints on magneto-

spheric physics. With the ongoing development of sub-GHz observation capabilities, our

finding promises discoveries, such as the spatial distribution of pulsars rotation directions,

which could exhibit potentially interesting, but presently invisible, correlations or features.
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Pulsars are strongly magnetised rotating neutron stars.
Because of rotation, pulsars emit two intense radiation
beams1. For a distant observer, emission appears as a pulse

each time the beam sweeps across his line-of-sight. Owing to their
unique properties, pulsars have played, and continue to play, a
critical role in the development of astronomy and astrophysics.
For instance, pulsars’ extreme density makes them one-of-a-kind
tools to test both the equation of state of superdense matter2 and
the theory of general relativity in the strong field limit3–6, while
their unparalleled emission stability could allow detecting nano-
hertz gravitational waves7. Millisecond pulsars also enabled the
first detection of an extra-solar planetary system8.

Pulsars’ highly polarised emission and compactness also make
them unmatched sources to probe the magnetic fields through
Faraday rotation9, and pulsars have been instrumental in map-
ping magnetic field properties in the interstellar medium (ISM) of
the Milky Way10–12. These studies often rely on the assumption
that polarisation rotation Δϕ results only from the Faraday effect
experienced in the magnetised plasma between the polarised
point source and the observer. For wave angular frequency ω
much greater than the plasma frequency ωpe, such as radio-waves
in the ISM (see Table 1), one can then show that ΔϕF= RM λ2,
with λ the vacuum wavelength. Information on the magnetic field
orientation and strength along the line of sight is then derived
from the proportionality coefficient RM, called the rotation
measure.

However, pulsars are surrounded by a magnetosphere.
Although pulsar magnetospheric physics, and with it the
mechanism responsible for pulsars’ emission, remains largely
uncertain13,14, it is widely accepted that the magnetosphere is
populated by relativistic electron–positron (e–p) pairs, and that it,
or at least its inner region, co-rotates with the neutron star. The
analysis of pulsar’s signal should hence in principle not only
account for propagation in the ISM between the pulsar and the
observer (between points Q and R in Fig. 1), but also for pro-
pagation in the rotating magnetosphere (between points P and Q
in Fig. 1). In particular, pulsar polarimetry ought to consider both
the well known Faraday rotation induced by intervening
magneto-optic plasma screens and the possible polarisation
rotation in the magnetosphere.

Propagation in the magnetosphere has been examined in light
of the complex polarisation patterns observed in pulsars radio
signal. Looking for possible mechanisms supporting experimental
observations, it was shown early on that the propagation of two
orthogonally polarised normal modes and their subsequent cou-
pling at a polarisation limiting radius15 provides the basic ele-
ments to explain certain characteristic observational features
including sudden 90° jumps in polarisation angle (PA)16, sig-
nificant circular polarisation in individual pulses17 and long-
itudinal swings of the PA that cannot be captured by the rotating
vector model18. In response to the polarisation peculiarities
revealed by higher-precision measurements and larger data-sets,
many phenomena such as refraction due to transverse density
gradient19, frequency-dependent conversion between linear and
circular polarisation20, cyclotron absorption21 and normal modes
coupling associated with the rotation of a non-aligned dipole
field22, were progressively added to propagation models in an
attempt to best match observations. Recently, the observation of
phase-resolved RM variations23–25 pointed to the possible con-
tribution of magnetospheric propagation to RM, and intrinsic
Faraday rotation in a non-symmetrical e–p magnetosphere was
examined via numerical polarised ray tracing26. However, to our
knowledge, the gyrotropy (i.e. circular birefringence) that results
from mechanical rotation, even in a symmetrical e–p plasma, and
the associated polarisation rotation effect have not yet been
considered.

Here, we show that mechanical rotation of a plasma leads to
supplementary wave polarisation rotation. Thus, the pulsar signal
should reflect both the classical Faraday rotation as well as
polarisation rotation arising from the rotating, pair plasma, pulsar
magnetosphere. Besides being essential to correct for possible
systematic errors in interstellar magnetic field estimates, this
effect provides a unique means to determine pulsar rotation
directions.

Results
Importance of rotation effects in pulsar polarimetry. The effect
of the rotating magnetosphere on the polarisation rotation can be
both significant and revealing. First of all, any deduction of the
intervening magnetic field between the pulsar and the observer
through Faraday rotation will have to be corrected for the

Table 1 Plasma parameters in different environments along
the path of pulsars radio-signal

Environment B0 [T] n [m−3] P [s] ωpe/ω ωce/ω

Interstellar medium 10−10 106 – 10−4 10−8

Normal pulsar 108 1021 0.5 102 109

Millisecond pulsar 104 1019 0.003 10 105

B0 is the typical background magnetic field, n the plasma density in the interstellar medium and
at the neutron star surface, and P the period of normal (also referred to as slow or non-recycled)
and millisecond pulsars. The density n is estimated from the Goldreich–Julian density NGJ and a
factor η ¼ n=NGJ � 5 ´ 103. Both magnetic field and density decrease as ðr�=rÞ3 in the pulsar
magnetosphere, with r� the neutron star radius. Rotation measure RM are typically observed at
f ~ 1 GHz. ωpe, ωce and ω= 2πf are the plasma, electron cyclotron and wave angular frequency
(rad s−1), respectively
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Fig. 1 Illustration of the different contributions to pulsars’ emission
polarisation rotation. Polarisation rotation is typically assumed to stem from
Faraday rotation between Q and R. But wave polarisation also contains
information on the magnetosphere properties between points P and Q, and
in particular on the magnetosphere rotation Ω
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additional polarisation rotation. Second of all, previously-
unknown information can be obtained about the pulsar. For
example, absent accounting for the effect of the rotating mag-
netosphere, the observation of a pulsar from a single distant point
will uncover the pulsar rotational frequency but not its sense of
rotation. Indeed, although the impact parameter β (angle between
the line of sight and the magnetic moment μ, see Fig. 1) can be
inferred using the rotating vector model18, its sign remains
unknown and so is the sense of rotation. However, as we show
here, because the wavelength dependency of the polarisation
rotation due to rotating magnetosphere differs from that due to
Faraday rotation, it becomes possible to determine whether a
pulsar is rotating clockwise (angular velocity anti-parallel to line
of sight, i.e. Ω < 0) or counterclockwise (angular velocity parallel
to line of sight, i.e. Ω > 0), and from there the sign of β, even when
observed from a single distant point. It is important because
pulsar viewing geometry strongly affects the observed pulsar
signal27. Proper knowledge of the viewing geometry is hence
essential to data interpretation. Determining pulsars’ sense of
rotation is also important because the sign of Ω ⋅ μ constrains
possible magnetosphere compositions (e–p only or also proton)
and particle acceleration mechanisms, and in turn, possible radio
emission mechanisms13.

Polarisation in rotating gyrotropic media. To see this, consider
for simplicity the propagation of a wave along the axis of an
aligned rotator, that is to say when the obliquity α= 0 (i.e. the
angular velocity and magnetic moment are aligned). For perfect
alignment of the axes (α= 0), the radiation pulsing vanishes, but
the key effects are retained. This case is also important since the
beam axis tends to align with the rotational axis (α→ 0) as the
pulsar ages28. In this case, we show (see Methods for the deri-
vation) that polarisation rotation in a rotating gyrotropic medium
is the sum of two contributions, with

Δϕ ¼ ΔϕF þ ΔϕMðΩÞ: ð1Þ
The first term ΔϕF is the classical Faraday rotation which

occurs in a stationary gyrotropic medium. The second term ΔϕM

(Ω) stems from the medium’s rotation at frequency Ω, and is
referred to as mechanical-optical rotation (MOR)29,30. Informa-
tion on Ω is therefore imprinted in wave polarisation. This result
is expected to hold when the wave propagates along the
background magnetic field (k ∥ B0), even if the mechanical and
magnetic axes are only nearly aligned. Rotation can thus in
principle be retrieved from ΔϕM in pulsars’ pulsating signal.

Mechanical-optical rotation in e–p magnetosphere. In a rotat-
ing magnetised plasma, the combined effects of Faraday rotation
and MOR make eliciting the effect of mechanical rotation difficult.
Yet, it happens that Faraday rotation cancels in the particular case
of a cold e–p plasma symmetrical in density (ne= np= n). We
thus take advantage of this coincidence to shed light onto how
polarisation may be affected as a wave propagates in the rotating
magnetosphere.

In an e–p plasma rotating at Ω > 0, we show (see Methods) that
the left-handed circularly polarised (LCP) wave only propagates
above a cut-off frequency ωlc which depends on Ω and the e–p
plasma density n in the magnetosphere. Above this cut-off
frequency, both LCP and RCP waves propagate, and the
difference in wave index Δn= nl− nr introduced by mechanical
rotation leads to MOR. Importantly, ω�

lc=2π � 100MHz for
plasma parameters at the surface of typical normal (i.e. slow or
non-recycled) pulsars (see Table 1), which is on the lower end of
the frequency range presently used for pulsar polarimetry
(typically GHz)31. Since ωlc decreases as r/r⊙ with r⊙ the neutron

star radius as the wave propagates upward in the magnetosphere,
the ordering ωlc < ω holds throughout the magnetosphere, which
implies that MOR should be present in a large fraction of pulsar
polarisation data.

For frequencies at least a few times ωlc, we see in Fig. 2 that Δn
(ω)∝ω−3, and therefore ΔϕM∝ω−2. Hence, MOR in a rotating
e–p plasma has the same λ2 wavelength signature as Faraday
rotation in the intervening ISM. However, we uncover here that the
peculiar behaviour of MOR near the LCP cut-off may retire this
apparent ambiguity. As illustrated in Fig. 2, MOR features a
different wavelength scaling for ν=ω−ωlc≪ωlc. In this frequency
band, Δn increases as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3ν=ωlc

p ðΔn< 0 forMOR if Ω> 0Þ.

Rotation footprint. Detailed analysis of integrated magneto-
spheric propagation effects will require combining both MOR
and the many propagation effects considered to date (see, e.g.
ref. 32). Yet, the adiabatic evolution of the normal modes
uncovered above in a simplified magnetosphere offers insights
into the possible footprint of rotation in pulsars’ radio-signal
polarisation. Separating the analysis of MOR from other pro-
pagation effects is also supported by the finding that MOR is
expected to occur close to the emission height low in the
magnetosphere, below radii where wave coupling and cyclo-
tron resonance are typically expected to take place (see
Methods).

Simulated PA and RM curves resulting from propagation
through both the magnetosphere and the ISM are plotted in
Fig. 3. The magnetospheric contribution obtained by integrating
the phase difference between RCP and LCP modes throughout
the rotating magnetosphere (see Methods) is added for
illustration to an ad-hoc ISM contribution RMISM= 5 rad m−2,
which is larger than 6% of known pulsar |RMs|33. Figure 3
confirms that, because of its λ2 wavelength scaling at typical
observation frequencies (100 MHz to few GHz), MOR footprint
is a priori indiscernible from Faraday rotation in the ISM. When
fitting observations using the relation Δϕ= RMλ2, the deduced
rotation measure RM in this frequency range hence not only
portrays Faraday rotation but also any possible MOR. Attribut-
ing RM to the effect of magnetic fields in the ISM alone, as is
often done in pulsar polarimetry, thus risks systematic errors.
For positive Faraday rotation in the ISM (BISM ⋅ k > 0), the
magnetic field strength along the line of sight will be respectively
over- and under-estimated for Ω < 0 and Ω > 0. Quantitatively,
we find that MOR leads to |RMMOR| ~ 1 rad m−2 for the
canonical normal pulsars parameters given in Table 1, and ana-
lytical derivations indicate (see Methods) that RMMOR ∝ BpP−2,
with P the pulsar period. The contribution of MOR through the
magnetosphere to the observed RM will thus be larger for fast-
spinning, high surface magnetic field pulsars and low emission
heights.

Importantly, simulation results plotted in Fig. 3 also confirm
that the non-λ2 wavelength scaling predicted for mechanical
polarisation rotation near the cut-off frequency should be
observable in the form of a λ-dependent RM. Quantitatively,
the variation in RM predicted here is about 2%, which is
significantly larger than the 0.3% median fractional uncertainty
obtained over 136 pulsars observed above 100 MHz34. This λ-
dependent RM offers a conceptual means to separate MOR in
the rotating e–p magnetosphere from Faraday rotation in the
ISM. MOR could then provide insights into the pulsar
magnetosphere dynamics. In particular, a positive dRM/dω
above the cut-off as observed in Fig. 3 will indicate counter-
clockwise rotation (Ω ⋅ k > 0), while negative dRM/dω will
indicate clockwise rotation (Ω ⋅ k < 0).
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Discussion
For wave emission below the cut-off frequency, the adiabatic
evolution considered here predicts 100% circularly polarised
radiation, for which PA is undefined. However, nonadiabatic
propagation effects may induce linear components higher up in
the magnetosphere, so RM may still be measurable below ωlc. Due
to the nonadiabaticity, both RM(ω) and the degree of linear
polarisation may exhibit jump-like features near ω ~ ωlc. Such
features, which would be another signature of mechanical
polarisation rotation, remain to be better modelled and observed
in the future.

While the symmetrical e–p plasma magnetosphere model used
here is overly simplified, we show that accounting for relativistic-
quantum effects and density asymmetry in the magnetosphere
does not qualitatively modify this picture (see Methods). It sug-
gests that while the detailed frequency dependence Δϕ(ω) near
the cut-off changes as the magnetosphere model is refined, the
existence of a frequency cut-off and the associated non-λ2

behaviour near this cut-off are robust features of mechanical
rotation.

Recent observations have highlighted the absence of frequency
dependence in RM measurements in over 100 pulsars34, which in
appearance seems contradictory to the presence of MOR. How-
ever, these results were obtained at about 150MHz, which is
above the typical mechanical polarisation rotation cut-off fre-
quency of tens of MHz predicted here. The absence of frequency-
dependence in measured RMs could thus simply be the con-
sequence of the λ2 scaling of MOR at frequencies of 150MHz and
above. Interestingly, Sobey et al. also showed34 that they could
not detect RM at 150MHz for a small number of pulsars for

which RMs have been previously reported at higher frequency.
Although this inability to detect RM may be the consequence of
heightened scattering induced depolarisation at low fre-
quency35,36, another possible explanation is that RM-synthesis37,
which intrinsically assumes a λ2-scaling law, cannot adequately
capture the non-λ2 contribution of MOR.

The ongoing development of observation capabilities down to
tens of MHz such as LOFAR38, LWA39, MWA40 and SKA-Low41

for gravitational waves detection with pulsar timing arrays7 offers
great prospects for uncovering the possible role of mechanical
polarisation rotation. Using the high-precision RMs recently
obtained at 150MHz34 as a baseline, high-resolution PA obser-
vations at a few tens of MHz should enable searching for possible
frequency dependence in RM closer to the predicted cut-off fre-
quency. If successful, this would provide a unique means to
determine pulsars sense of rotation and, in turn, to advance our
understanding of the magnetospheric structure and pulsar radio
emission mechanism.

If observed deviations were indeed traceable to MOR, polar-
isation data obtained at shorter wavelengths where Δϕ∝ λ2 holds
true may have to be revisited to correct magnetic field estimates
in light of the mechanical rotation contribution. While estimates
obtained here indicate that this contribution to RM may be small
for pulsars with large known RMs, it could be significant for
pulsars with moderate RMs. This is particularly true in light of
the large variation in period, surface magnetic field and emission
height found across pulsars.

Finally, while the simple scalings derived here by taking
advantage of the natural frequencies ordering found in normal
pulsars magnetosphere will break down for other plasma regimes,
the basic modification of the plasma dielectric tensor due to
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rotation and its associated polarisation rotation will persist. In
particular, mechanical polarisation rotation could likewise be at
play in millisecond pulsars where phase-dependent RM has also
been observed24.

Methods
Polarisation rotation in gyrotropic media. Consider a typical magneto-optic
medium described by the susceptibility tensor

�χð�ωÞ ¼
�χ? �i�χ ´ 0

i�χ ´ �χ? 0

0 0 �χk

0B@
1CA: ð2Þ

The magneto-optical activity translates into right-handed circularly polarised
(RCP) and left-handed circularly polarised (LCP) normal modes propagating alongbz, with indices �nr ¼ ð1þ �χ? þ �χ ´ Þ1=2 and �nl ¼ ð1þ �χ? � �χ ´ Þ1=2, respectively.
Here left- and right-handed waves are defined from the point of view of the source
in the direction of propagation of the wave.

The difference in wave index nr and nl of RCP and LCP waves associated with
the non zero off-diagonal term �χ ´ leads to a rotation of the plane of polarisation of
a linearly polarised wave. After propagating over a distance l, the polarisation has
been rotated by

ΔϕðωÞ ¼ nlðωÞ � nrðωÞ½ �ωl
2c

: ð3Þ
The polarisation rotation per unit length, also known as the specific rotary

power, is δ(ω)= Δϕ(ω)/l.
A magnetised plasma can be considered as an anisotropic dielectric. Writing the

background magnetic field B0 ¼ B0bz and assuming a cold and collisionless plasma,
the components of the susceptibility tensor in the plasma rest frame are42

�χ?ðωÞ ¼
X
α

ω2
pα

ω2
cα � ω2

ð4Þ

�χ ´ ðωÞ ¼
X
α

εα
ωcα

ω

ω2
pα

ω2 � ω2
cα

ð5Þ

�χkðωÞ ¼ �
X
α

ω2
pα

ω2
; ð6Þ

where ωcα= |qα|B0/mα and ωpα= [nαe2/(mαε0)]1/2 are the cyclotron frequency and
plasma frequency of species α, respectively, and εα= qα/|qα|.

Typically, plasma parameters in the Faraday screen in between the pulsar and
the observer are such that ωcα � ω and ωpα � ω for the GHz wave of radio-
telescope measurements (see Table 1). In this limit, 1 � j�χ?j � j�χ ´ j, �χ?<0 and
�χ ´ <0, so that nlðωÞ � nrðωÞ when B0>0 and, from Eq. (3), Δϕ>0. Quantitatively,

nlðωÞ � nrðωÞ �
ωceω

2
pe

ω3
; ð7Þ

which yields the classical scaling Δϕ∝ λ2.

Parallel propagation in rotating gyrotropic media. Let us now assume that the
medium defined by Eq. (2) is rotating with angular velocity Ω ¼ Ωbz, and that the
dielectric properties in the medium’s rest frame are not modified by rotation, i.e.
χ′ ¼ χ. Here p′ refers to the laboratory frame variable p in the gyrotropic medium’s
rest frame. In the rotating frame, the constitutive relations write

B′ ¼ μ0H′ ð8Þ

D′ ¼ ε0 Iþ χðω′Þ½ �E′: ð9Þ
Using Lorentz transformation from the dielectric rest frame rotating at

instantaneous velocity v= T(−Ωy, Ωx, 0) to laboratory frame (see, e.g. ref. 43), we
get the constitutive relations in the lab frame

B ¼ μ0H� v
c2

´ χðω′Þ 	 E ð10Þ

D ¼ ε0ε 	 Eþ χðω′Þ 	 v
c2

´H
� �

: ð11Þ
The second term in Eqs. (10) and (11) represent, to first order in v/c, the effect

of rotation. This set of constitutive relations, Eqs. (10) and (11), is complemented
by Maxwell’s equations

∇ 	 B ¼ 0 ð12Þ

∇ 	D ¼ 0 ð13Þ

∇ ´E ¼ � ∂B
∂t

ð14Þ

∇ ´H ¼ ∂D
∂t

: ð15Þ

Using Eq. (15) into the curl of Eq. (10), and plugging in Eq. (11), one gets

c= ´B¼ 1
c
∂
∂t ðIþ χðω′ÞÞ 	 E½ � þ ∂

∂t χðω′Þ 	 β ´ μ0H
� �� �

�=´ β ´ �χðω′Þ 	 Eð Þ; ð16Þ

with β= v/c. To first order in β, B can be substituted to μ0H in the second term on
the right hand side. Following Player30, we consider the particular case of a wave
propagating along the rotation axis, i.e. k ¼ kbz. Equations (12) and (13) require
respectively that B and D are transverse. Equations (10) and (11) then imply that H
and E have longitudinal amplitudes of order β. To first order in β, the operator ▽
can thus be replaced by bz∂=∂z when it operates on field quantities30. Under these
assumptions, and after some algebra, the last term in Eq. (16) can be rewritten

= ´ β ´ �χðω′Þ 	 E½ � ¼ Q χðω′Þ 	 E½ � ð17Þ
where we have defined the operator

Q ¼ Ω

c2
Q1 	 = ´ þ Q2 	 þbez ´½ � ð18Þ

with

Q1 ¼
0 0 x

0 0 y

�x �y 0

0B@
1CA and Q2 ¼

0 0 �y

0 0 x

y �x 0

0B@
1CA ∂

∂z
: ð19Þ

Further derivation shows that the product of the last two terms of the operator
Q in Eq. (18) with χðω′Þ 	 E depends only on ∂Ez/∂z, which is negligible to first
order in β as a result of Eqs. (13) and (11). Using the vector identity, Eq. (42), and
noting that ½χðω′Þ 	 =� ´E ¼ χk= ´ E, Eq. (17) then writes to first order in β

= ´ β ´ χðω′Þ 	 E½ � ¼ Ω

c
Q1χ

y 	 =´ Eð Þ ð20Þ

with

χy ¼
�χ? �i�χ ´ 0

i�χ ´ �χ? 0

0 0 2�χ? � �χk

0B@
1CA: ð21Þ

Using Eq. (14) in Eq. (20), plugging it into Eq. (16), and taking the curl, we get

c=´= ´B¼ 1
c
∂
∂t = ´ Iþ χðω′Þ½ � 	 Eð Þ
þ 1

c
∂
∂t = ´ χðω′Þ 	 β ´Bð Þ½ �

þ Ω
c = ´Q1χ

yðω′Þ ∂B∂t :
ð22Þ

Using once more the vector identity, Eq. (42), and
ð½Iþ χðω′Þ� 	 =Þ´ E ¼ ð1þ �χkÞ= ´E, the first term in the bracket on the right
hand side of Eq. (22) reads

= ´ Iþ χðω′Þ½ � 	 E ¼ Iþ χyðω′Þ� � 	 ∇ ´ E: ð23Þ
Finally, plugging Eq. (14) in Eq. (23), a wave equation for B is obtained,

=´= ´B¼ � 1
c2 Iþ χyðω′Þ� � 	 ∂2B∂t2

þ 1
c
∂
∂t= ´ χðω′Þ 	 β ´Bð Þ

þ Ω
c2 = ´Q1χ

yðω′Þ ∂B∂t :
ð24Þ

Writing B= T(Bx, By, 0) exp [i(kz− ωt)] and introducing the wave index n=
kc/ω, Eq. (24) leads to

1þ χ? � n2 �iχ ´

iχ ´ 1þ χ? � n2

 !
Bx

By

 !
¼ 0

0

	 

ð25Þ

with

χ? ¼ �χ? �Ω

ω
�χ ´ ð26Þ

χ ´ ¼ �χ ´ �Ω

ω
�χk þ �χ?
� �

: ð27Þ
In deriving Eq. (25), terms in ∂β/∂t and ∂2β/∂t2 have been neglected since they

are respectively of order β2 and β3.

Mechanical contribution to polarisation rotation. From Eq. (25), we see that the
wave indexes of RCP (By= iBx) and LCP (By=−iBx) waves are modified by
rotation and now write

n2r ðωÞ ¼ 1þ χ?ðω′Þ þ χ ´ ðω′Þ
¼ 1þ �χ?ðω′Þ þ �χ ´ ðω′Þ

� Ω
ω �χ ´ ðω′Þ þ �χkðω′Þ þ �χ?ðω′Þ
h i

;

ð28Þ
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and

n2l ðωÞ ¼ 1þ χ?ðω′Þ � χ ´ ðω′Þ
¼ 1þ �χ?ðω′Þ � �χ ´ ðω′Þ

� Ω
ω �χ ´ ðω′Þ � �χkðω′Þ � �χ?ðω′Þ
h i

:

ð29Þ

Owing to Doppler shift, ω′= ω−Ω for the RCP, and ω′= ω+Ω for the LCP.
Just like polarisation rotation in a stationary gyrotropic medium arose from

�χ ´ ≠0, Eqs. (28) and (29) show that polarisation rotation in a rotating gyrotropic
medium stems from χ× ≠ 0. However Eq. (27) indicates that polarisation rotation
can now stem either from anisotropy of the medium �χ ´ ≠0

� �
or from mechanical

rotation (Ω ≠ 0), or a combination of the two effects.
In the limit of an isotropic dielectric, �χ? ¼ �χk ¼ εr � 1, with εr the dielectric

relative permittivity, and �χ ´ ¼ 0. Polarisation rotation hence results only from
mechanical rotation. Assuming slow rotation (Ω≪ ω), Eqs. (28) and (29) rewrite

nl=rðωÞ �
ffiffiffiffiffiffiffiffiffiffiffiffi
εrðω′Þ

p
±

ffiffiffiffiffiffiffiffiffiffiffiffi
εrðω′Þ

p
� 1ffiffiffiffiffiffiffiffiffiffiffiffi

εrðω′Þ
p" #

Ω

ω
: ð30Þ

Taylor expanding the refractive index difference Δn= nl− nr, one recovers
from Eq. (3) the result

Δϕ ¼ Δnωl
2c

¼ ng � n�1
� �Ωl

c
ð31Þ

first obtained by Player30 and later generalised by Götte44 to account for wave
optical angular momentum. Here ng= n+ ωdn/dω is the group index and n2= εr.

Mechanical optical rotation in a simplified magnetosphere. For a symmetrical
and cold e–p plasma, n= ne= np, εe=−εp= 1 and m=mp=me. The non-
diagonal term �χ ´ of the susceptibility tensor in Eq. (5) hence also cancels. Electrons
and positrons interact symmetrically with RCP and LCP waves, respectively, and
no polarisation rotation is found in the absence of plasma rotation (no Faraday
rotation). Polarisation rotation is in this case a purely mechanical effect, as it is the
case for an isotropic dielectric30.

For plasma parameters typical of normal (i.e. slow or non-recycled) pulsar
magnetospheres, and GHz radio waves typically used by radio-telescopes, the
ordering ωc≫ ωp, ω≫Ω holds. In these conditions, j�χkj � 1 � �χ? . Since �χk<0,
Eq. (29) indicates that there is a cut-off frequency

ωlc � 2ω2
pΩ

� �1=3 ð32Þ

below which the LCP does not propagate assuming Ω > 0. Note that reversing the
pulsar sense of rotation (Ω < 0) simply changes the LCP cut-off into a RCP cut-off
at the same frequency. For the plasma parameters near the neutron star surface
given in Table 1, ω�

lc=ð2πÞ � 100MHz, which is on the lower end of radio-
telescope observations. Also, since n� / B�

p P
�1, ω�

lc / B�1=3
p P�2=3. The cut-off

frequency will then be larger for fast-spinning, large magnetic field pulsars. For Ω
> 0, nr(ω) ≥ nl(ω) above ωlc, and Eq. (3) shows that ΔϕM < 0. Conversely, ΔϕM > 0
for Ω < 0. Depending on the pulsar sense of rotation, MOR in the rotating e–p
magnetosphere can hence add to or subtract from polarisation rotation associated
with the magneto-optical effect in the low-density Faraday screen between the
pulsar and the observer. Since the situation is symmetrical, we consider the case Ω
> 0 in the rest of this section.

Far above the cut-off frequency, that is to say for ωlc � ω � 2ω2
cΩ

� �1=3
, 1 �

j�χkjΩ=ω � �χ? and

nlðωÞ � nrðωÞ �
Ω

ω
�χk � �2

ω2
pΩ

ω3
: ð33Þ

From Eq. (3), polarisation rotation Δϕ is hence proportional to ω−2, similarly to
Faraday rotation in a stationary magnetised plasma for wave frequencies much
larger than the plasma frequency ωpe.

Interestingly, a different behaviour is found near the cut-off. Taylor expanding
the left and right wave indexes, one finds, to lowest order in ν= ω− ωlc,

nlðωÞ � nrðωÞ ¼ �
ffiffiffi
2

p
þ

ffiffiffiffiffiffiffiffiffi
3
ν

ωlc

r
þO ν

ωlc

	 

: ð34Þ

In this frequency band, polarisation rotation Δϕ hence scales like ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� ωlc

p
.

Integrated MOR through an inhomogeneous magnetosphere. Magnetic field Bp
and plasma density n are typically assumed to decrease in the magnetosphere as
(r⊙/r)3 with r⊙= 10 km the canonical neutron star radius. As a result, the cut-off
frequency ωlc= (2ωcΩ)1/3∝ r⊙/r and both RCP and LCP modes propagate if the
wave frequency is greater than the cut-off frequency at emission height hem. Within

our simplifying assumption of an aligned rotator Ω=Ω ¼ Bp=Bp ¼ k=k ¼ bz� �
, the

polarisation rotation due to MOR incurred by propagating in the magnetosphere

writes

Δϕ>ðωÞ ¼
Z1
hem

Δnðz;ωÞω
2c

dz: ð35Þ

Radio-waves are generally believed to be emitted between a few and tens stellar
radii above the neutron star surface45,46, and comparable or lower emission heights
have been observed in millisecond pulsars47. At these radii, the condition ωc≫
ω≫ ωlc holds for GHz waves in the magnetosphere of normal pulsars (see surface
parameters in Table 1). The wave number difference Δn between LCP and RCP
modes is thus given in Eq. (33). On the other hand, the possible frequency
dependence of hem remains an open question. While a number of studies assume a
radius-to-frequency mapping48 with hem∝ f−2/3, observations suggest that both
low- and high-frequency emission (from 10 s of MHz to 10 GHz) emerge from
within 11r⊙ in some pulsars49. We thus assume here for simplicity that hem does
not depend on ω. Under this assumption, Eq. (35) then writes

Δϕ>ðλÞ ¼
Z1
hem

� λ2

8π2c3
ω�
lc r�
z

	 
3

dz ¼ RMMORλ2; ð36Þ

with ω�
lc the cut-off frequency at the neutron star surface and

RMMOR ¼ � ω�
lc r�

� �3
16π2c3h2em

: ð37Þ

For normal pulsars parameters given in Table 1, this yields RMMOR ~−133
(r⊙/hem)2 rad m−2. Equation (36) confirms that for ω≫ ωlc the effect of MOR
through the rotating magnetosphere on PA is undistinguishable from that
arising from propagation in a non-rotating ISM plasma where ω≫ ωc, ωp. Also,
since Δn ∝ 1/r3, MOR mostly contributes to polarisation rotation in a narrow
layer above the emission height. Quantitatively, Eq. (37) indicates that 75% of
mechanical polarisation rotation occurs between 1 and 2hem. Taking fiducial
emission heights of 10 and 50 r⊙ yields |RMMOR| of 1.33 and 5 × 10−2 rad m−2,
respectively. Since, from the classical scaling n� / B�

p P
�1, RMMOR / B�

p P
�2, the

effect of mechanical polarisation rotation will be larger for fast-spinning, high
surface magnetic field pulsars.

For wave frequencies near the cut-off frequency at the emission height, the non-λ2

scaling of MOR translates into a frequency-dependent RM. However, since ωlc∝ 1/r,
ω−ωlc increases along the wave’s path and the region contributing to the non-λ2

scaling is thus limited. As a result the PA deviates from an ideal λ2 scaling, but does
not follow the local deviation ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω� ωlc

p
given in Eq. (34). Nevertheless, a faster than

−λ2 decrease in PA (or positive dRM/dω) remains forΩ > 0. Conversely, a faster than
λ2 increase in PA (negative dRM/dω) remains for Ω < 0. This non-zero RM derivative
can in principle be used to determine the sense of rotation of a given pulsar.

Simulating rotation effects on PA and RM curves. Under our assumption of
adiabatic evolution, the PA and RM curves can be obtained by numerically inte-
grating Eq. (35) along the line of sight through the magnetosphere using the wave
indexes given in Eqs. (28) and (29). A test photon is initialised at hem and advanced
in space by increment cδt keeping track of polarisation rotation along its path.
Integration is carried out up to the point zm where the local change in PA becomes
smaller than a set fraction ι of the already accumulated change in PA,R zmþcδt

zm
δMðωÞdzR zm

hem
δMðωÞdz 
 ι: ð38Þ

Since Δn ∝ r−3 above the cut-off frequency this procedure ensures convergence
towards Δϕ > (ω).

Results obtained for the canonical normal pulsar parameters given in Table 1,
hem= 10r⊙ and ι= 10−5 are plotted in Fig. 3, and confirm the low- and high-
frequency signatures of rotation on PA and RM.

Effects of magnetosphere model refinement. While the symmetrical e–p plasma
model used so far conveniently highlights the role of mechanical rotation, it fails to
account for two features which are typical of pulsar’s magnetosphere.

First, magnetospheres are generally assumed to have non-zero space charge, so
that ne ≠ np. The density asymmetry leads to non-zero non-diagonal susceptibility
�χ ´ . This makes polarisation rotation more complicated with now both Faraday
rotation and MOR taking place in the magnetosphere. If the charge density is equal
to the Goldreich–Julian value NGJ

50, the relation η(1− 2f)= 1 holds true with f=
np/(ne+ np) the positron fraction and η= (ne+ np)/NGJ ≥ 1. The multiplicity
factor η is generally assumed to be large (102–105), so that f is close to 0.5. To
illustrate the effect of density asymmetry, we choose np= n and ne= n(1− f)/f
with f= 0.49. This corresponds to a space charge larger than the Goldreich–Julian
value for the pulsar parameters given in Table 1 and used in the symmetrical model
for which η= 285 so that f ~ 0.498. Yet, as illustrated in Fig. 4, we see that there still
exists a cut-off for the LCP wave (Ω > 0 here), and that the deviation of polarisation
rotation near the cut-off from the λ2 scaling persists. The observed upshift in cut-
off frequency stems from the increase in ωpe.
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Second, the relativistic-quantum effects associated with the extremely strong
magnetic fields found in pulsars should also be considered51. The plasma
susceptibility tensor, Eqs. (4), (5) and (6), is then replaced by its QED form52

�χ? ¼ �
X
α

mαω
2
pα

mα0ω
2

N αðω; nÞ
Dαðω; nÞ

ð39Þ

�χ ´ ¼ �
X
α

εα
ωcαω

2
pα

ω3

4m2
α

Dαðω; nÞ
; ð40Þ

�χk ¼ �
X
α

mαω
2
pα

mα0ω
2

κ2ω2ð1� n2Þ � 4m2
α0

κ2ω2ð1� n2Þ2 � 4m2
α0

ð41Þ

with

N αðω; nÞ ¼ κ2ω2ð1� n2Þ2 � 2κð1� n2Þmαωcα � 4m2
α0;

Dαðω; nÞ ¼ ½κωð1� n2Þ � 2mαωcα=ω�2 � 4m2
α0:

Here κ= ℏ/c2 and mα0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

α þ eB0�h=c2
p

the shifted ground-state mass of the
charged particle. Compared to the classical model, the components of the susceptibility
tensor now depend on the wave vector k, but implicit expressions can be found for the
wave refractive indexes nr and nl. The numerical solution for our default pulsar
parameters is shown in Fig. 4. This result shows that the deviation from the λ2 scaling
near the cut-off frequency persists even when QED effects are taken into consideration.

Vector identity. For a function f: IR3→ IR3 and a constant matrix M with ele-
ments mij, 1 ≤ i ≤ 3, the relation

= ´ ðM fÞ ¼ N 	 ð= ´ fÞ � ðM 	 =Þ´ f; ð42Þ

holds with

N ¼
m22 þm33 �m21 �m31
�m12 m11 þm33 �m32
�m13 �m23 m11 þm22

0@ 1A
¼ trðMÞI�MT:

Data availability
Data that support the findings of this study are available in the manuscript. Data plotted
in the various graphs can be produced using the python script provided in ‘Code
availability’.

Code availability
The python script used to produce data and graphs plotted in Figs. 2–4 is archived at
https://github.com/RenaudGueroult/pulsarMOR.
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