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Abstract

Background: Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features,
including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the
recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that
hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMa) is chemotactic to murine bone marrow cells in vitro and involved in
pulmonary vascular remodeling in vivo.

Methodology/Principal Findings: We used a mouse bone marrow transplant model in which lethally irradiated mice were
rescued with bone marrow transplanted from green fluorescent protein (GFP)+ transgenic mice to determine the role of HIMF in
recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer
of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary
vasculature; in several neomuscularized small (,20 mm) capillary-like vessels, an entirely new medial wall was made up of these
cells. We found these GFP+ BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of
the GFP+ cells that localized to the pulmonary vasculature were a-smooth muscle actin+ and localized to the media layer of the
vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular
smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a
potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a
cell migration assay using cultured human mesenchymal stem cells (HMSCs). The addition of recombinant HIMF induced
migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner.

Conclusions/Significance: These results demonstrate HIMF-dependent recruitment of BMD mesenchymal-like cells to the
remodeling pulmonary vasculature.
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Introduction

Hypoxia-induced mitogenic factor (HIMF), also known as ‘‘found

in inflammatory zone 1’’ (FIZZ1) and resistin-like molecule alpha

(RELMa), is a pleiotropic cytokine that is highly inducible in lung

[1–3]. We have shown it to have mitogenic, angiogenic, vasocon-

strictive, and chemokine-like properties [3–6]. We initially described

HIMF in the remodeling vasculature of the chronic hypoxia model of

pulmonary hypertension (PH) [3] and have recently determined that

HIMF plays a critical role in this process [7]. In rats, in vivo

knockdown of HIMF specifically in the lung reduces the mean

pulmonary artery pressure, pulmonary vascular resistance, and

vascular remodeling associated with chronic hypoxia, whereas

pulmonary gene transfer of HIMF initiates vascular remodeling

and increases these physiological measurements [7]. Liu et al. [8] has

shown that HIMF plays a key role in the transition of fibroblasts to

myofibroblasts, which is essential to bleomycin-induced fibrosis and

may play a role in vascular remodeling associated with PH. Our lab

and others have demonstrated that the addition of recombinant

HIMF to cultured cells activates the phosphoinosotide-3-kinase (PI-

3K)/Akt and extracellular signal-regulated kinase 1/2 (ERK1/2)

mitogen-activated kinase (p42/44 MAPK) pathways in several

different cell types [3,9,10]. Finally, we have demonstrated that

HIMF is chemotactic for undifferentiated murine bone marrow-

derived (BMD) cells and this action is mediated through Bruton’s

tyrosine kinase (BTK) [5].

Pulmonary vascular remodeling is a key component of the

pathogenesis of PH. Recent evidence has suggested the possibility
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that BMD progenitor cells are recruited during this remodeling

process [11,12]. Davie et al. [11] demonstrated that BMD c-kit+

cells were localized within the pulmonary artery walls of

chronically hypoxic calves, and Spees et al. [12] reported that a-

smooth muscle actin (a-SMA)+ BMD cells became engrafted into

the pulmonary vasculature in an inflammatory model of PH.

These studies suggest the interesting possibility that pulmonary

vascular remodeling may involve cells of multiple origins, possibly

including multipotent ‘‘stem cells.’’

In the current study, we demonstrate in mice that both chronic

hypoxia and pulmonary gene transfer of HIMF induce BMD cell

recruitment to the remodeling pulmonary vasculature; many of

these cells localize to the newly formed media of previously non-

muscularized capillary-like vessels. Both mouse models led to

significant pulmonary vascular remodeling consistent with our

prior demonstration of structural and hemodynamic PH. We

describe several of these cells to be stem cell antigen (sca)-1+ and

c-kit+ as well as CD312 and CD342. The BMD cells located

within the vessel walls are likely of mesenchymal origin as they

are a-SMA+. We also show that HIMF induces migration of

human mesenchymal stem cells (HMSCs) in a PI-3K-dependent

manner in vitro. All of these data suggest that HIMF/FIZZ1/

RELMa recruits BMD cells to the remodeling pulmonary

vasculature.

Materials and Methods

Experimental animals/bone marrow transplantation
Female C57/BL6 mice (6–8 weeks old; Charles River

Laboratories, Wilmington, MA) were used as bone marrow

transplant recipients for all experiments. Four- to 6-week-old

male transgenic enhanced green fluorescent protein (EGFP) mice

on a C57BL/6 background (Jackson Laboratories, Bar Harbor,

ME; stock number: 003291) were used as bone marrow donors

[13]. Animal housing and experimental protocols were approved

by the Animal Care and Use Committee of the Johns Hopkins

University (Protocol #: MO08M424). The mice were given free

access to food and water and were maintained in a room with a

12:12 hour light-dark cycle between 20–24uC. Bone marrow

transplants were performed as previously stated [14]. Briefly,

whole bone marrow was collected from the transgenic EGFP mice,

and 26106 bone marrow cells were transplanted into lethally

irradiated (1,050 cGy) recipient mice through intravenous

injection. The transplant recipients were then allowed to recover

for 4–6 weeks.

Antibodies and Inhibitors
Rabbit anti-mouse HIMF polyclonal antibodies were prepared

as we have described [3]. Polyclonal rabbit anti-GFP antibodies

were purchased from Invitrogen (Carlsbad, CA). Goat anti-mouse

RELMa (HIMF), rat anti-mouse c-kit, and rat anti-mouse sca-1

antibodies were purchased from R&D Systems (Minneapolis,

MN). The rat anti-mouse CD31 and the mouse anti-b-actin

monoclonal antibodies were purchased from BD Biosciences (San

Jose, CA). The rabbit anti-CD34 antibody was purchased from

Santa Cruz Biotechnology (Santa Cruz, CA). The mouse anti-a-

SMA antibody was purchased from DakoCytomation (Carpin-

teria, CA). Fluorescein isothiocyanate (FITC), rhodamine, cy3-

and cy5-labeled secondary antibodies were purchased from

Jackson ImmunoResearch (West Grove, PA). The rabbit anti-

phospho-Akt (Ser473/Thr308) and rabbit anti-phospho-ERK1/2

(Thr202/Tyr204) polyclonal antibodies as well as the pharmaco-

logical inhibitors U0126 and LY294002 were purchased from Cell

Signaling Technologies, Inc. (Beverly, MA).

Intranasal instillation of viral vectors
To selectively induce HIMF expression in the lungs, we used a

recombinant adeno-associated virus (AAV) vector that expresses

murine HIMF (AAV-HIMF) as stated [7]. This viral vector

contains the ubiquitous CB promoter and was prepared by the

University of Florida Vector Core Laboratory. To control for the

possibility of viral effects, we used a similar empty AAV vector

(AAV-null). Intranasal instillation of the AAV vectors was

performed as follows. First, female bone marrow transplant

recipient mice were lightly anesthetized with isoflurane. Then, a

gel loading tip primed with 50 mL of solution that contained either

2.561010 viral particles (VP) AAV-HIMF [with 5 mL lipofecta-

mine 2000 (Invitrogen)] or 2.561010 VP AAV-null (with 5 mL

lipofectamine 2000) was placed directly on the nasal passage and

the solution expelled. Mice were sacrificed 14 days after intranasal

instillation of the vector by isoflurane overdose, and tissue was

processed as stated [7]. Briefly, the heart and lungs were removed

en bloc. The right lung was tied off and the left lung was inflated

with 1% low-melting point agarose with constant pressure and

then placed on ice. The right lung was removed and split into

individual lobes. A portion of the right lung was frozen in liquid N2

and stored at 280uC for use in Western blot analysis. The

agarose-filled lung tissue was fixed in 4% paraformaldehyde and

then processed for either paraffin or frozen sections as stated [3,7].

The efficiency of instillation was measured by Western blotting or

immunohistochemistry for HIMF.

Chronic hypoxia model of PH
Female mice receiving bone marrow transplantation were

exposed to either normal room air (20.8% O2) or 10% O2 for 7

days as we have described [3,7,15–18]. The fractional concentra-

tion of O2 was monitored and controlled with a Pro:Ox model 350

unit (Biospherix, Redfield, NY) by infusion of N2 (Roberts

Oxygen, Rockville, MD) balanced against an inward leak of air

through holes in the chamber. The chambers were continuously

scavenged for CO2 and ammonia. At the end of the 7-day period,

mice were sacrificed and processed as stated above.

Immunohistochemistry
Paraffin blocks of lungs from mice exposed to room air

(20.8%O2), hypoxia (10.0% O2), AAV-null, or AAV-HIMF were

cut into 6-mm sections and placed onto clean glass slides. The

slides were then deparaffinized and rehydrated as described

previously [3,7]. For antigen retrieval, the slides were submerged

in antigen unmasking solution (Vector Laboratories, Burlingame,

CA) and heated at 95uC for 20 min. Endogenous peroxidase

activity was blocked by treatment with 3% H2O2 in PBS for

10 min at room temperature (RT). We then blocked endogenous

avidin and biotin for 15 min each at RT using the Avidin/Biotin

Blocking Kit (Vector Laboratories). Nonspecific protein binding

was blocked by treatment with either normal goat or horse serum

for 30 min at RT. After the blocking steps, the sections were

treated with polyclonal rabbit anti-GFP antibodies, polyclonal

goat anti-HIMF antibodies, or antibody diluent alone for 2 h at

RT. The slides were then washed with PBS and treated with either

goat anti-rabbit or donkey anti-goat biotinylated secondary

antibodies (Vector Laboratories) in PBS for 30 min at RT. Then,

the lung sections were exposed to an ABC horseradish peroxidase

(HRP) reagent (Vector Laboratories) for 30 min at RT. The GFP/

HIMF signal was developed with the Peroxidase Substrate Kit

DAB (Vector Laboratories). The sections were counterstained with

hematoxylin as we have described [7]. Finally, the sections were

dehydrated, cleared, and mounted with Cytoseal 60 (Richard-

Allan Scientific, Kalamazoo, MI). The stained sections were

HIMF and Stem Cells
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visualized with an Olympus-BHS microscope attached to a

QImaging Retiga 4000RV digital camera. Images were captured

with ImagePro Plus (version 5.1) software.

Quantification of GFP-positive cells
To quantify the number of GFP+ cells associated with the

pulmonary vasculature, the GFP-stained lung sections were

examined with a 406 objective lens. Peripheral pulmonary

arteries associated with alveolar sacs and alveolar ducts with an

external diameter between 25 and 100 mm were identified, and the

associated GFP+ cells were counted. GFP+ cells were quantified in

approximately 50 consecutive vessels per animal. The values are

expressed as the mean number of GFP+ cells per vessel (mean 6

SEM).

Assessment of pulmonary vascular remodeling
Pulmonary vascular remodeling of the mice was analyzed as we

have previously described [7,15–18]. The murine lung sections

were initially evaluated after being stained with hematoxylin and

eosin. Lung sections were also dual stained with von Willebrand

Factor (endothelium) and a-SMA (vascular smooth muscle) as we

have described [7,17,18]. Upon completion of the dual-stain,

approximately 100 randomly selected arteries were examined

under an Olympus-BHS microscope attached to a QImaging

Retiga 4000RV digital camera. Only arteries with an internal

diameter of ,80 mm were examined. These vessels were classified

as non-muscular (NM), partially-muscular (PM), or fully-muscular

(FM), according to a-SMA staining. Vessels that had at least one

a-SMA+ cell but lacked a continuous layer were considered PM.

FM vessels had a continuous a-SMA band. These vessels were

then analyzed as we have described [7,17,18]. Images of dual-

stained sections were captured as stated above.

Immunofluorescence microscopy
Frozen lung sections were air dried for 30 min, permeabilized

with 0.2% Triton X-100/PBS, and then blocked with 2% BSA/

PBS. The sections were exposed to primary antibody (c-kit, sca-1,

CD31, CD34, a-SMA, or HIMF) followed by the appropriate

secondary antibody (cy3-donkey anti-rabbit IgG, cy3-donkey anti-

rat IgG, FITC-donkey anti-mouse IgG, or cy5-donkey anti-mouse

IgG). Nuclei were stained with 50 ng/mL 49,69-diamidino-2-

phenylindole dilactate (DAPI) for 5 min. Staining was imaged with

a Zeiss 510 Meta confocal microscope via a 206 lens. When four

channels were used, cy5 was labeled with pink. Differential

interference contrast imaging was used to show the tissue

structure.

In vitro Cell Migration Assay
HMSCs were purchased from Lonza (Walkersville, MD) and

cultured according to the manufacturer’s specifications. Only

HMSCs from passages 3–5 were used. Costar 24-well cell migration

plates with polycarbonate membranes with 8-mm pore size (Costar

Corporation, Cambridge, MA) were used for this assay. The lower

chamber was filled with 0.6 mL of medium with or without

100 nM recombinant HIMF. Then, 100 mL of HMSC suspension

(105 cells) was added to the upper chamber. In some experiments,

the cells were pretreated for 30 min with vehicle (0.1% DMSO) or

a pharmacological kinase inhibitor [U0126 (10 mM) or LY294002

(10 mM)]. After 24 h at 37uC, the cells were removed from the top

surface of the membrane. Migrated cells on the bottom surface

were stained with Coomassie blue. The average number of cells

per field was evaluated under an Olympus-BHS microscope.

Images were captured with a QImaging Retiga 4000RV digital

camera, analyzed by NIH ImageJ software, and reported as the

number of positively stained pixels versus the total number of

image pixels.

Western Blot Analysis
HMSCs were cultured to approximately 70% confluence and

then serum- and growth factor- starved overnight. Then they were

treated with vehicle or 100 nM HIMF for various time periods in

the presence or absence U0126 (10 mM) or LY294002 (10 mM).

The HMSCs were collected in equal volumes of Laemlli’s sample

buffer, resolved by 4–20% gradient sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE; Bio-Rad), and

transferred to nitrocellulose membranes (Bio-Rad). The blots were

blocked with 5% non-fat milk-TBS-T and incubated with either

rabbit anti-phospho-Akt (Ser473/Thr308) or rabbit anti-phospho-

ERK1/2 (Thr202/Tyr204) antibody. The blots were then

incubated with anti-rabbit IgG conjugated to HRP antibodies,

developed with enhanced chemiluminescence (ECL) and exposed

to X-ray film (Denville Scientific; Metuchen, NJ). To ensure equal

protein loading and transfer, the blots were stripped using the Blot

Restore kit according to the manufacturer’s instructions (Millipore;

Billerica, MA), reprobed with mouse anti-b-actin antibodies and

processed as stated above.

Statistical analysis
A student’s t-test was used to compare mean responses between

individual experimental and control groups. ANOVA was used to

compare the mean responses among experimental and control

groups in experiments with multiple groups. The Dunnett and

Scheffe F test was used to determine between which groups

significant differences existed. A P-value ,0.05 was considered

significant for all experiments.

Results

Hypoxia and pulmonary HIMF gene transfer induce HIMF
expression in bone marrow transplant recipient mice

To determine the expression pattern of HIMF in our bone

marrow transplant recipients, we evaluated lung sections from mice

exposed to normoxia (7d, 20.8% O2), hypoxia (7d, 10.0% O2),

AAV-null (14d, 2.561010 VP), or AAV-HIMF (14d, 2.561010 VP)

by immunohistochemistry. Both hypoxia and HIMF pulmonary

gene transfer led to HIMF expression in the lungs of bone marrow

transplant recipients (Figure 1). In normoxic lungs, HIMF staining

was not apparent (Figure 1A), but HIMF was strongly expressed in

the airway epithelium, pulmonary inflammatory cells, and pulmo-

nary vasculature of hypoxic animals (Figure 1B). In the HIMF gene

transfer experiments, HIMF staining was absent in AAV-null

treated lungs (Figure 1C) but strong in airway epithelium and the

pulmonary vasculature (Figure 1D). The introduction of AAV-null

virus into the lungs did not change HIMF expression compared to

normoxic control (Figure 1A, C).

BMD cells are localized to the pulmonary vasculature
Immunostaining for GFP with subsequent quantitative analysis

showed that in both hypoxic and AAV-HIMF-treated bone

marrow transplant recipients, increased numbers of GFP+ cells

became associated with the vasculature (Figure 2) compared to

appropriate simultaneous controls. Visual examination of both

hypoxic and AAV-HIMF-treated lung sections revealed GFP+

cells associated with the vasculature; in comparison, relatively few

GFP+ cells were associated with the pulmonary vasculature of

normoxic or AAV-null treated mice (Figure 2A–D). Notably, mice

from all groups had some GFP+ cells evenly distributed throughout

HIMF and Stem Cells
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the lung parenchyma, most likely as a result of irradiation injury

[19] or possibly representing normal distribution of inflammatory

BMD cells in lung. Quantification of the GFP+ cells associated

with individual pulmonary vessels confirmed the visual findings.

Our analysis revealed approximately twice as many GFP+ cells/

vessel in hypoxic mice (1.1360.09 GFP+ cells/vessel) compared

with normoxic mice (0.6360.05 GFP+ cells/vessel; P = 0.0005;

Figure 2E). Similarly, the number of GFP+ cells/vessel in AAV-

HIMF-treated mice (1.0960.14 GFP+ cells/vessel) was greater

than that of AAV-null-treated mice (0.5860.09 GFP+ cells/vessel;

P = 0.0266; Figure 2F). The result of AAV-HIMF treatment looks

strikingly similar with hypoxia; HIMF gene transfer was sufficient

to induce the recruitment of BMD cells to the pulmonary

vasculature (Figure 2). To gain a different visual perspective of

these lung sections, we performed immunofluorescence microsco-

py using lung sections from each group. Figure 3A–I shows that

after either hypoxia or AAV-HIMF treatment, GFP+ BMD cells

formed an organized layer that surrounded the blood vessel. A

cross sectional view is shown in Figure 3J–U. A higher

magnification image of a small vessel from an AAV-HIMF treated

mouse revealed that the entire media layer of the neomuscularized

small vessel was made up of GFP+ BMD cells (Figure 3M, Q, U).

Most of the recruitment of GFP+ cells was observed in small vessels

approximately 20–80 mm in diameter, including small capillary

sized vessels normally without any muscle cells. This is strong

evidence of a functional role of these cells in the remodeling

pulmonary vasculature and the development of PH.

Hypoxia and AAV-HIMF treatment similarly increased
pulmonary vascular remodeling

In the bone marrow transplant recipients, muscularization of

the small pulmonary arteries was increased by both hypoxia and

AAV-HIMF treatment compared to the corresponding controls

(Figure 4A–D). After exposure to 10.0% O2 for 7 days, the

percentage of vessels that were FM increased (30.3163.46% vs.

7.9664.30%; P = 0.0018), while the percentage of vessels that

were NM decreased (30.5264.78% vs. 57.46611.19%;

P = 0.0392) compared with control animals exposed to room air

(Figure 4E). Examination of the lung sections 14 days after

intranasal instillation of AAV-HIMF revealed increased percent-

ages of FM vessels (15.05611.19%) when compared to simulta-

neously treated AAV-null controls (5.2962.64%; P = 0.0187;

Figure 4F).

BMD cells are recruited to the smooth muscle layer of
pulmonary vessels

To determine the phenotype of recruited cells in AAV-HIMF-

treated lungs, we used the markers sca-1, c-kit, CD34, CD31, and

a-SMA. The markers sca-1 and c-kit indicate that the cells are of

Figure 1. HIMF expression in murine lung. Paraffin-embedded lung sections from normoxic (7d, 20.8% O2) (A), hypoxic (7d, 10.0% O2) (B), AAV-
null-treated (14d, 2.561010 VP) (C), and AAV-HIMF-treated (14d, 2.561010 VP) (D) mice were rehydrated and stained with goat anti-mouse HIMF
polyclonal antibodies. Pa: pulmonary artery. Aw: airway. Scale bar: 50 mm.
doi:10.1371/journal.pone.0011251.g001
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hematopoietic lineage and have multipotent potential; CD31 and

CD34 are prominent markers for cells of endothelial lineage.

Finally, a-SMA indicates cells of mesenchymal origin. As shown in

Figure 5, GFP+ BMD cells recruited to the vasculature were sca-1+

(Figure 5B, D) and c-kit+ (Figure 5F, H). Some sca-1+ and c-kit+

cells contained no GFP signal; these cells are likely unlabeled

BMD cells, as not all of the BMD cells from the GFP transgenic

donor express GFP [13]. Surprisingly, none of the GFP+ cells

associated with the vasculature were also CD34+ (Figure 5J, L). To

determine at which layer of the vasculature the GFP+ cells were

located, we performed immunohistochemical staining for both a-

SMA (vascular smooth muscle) and CD31 (endothelium). As

shown in Figure 6, the GFP+ cells appeared to be recruited to the

smooth muscle layer of the vasculature. GFP and a-SMA signals

colocalized in many vascular cells that anatomically appeared to

associate with the smooth muscle layer (Figure 6C, D; arrows).

These signals also co-localized with HIMF (Figure 6B). There was

no apparent co-localization between GFP and the endothelial cell

marker, CD31 (Figure 6A, B).

HIMF-stimulated HMSC chemotaxis is
Akt/PI-3K-dependent

To examine if HIMF has a direct effect on mesenchymal stem

cells, we performed a cell migration assay using HMSCs. For these

experiments, HMSCs were cultured in transwell plates in the

presence of vehicle or recombinant HIMF (100 nM) for 24 h.

HIMF increased HMSC migration approximately 2-fold

(Figure 7). We have previously shown that HIMF can induce

activation of both the Akt/PI-3K pathway and the ERK1/2

MAPK pathway in vitro [3]. To determine if HIMF activated these

pathways in HMSCs, we treated cultured HMSCs that had been

serum and growth factor starved overnight with vehicle or HIMF

(100 nM) for 15 or 60 min. The addition of HIMF activated both

the PI-3K and ERK1/2 MAPK pathways in a time-dependent

manner (Figure 7C, D). Because HIMF induced cell migration and

activated these signaling pathways in HMSCs, we wanted to

determine if one or both of these pathways were involved in

HIMF-induced cell migration. Preincubation of HMSCs with the

PI-3K inhibitor LY294002 (10 mM) returned HIMF-induced cell

migration to baseline levels (Figure 7B); inhibition of ERK1/2

MAPK with the pharmacological inhibitor U0126 (10 mM) had a

slight, but not statistically significant effect (Figure 7B). In

Figure 7C and 7D, we demonstrate that both LY294002 and

U0126 successfully entered the HMSCs and blocked the

appropriate signaling pathway.

Discussion

In the current study, we examined the possibility that HIMF/

FIZZ1/RELMa acts as a chemokine to induce BMD cell

recruitment to the remodeling pulmonary vasculature. To address

this question, we transplanted bone marrow from GFP+ transgenic

mice [13] into lethally irradiated wild-type recipients, subjected

the recipients to models of PH, and tracked BMD cell migration

[14] in the pulmonary vasculature. The results show that both

chronic hypoxia and AAV-HIMF introduction induce PH-like

vascular remodeling and the engraftment of BMD cells to the

pulmonary vasculature. Further analysis of the recruited BMD

cells in AAV-HIMF-treated mice revealed that many of these cells

expressed c-kit, sca-1, and a-SMA and lacked expression of CD31

Figure 2. Chronic hypoxia and pulmonary HIMF gene transfer increase the number of BMD cells associated with the pulmonary
vasculature. A–D: Paraffin-embedded lung sections from mice exposed to normoxia (7d, 20.8% O2) (A), hypoxia (7d, 10.0% O2) (B), AAV-null (14d,
2.561010 VP) (C), or AAV-HIMF (14d, 2.561010 VP) (D) were probed with polyclonal antibodies raised against GFP. Arrows indicate GFP+ cells within
the vasculature. Scale bar: 50 mm. E, F: Quantification of GFP+ cells within the pulmonary vasculature. GFP+ cells within the pulmonary vasculature are
shown as mean 6 SEM of GFP+ cells/vessel. * P,0.05, ** P,0.01 vs. control.
doi:10.1371/journal.pone.0011251.g002
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and CD34. This profile indicates that the cells are likely

mesenchymal in origin and have the capacity to differentiate into

myofibroblast-like cells and possibly vascular smooth muscle cells.

We also show that HIMF has a direct effect on HMSCs by

increasing cell migration in a PI-3K-dependent manner. Together,

these findings demonstrate that HIMF/FIZZ1/RELMa plays an

important role in the recruitment and engraftment of BMD cells in

pulmonary vascular remodeling.

We have previously described HIMF expression in proliferating

cell nuclear antigen (PCNA)-positive cells, vascular smooth muscle

cells, and endothelial cells of the remodeling vasculature in animals

with chronic hypoxia-induced PH [3]. We have also demonstrated

that AAV-HIMF pulmonary gene transfer leads to HIMF

expression in the vascular smooth muscle and endothelium of

lung vessels (all sizes), bronchial epithelial cells, and alveolar type II

cells [7]. The HIMF expression pattern in bone marrow transplant

recipients used in this study was consistent with our previous work

that showed increased HIMF in the actively dividing pulmonary

vascular endothelial and smooth muscle cells following hypoxic

exposure or pulmonary AAV-HIMF treatment [3,7]. We also

have recently demonstrated that HIMF plays a key role in

hypoxia-induced pulmonary vascular remodeling; we can induce

pulmonary vascular remodeling and the hemodynamic and

cardiac hypertrophic changes of PH by pulmonary gene transfer

of HIMF [7]. In the current study, we demonstrate that hypoxia

and intranasal instillation of AAV-HIMF induce the same pattern

of muscularization of small pulmonary arteries.

It is largely unknown whether the pulmonary vascular

remodeling involves the proliferation of resident vascular cells,

transition of other resident lung cells to stem cells critical to

remodeling, or recruitment of BMD cells and stem cells to the

lung. This is an area of considerable controversy. Many recent

studies have shown that BMD cells are involved in tissue

remodeling and repair of several organs, including the lung [20].

These cells have also been shown to be localized in atherosclerotic

lesions of the vasculature [21,22]. In fact, human patients who

Figure 3. Both chronic hypoxia and pulmonary HIMF gene transfer recruit BMD cells to the pulmonary vasculature. (A–C, J–M) Light
micrograph of fluorescence images to show blood vessel structure. Frozen sections from normoxic (20.8% O2) (D, N), hypoxic (10.0% O2) (E, O), and
AAV-HIMF treated (2.561010 VP) (F, P, Q) lungs were stained with a rabbit anti-GFP polyclonal antibody that was visualized by an FITC-conjugated
goat anti-rabbit IgG antibody (green). (G–I, R–U): Differential interference contrast images of light and fluorescence images to show structure. A–L, N–
P, R–T: Scale bar: 50mm. M, Q, U: Scale bar: 20mm.
doi:10.1371/journal.pone.0011251.g003
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receive bone marrow transplants display engraftment of BMD cells

within their vasculature [23]. In our study, we demonstrate that

GFP+ BMD cells are recruited to the pulmonary vasculature

following chronic hypoxia or overexpression of HIMF in the lung.

In fact, there are nearly twice as many GFP+ BMD cells associated

with the vessels from mice exposed to chronic hypoxia or AAV-

HIMF. In pulmonary vessels from normoxia/AAV-null control

mice, there is almost never more than one GFP+ cell associated

with an individual vessel. These GFP+ cells are rarely incorporated

into the media layer in the vessels of these mice. In the

experimental groups (chronic hypoxia or AAV-HIMF), it is

common for some pulmonary vessels to have multiple associated

GFP+ cells with these cells frequently localizing to the medial layer

of the vessel. In several cases, these BMD cells aggregate around

previously endothelial-only capillary vessels; neomuscularization of

these vessels are a key component of the pathogenesis of PH.

Recent evidence has suggested a potential role for the

recruitment of BMD progenitor cells to the remodeled pulmonary

vasculature associated with PH [11,12,24]. An initial study by

Davie et al. [11] revealed an increased number of c-kit-expressing

cells in the circulation and in the pulmonary vasculature of

hypoxic calves. C-kit, also known as CD117, is the receptor for a

cytokine called stem cell factor; it is expressed on the surface of

BMD cells with multipotent potential [25]. A subsequent study by

Hayashida et al. [24] demonstrated that mice exposed to chronic

hypoxia for 4 or 8 weeks displayed increased infiltration of BMD

cells in the lung and lung vasculature compared with normoxic

control. Many of these recruited BMD cells were a-SMA+.

Hypoxia does not seem to be the only stimulus for this process; in

the monocrotaline inflammatory model of PH, many BMD cells

were recruited to the pulmonary vasculature, some of which were

a-SMA+ [12]. A detailed examination of AAV-HIMF-treated

lungs showed that many of the recruited cells stained positive for

the cellular markers c-kit and sca-1. This finding would indicate

that these BMD cells have multipotent potential, including the

ability to differentiate into mesenchymal-like cells; these differen-

tiated cells could then participate in the observed pulmonary

vascular remodeling. The fact that these cells were negative for the

endothelial progenitor markers CD31 and CD34 strengthens the

possibility that these cells will likely differentiate into mesenchy-

mal-like cells. Several of the GFP+ cells associated with the

pulmonary blood vessels also expressed a-SMA, indicating a

mesenchymal lineage and suggesting the possible transition to

myofibroblasts and vascular smooth muscle cells. The fact that

many of the smallest neomuscularized vessels expressed only GFP+

cells in their new medial layer, strongly suggests a functional role

for these cells. This work supports the ability of HIMF to recruit

BMD cells to the vascular wall in the remodeling associated with

the development of PH.

We have recently demonstrated that HIMF is chemotactic for

murine BMD cells in culture [5] and that the mechanism involves

HIMF binding to BTK, resulting in BTK autophosphorylation

and intracellular movement of BTK to the migrating cell process.

Here, we showed that HIMF expression in the lung can recruit

BMD cells to the remodeling pulmonary vasculature and that

HIMF induces chemotaxis of HMSCs in culture. These results are

consistent with our earlier findings and those of previously

published reports [11,24] in which chronic hypoxia induced

vascular remodeling. Intranasal AAV-HIMF treatment elicited

similar results.

Figure 4. Both chronic hypoxia and pulmonary HIMF gene transfer induce pulmonary vascular remodeling. A–D: Paraffin-embedded
lung sections were double-stained with antibodies to von Willebrand factor (black) and a-smooth muscle actin (red). Arrows indicate small pulmonary
vessels. Scale bar: 50 mm. E, F: Percent muscularization of small pulmonary arteries in mouse lungs. NM, non-muscularized; PM, partially muscularized;
FM, fully muscularized. *Significantly decreased vs. control at P,0.05. {Significantly increased vs. control at P,0.05.
doi:10.1371/journal.pone.0011251.g004
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Figure 5. GFP and cellular markers sca-1 and c-kit co-localize in AAV-HIMF-treated bone marrow transplant recipients. Frozen lung
sections from bone marrow transplant recipients treated with AAV-HIMF (2.561010 VP, 14d) were stained with antibodies for (B) sca-1, (F) c-kit, or (J)
CD34 (red). (C, G, K) GFP signal was obtained through direct visualization (green). (A, E, I) Cell nuclei were counterstained with DAPI (blue). (D, H, L)
The arrows in the merged images demonstrate co-localization of GFP with the cellular markers. Scale bar: 20 mm.
doi:10.1371/journal.pone.0011251.g005

Figure 6. GFP+ cells were recruited to the smooth muscle layer of the pulmonary vasculature in AAV-HIMF-treated mice. GFP was detected
through direct visualization (A, E; green). HIMF and a-smooth muscle actin (a-SMA) were detected with anti-HIMF and anti-a-SMA primary antibodies and
visualized with rhodamine-conjugated anti-rabbit IgG secondary antibodies (B; red) and Cy5-conjugated anti-mouse IgG secondary antibodies (C; pink),
respectively. Arrows in the merged image indicate co-localization of GFP, HIMF, and a-SMA (D). Lung sections were stained with anti-CD31 antibodies and
visualized with rhodamine-conjugated anti-rat IgG antibodies (F; red) and anti-a-SMA antibodies and visualized with Cy5-conjugated anti-mouse IgG
antibodies (G, pink). (F) Arrows in the merged image indicate co-localization of GFP and a-SMA. Cell nuclei were stained with DAPI (D, H; blue) Scale bar: 20 mm.
doi:10.1371/journal.pone.0011251.g006
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Our finding that HIMF was chemotactic for HMSCs in this

study raises the possibility that HIMF directly recruits mesenchy-

mal stem cells to the remodeling pulmonary vasculature. Previous

studies have demonstrated the existence of circulating BMD

smooth muscle cells and the potential vascular engraftment of

these cells in human disease [21,23]. In our system, we showed

that these cells are of mesenchymal lineage and directly engraft

into the vascular wall. It is important to note the possibility that

HIMF is driving these recruited cells to the mesenchymal lineage.

HIMF has been shown to play a key role in the transition of

fibroblasts to myofibroblasts in experimentally-induced pulmonary

fibrosis [8]. It is likely that the cells that are currently c-kit+ and

sca-I+ will transition into vascular smooth muscle cells in the

remodeling vasculature.

A receptor for HIMF or its related molecules has not yet been

described, although a few signaling pathways have been identified.

We have previously reported that HIMF activates the PI-3K

pathway in pulmonary vascular smooth muscle cells in a dose- and

time-dependent manner [3]. We have also demonstrated that

HIMF activates the Akt/PI-3K pathway in endothelial cells; this

activation plays a critical role in HIMF-induced endothelial

migration and tubule formation [6]. Other groups also have shown

this pathway to be activated in primary lung fibroblasts as well as

endothelial and lung epithelial cell lines [9,10]. Here we showed

that HIMF activates the PI-3K pathway in a time-dependent

manner in primary HMSCs and that this pathway is involved in

HIMF stimulated cell migration. One signaling pathway that

activates the Akt/PI-3K pathway in several cellular systems is

BTK [26]. Our previous studies have shown that HIMF is a

binding partner for BTK as well as an activating agent in murine

BMD cells [5]; intracellular movement of BTK to the migrating

cell process is essential to HIMF-induced cell migration of these

cells. It is possible that HIMF is activating Akt/PI-3K through the

BTK pathway in this system. HIMF also activated ERK1/2

MAPK in a time-dependent manner in HMSCs, but this pathway

did not appear to be involved in the HIMF-stimulated cell

migration process.

In summary, the current study demonstrates that pulmonary

gene transfer of HIMF induces pulmonary vascular remodeling

and the recruitment of BMD cells to the pulmonary vasculature

similar to that of chronic hypoxia. Cells that were recruited to the

vasculature were c-kit+, sca-1+, and a-SMA+, but CD312 and

CD342; these results suggest that these recruited cells are BMD

and mesenchymal in origin or have the potential to differentiate

into mesenchymal-like cells that participate in pulmonary vascular

remodeling. The study also shows that HIMF has direct action on

Figure 7. HIMF-stimulated HMSC migration is PI-3K-dependent. A: HMSCs (105 cells) were cultured in the upper chamber of a transwell plate;
the lower chamber held medium containing BSA (control) or HIMF (100 nM). After 24 h, the cells were fixed and stained by Coomasie blue solution. B:
HMSCs were grown as described in A, but cells were pretreated with vehicle, U0126 (10 mM), or LY294002 (10 mM). Migrated cells were quantified and
results were reported as mean (6SEM) of area (pixels). *Significant increase vs. vehicle control at P,0.05. {Significant decrease vs. HIMF stimulation
alone at P,0.05. C, D: HMSCs were cultured to approximately 70% confluence, serum and growth factor starved overnight, and then exposed to
HIMF (100 nM) or vehicle for up to 60 min in the presence or absence of ERK1/2 MAPK inhibitor U0126 (10 mM) or PI-3K inhibitor LY294002 (10 mM).
Cells were lysed and proteins were resolved with SDS-PAGE and transferred to nitrocellulose membranes. The membranes were probed with rabbit
anti-phospho-ERK1/2 (Thr202/Tyr204) (C) or rabbit anti-phospho-Akt (Ser473/Thr308) (D), followed by HRP-conjugated anti-rabbit IgG antibodies, and
developed with ECL. To ensure equal loading and transfer, blots were stripped and reprobed with anti-b-actin.
doi:10.1371/journal.pone.0011251.g007
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HMSCs by inducing PI-3K-dependent chemotaxis. Taken

together, these data suggest that HIMF plays an important role

in the recruitment of BMD cells to the remodeling pulmonary

vasculature.
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