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There are more than 500 amino acid substitutions in each human genome, and bioinformatics tools irreplaceably contribute
to determination of their functional effects. We have developed feature-based algorithm for the detection of mutations outside
conserved functional domains (CFDs) and compared its classification efficacy with the most commonly used phylogeny-based
tools, PolyPhen-2 and SIFT. The new algorithm is based on the informational spectrum method (ISM), a feature-based technique,
and statistical analysis. Our dataset contained neutral polymorphisms and mutations associated with myeloid malignancies from
epigenetic regulators ASXL1, DNMT3A, EZH2, and TET2. PolyPhen-2 and SIFT had significantly lower accuracies in predicting
the effects of amino acid substitutions outside CFDs than expected, with especially low sensitivity. On the other hand, only ISM
algorithm showed statistically significant classification of these sequences. It outperformed PolyPhen-2 and SIFT by 15% and 13%,
respectively. These results suggest that feature-based methods, like ISM, are more suitable for the classification of amino acid
substitutions outside CFDs than phylogeny-based tools.

1. Introduction

Next generation sequencing technologies are revolutionizing
genetics through enabling sequencing of whole genomes
and exomes and increasing our ability to connect different
genotypes to specific phenotypes. With the ending of phase I
of the 1000 genomes project, we are facing the fact that human
genome has on average around 3.7 million single nucleotide
polymorphisms (SNPs) of which 24 000 are in GENCODE
regions [1, 2]. More than 500 SNPs per exome affect protein
sequence [3, 4], leading to amino acid substitutions (AASs).
The major focus is on identification of genetic variants that
disrupt molecular functions and cause human diseases. This
is a particularly challenging task for complex diseases, like
cancers, where each patient, with unique set of alterations, is
in need of personalized approach [5].

There are three key in silico strategies for prediction of
functional effects of AASs (reviewed in, e.g., [6, 7]). The first
group of methods approaching this issue from evolution-
ary perspective relies on the multiple sequence alignments

(MSA) of homologous proteins.Methods, such as PANTHER
[8], PhD-SNP [9], and SIFT [10], presume that functionally
important regions of a protein will be conserved throughout
the evolution and assume direct connection between conser-
vation of a residue and the functional effect of the AAS. The
second strategy combines scores from MSA with structural
information as well as patterns of physicochemical properties
of amino acid substitutions. For predictions, these methods
use machine learning algorithms, such as random forest—
MutPred [11], neural networks—SNAP [12], or Bayesian
classification—PolyPhen-2 [13]. The third strategy is MSA-
independent sequence analysis relying on the prediction of
the effect of an AAS on the sequence structural patterns.
These unobvious patterns of physicochemical or biochemical
features correlate with protein structure and biological func-
tions ([14] and references herein). In general, the methods
that unravel sequence periodicities encompass two steps:
first, the sequence represented in alphabetic code is trans-
formed into series of numbers by assigning to each amino
acid a value of selected parameter and then these series of
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numbers are transformed by digital-signal processing tech-
niques such as wavelet and Fourier transformations (FT).
PseAAC is one method relying on the analysis of the
hydrophobic, hydrophilic, side chain mass, pK and pI pat-
terns for prediction of protein attributes, like subcellular
localization and protein structural class [15]. On the other
hand, ISM method based on electron ion interaction poten-
tial (EIIP) pattern conversion [16] has been successfully
applied in functional annotation of AASs [17–20], as well as
in the study of protein domains and their associations with
disease [21].

The evolutionarily conserved amino acids are preferen-
tially found in CFDs that play the most important roles in
the biological function of proteins, such as the active site of
enzymes. Tools relying on evolutionary conservation have
better applicability in the identification of variants associated
with monogenic diseases than with complex diseases, as con-
servation patterns of variants known to be linked to common
complex diseases appear to be indistinguishable from the pat-
terns of polymorphisms occurring in the general population
[22].Of note, according toCOSMICdatabase,more than 50%
of AASs associated with cancers were shown to be outside
CFDs [23]. We hypothesize here that these AASs might
impair sequence patterns which are not necessarily identical
withCFDs and, therefore, could be annotatedmore efficiently
with feature-based tool, ISM, compared to two of the most
widely used tools the PolyPhen-2 and SIFT, which both
account for evolutionarily conserved protein patterns.

As a model set for testing our hypotheses, we chose four
epigenetic regulators ASXL1, EZH2, DNMT3A, and TET2,
which are frequently mutated in the myeloid malignancies
comprising around 25% of all hematological malignancies,
with annual incidence of 7.6 per 100 000 [24]. The most com-
mon is acutemyeloid leukemia (AML), which occurs de novo
or evolves from chronic stages that include myelodisplastic
syndromes (MDS), myeloproliferative neoplasms (MPN),
andMDS/MPN combined disorders. Mutations in epigenetic
regulators lead to anomalies in epigenetic profiles, which is
a hallmark of myeloid malignancies and frequent molecular
marker of worse prognosis [25–32]. DNMT3A and TET2
are enzymes constituting DNA methylation/demethylation
machinery [33, 34], while both EZH2 and ASXL1 achieve
their functions through the methylation of histones [35, 36].
Importantly, it has been widely assumed that these molecules
actively contribute to the transformation of chronic to acute
stages, which suggest their employment as clinical biomark-
ers (reviewed in [37]).

Aiming to investigate the predictive power of alignment-
free approach, ISM, we develop a method to differentiate
between neutral versus pathogenic AASs. The presented
results point to the limitations ofMSA-based tools, PolyPhen-
2, and SIFT, to detect mutations that are not part of CFDs and
showed that feature-based ISM tool performsmuch better on
this task.

2. Materials and Methods

2.1. Sequences and Polymorphisms. Wild type sequences of
ASXL1, EZH2, DNMT3A, and TET2 were retrieved from

Table 1: Sequences, their UniProt IDs, CFDs, and the relevant
literature.

Protein UniProt ID CFD Position Reference

ASXL1 Q8IXJ9
HARE 11–83
ASXH 241–369 [32]
PHD 1506–1541

EZH2 Q15910
SANT1 159–250
SANT2 433–481 [38]
SET 617–738

DNMT3A Q9Y6K1
PWWP 290–348
PHD 536–589 [38]
MTase 638–908

TET2 Q6N021 BOX1 1104–1478
[39]BOX2 1845–2002

UniProtKB database [40]. Since we were interested in anal-
ysis of polymorphisms outside CFDs (non-CFDs regions—
nCFDs), they were identified in the relevant literature
(Table 1).

Mutations were collected from the literature, through the
screening of PubMed knowledgebase and from COSMIC
database [41]. To label an AAS as a mutation, besides its
association with a myeloid malignancy, we looked in original
papers for evidence of its somatic nature. SNPs were collected
from the literature and dbSNP database. There were two cri-
teria to label an AAS as an SNP: the first included evidence in
original papers of its presence in germline, and the second
implied described frequency of the polymorphism in healthy
population.

2.2. SIFT and PolyPhen-2. SIFT uses sequence homology to
predict the effect of an AAS on protein function, considering
the position at which the substitution occurred and the type
of amino acid change. In the first step, SIFT createsMSA con-
taining the sequences, related to the given protein sequence
and, then, it calculates the probability that the amino acid
change is tolerated. In this study, we had to transform SIFT
scores so they could be compared with other tools, and
we calculated SIFT score = 1 − SIFT score(org), where SIFT
score(org) is the score originally retrieved from the SIFT tool.
For example, SIFT score(org) of 0.01 associated with a muta-
tion and 0.88 that of with an associated SNP were this way
transformed into 0.99 and 0.12, making the higher score
related to mutation and lower to SNP. We used single protein
tool SIFT sequence, with default values of median conserva-
tion of sequences (3.0).ThePSI-BLAST searchwas applied on
UniRef90 database, and sequences with the similarity level of
90% or more to the query sequence were removed from the
alignment. Binary classification was done by annotating AAS
with SIFT score(org) <0.05 as mutation and AAS with SIFT
score(org) >0.05 as SNP.

PolyPhen-2 bases its predictions of damaging effects
of missense mutations on eight sequence-based and three
structure-based features, which were selected using machine
learning. The functional effect of an amino acid substitution
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Table 2: Abbreviations and EIIP values for amino acids.

Amino acid Letter code Numerical code EIIP (Ry)
Leucine L 0.0000
Isoleucine I 0.0000
Asparagine N 0.0036
Glycine G 0.0050
Valine V 0.0057
Glutamic acid E 0.0058
Proline P 0.0198
Histidine H 0.0242
Lysine K 0.0371
Alanine A 0.0373
Tyrosine Y 0.0516
Tryptophan W 0.0548
Glutamine Q 0.0761
Methionine M 0.0823
Serine S 0.0829
Cysteine C 0.0829
Threonine T 0.0941
Phenylalanine F 0.0954
Arginine R 0.0956
Aspartic acid D 0.1263

is predicted based on the calculated Näıve Bayes probabilistic
score. A mutation is classified as probably damaging when
the score is above 0.85, possibly damaging when the score is
above 0.15, and the remaining as benign. For the binary clas-
sification, we adopted cutoff for probabilistic score of 0.5, so
substitutions with the score above this cutoff were considered
to be mutations and those below the cutoff to be SNPs. We
used default values for query options and HumDiv-trained
version of PolyPhen-2, as this is recommended for the evalu-
ation of mutations involved in complex phenotypes.

2.3. ISM Algorithm. ISM uses FT as a mathematical tool to
highlight the periodical structural patterns in the protein
sequences and assesses the effect of each AAS on sequence
and consequently on the correlating biological function of
the protein. Procedure, schematically presented in Figure 1,
comprises two steps.The first step includes transformation of
amino acid sequence into sequence of numbers by assigning
an EIIP value to a matching amino acid (Table 2). EIIP values
approximate energy of valence electrons and were calculated
for each amino acid using the general model pseudopotential
as follows [42]:

𝑊 = 0.25
𝑍
∗ sin (1.04𝜋𝑍∗)
2𝜋

. (1)

𝑍
∗, that represents the average quasivalence number, is calcu-

lated as

𝑍
∗
=
1

𝑁

𝑚

∑

𝑖=1

𝑛𝑖𝑍𝑖, (2)

where𝑍𝑖 is the valence number of the 𝑖th atomic component,
𝑛𝑖 is the number of atoms of the 𝑖th component, 𝑚 is the
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sequence into
digital sequence,
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Discrete fourier
transformation
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spectrum (IS)

Figure 1: Scheme for the ISM procedure.

number of atomic components in the molecule, and 𝑁 is
the total number of atoms. It was previously shown that the
periodicity of EIIP distribution along the protein sequence
correlates with biological activity of a protein, especially
with its specific interactions with ligands and other proteins
(reviewed in [16]).

The second step is the conversion of this sequence of
numbers using FT, which is defined as

𝑋(𝑛) =

𝑁

∑

𝑚=1

𝑥 (𝑚) 𝑒
−𝑖2𝜋𝑛(𝑚−1)/𝑁

, 𝑛 = 1, 2, . . . ,
𝑁

2
, (3)

where 𝑥(𝑚) is the 𝑚th member of a given numerical series,
𝑁 is the total number of points in the series, and 𝑋(𝑛) are
discrete FT coefficients. FT approximates a string of numer-
ical values representing a protein sequence by a linear com-
bination of trigonometric functions with different periodic-
ities, and FT coefficients describe the amplitude, phase, and
frequency of these sinusoids (periodical functions) from the
original signal. Relevant information for protein analysis is
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extracted into informational spectrum (IS), an energy density
spectrum defined as

𝑆 (𝑛) = 𝑋 (𝑛)𝑋
∗
(𝑛) = |𝑋 (𝑛)|

2
, 𝑛 = 1, 2, . . . ,

𝑁

2
, (4)

where 𝑋(𝑛) are discrete FT coefficients and 𝑋∗(𝑛) are com-
plex conjugate discrete FT coefficients. This way sequences
are transformed into discrete signals, where the points in
numerical series are assumed to be equidistant (distance is
arbitrary set to 𝑑 = 1). The maximum frequency in the spec-
trum is then 1/2𝑑 = 0.5.

Peaks in the IS correspond to the functions with certain
periodicities that contribute to the original signal greater than
functions with other periodicities. So, IS can be used to detect
latent sequence periodicities at a certain frequency and,
with the assumption that characteristics of sequence repeats
uniquely identify structural repeats, IS can recognize difficult
structural patterns in the protein sequences [43, 44]. Thus,
the information primary represented as amino acid sequence
is, through described two steps, transformed into IS, where
peaks correspond to structural patterns and consequently
specific biological functions of analyzed protein.

ISM was the basis for the algorithm for functional anno-
tation ofAASs, developed in this study. Statistical significance
of ISM frequencies was assessed with Mann-Whitney𝑈 Test,
with significance level of 𝑝 < 0.05. The algorithm comprises
five steps as follows.

(1) Creation of ISs for wild type sequences and all
sequences with substituted amino acids. Wild type IS
is a reference spectrumand itwill be used in step (5) to
determine cutoffs, while ISs of sequences with AASs
were scored in step (2).

(2) ISM scoring system: scores are calculated as devia-
tions of amplitude values of sequence with AAS from
the matching values of wild type sequence, for each
frequency in the IS as follows:

𝑆 (𝑖, 𝑗) = 𝐴 (𝑓𝑗) var𝑖 − 𝐴 (𝑓𝑗)𝑤𝑡,

𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀,

(5)

where𝑁 is the number of AASs and𝑀 is the number
of frequencies in the IS.These ISM scores are the basis
for statistical analysis.

(3) Use of Mann-Whitney 𝑈 Test for the frequency with
highest value of amplitude in the IS of wild type
sequence in order to detect significance of this fre-
quency in classification of AASs into deleterious
mutations and neutral SNPs. If this did not show to be
statistically significant, the same analysis was done for
other frequencies in descending order of their values
of amplitudes.

(4) The first frequency that shows statistical significance
in discriminating sequenceswithmutations and SNPs
is chosen as a classifier.

(5) The value of amplitude for selected frequency in the
IS of wild type sequence is used as a cutoff separating
sequences with mutations from those with SNPs.
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Figure 2: Performance of PolyPhen-2 and SIFT on the entire dataset
(CFDs and nCFDs) and on the subset of variations outside CFDs
(nCFDs).

ISM algorithm must be applied on each protein sepa-
rately, which means that significant frequencies and cutoffs
are different for different proteins. Also, it is impossible to
determine beforehand if amutation increases or decreases the
amplitude on the significant frequency compared to the wild
type, so this can be concluded only after all the five steps of the
algorithm are performed.

3. Statistics

The efficacy of prediction tools were assessed by the number
of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN).The parameters for evaluation
were as follows:

accuracy = TP + TN/TP + TN + FP + FN,

precision = TP/TP + FP,

negative predictive value (NPV) = TN/TN + FN,

sensitivity = TP/TP + FN,

specificity = TN/TN + FP.

Crosstabulation was done for categorical variables and,
Fisher’s exact test was used for the assessment of their statis-
tical significance.

We also constructed receiver operating characteristic
(ROC) curves for SIFT, PolyPhen-2, and ISM scores and used
area under the curve (AUC) to evaluate predictions of these
different methods.
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Figure 3: Process for the selection of significant frequencies from the spectra of ASXL1 (a), EZH2 (b), DNMT3A (c), and TET2 (d).
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Table 3: Number of SNPs and mutations (MUTs) in the dataset.

Gene SNPs (𝑛 = 120) MUTs (𝑛 = 194)
nCFDs CFDs nCFDs CFDs

ASXL1 (𝑛 = 76) 59 4 12 1
EZH2 (𝑛 = 25) 4 2 6 13
DNMT3A (𝑛 = 47) 3 3 6 35
TET2 (𝑛 = 166) 42 3 27 94
Total 108 12 51 143

4. Results

4.1. Polymorphisms in Epigenetic Regulators ASXL1, EZH2,
DNMT3A, and TET2. Our dataset is summarized in Table 3
and shown in detail in Supplementary Material available
online at http://dx.doi.org/10.1155/2013/948617. It contains
314 AASs in epigenetic regulators ASXL1, EZH2, DNMT3A,
and TET2. 194 disease-associated and somatically acquired
polymorphisms are labeled as mutations, while 120 germline
or polymorphisms present in healthy population are labeled
as SNPs.Themost frequent mutations in the dataset are from
AML cases (45%), and 12%, 13%, and 7% of mutations are
from MDS, MPN, and MDS/MPN, respectively. The rest of
themutations were detected in two ormore different myeloid
malignancies.

A subset of AASs in nCFDs contains 159 polymorphisms,
108 SNPs and 51 mutations (Table 3). Mutations from AML
make 41% of this subset, while 10%, 27%, and 14% of
mutations are fromMDS,MPN andMDS/MPN, respectively.
Only 8% of mutations were reported in two or more myeloid
malignancies.

4.2. Performances of PolyPhen-2 and SIFT. When we eval-
uated performance of PolyPhen-2 and SIFT on our entire
dataset of 314AASs, both tools had overall accuracy of 72%,
with considerably higher values of sensitivity compared to
specificity (Figure 2). The same analysis of the subset of
159AASs positioned in nCFDs showed decrease in overall
accuracy, reaching values of 52% and 57% for PolyPhen-2
and SIFT, respectively (Figure 2).The specificity remained the
same, independently of the position of the AASs. However,
the value of sensitivity dropped largely when compared entire
dataset and the subset, from 82% to 39% for PolyPhen-2 and
from 80% to 51% for SIFT. This comes from high number of
false negative predictions of AASs outside CFDs.

4.3. Predictions Based on the ISMAlgorithm. We applied ISM
algorithm to identify classifier frequencies for discrimination
between group of sequences with mutations and group of
sequences with SNPs in ASXL1, EZH2, DNMT3A, and TET2.

Our first step encompassed creation of ISs for wild type
sequence of ASXL1 and 76 sequences with AASs. Second, we
calculated ISM scores for each frequency in the IS. In the third
step, we performed Mann-Whitney 𝑈 Test on these scores
related to the frequency with highest amplitude value in IS
of wild type sequence—𝐹(0.036). As it did not significantly
discriminates between SNPs and mutations, we applied the
same statistical test for the next highest peak frequency in the
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Figure 4: Distribution of ISM scores.

spectrum.Wewent on with this procedure until we identified
IS peak frequency 𝐹(0.476) that discriminate disease related
mutations (𝑝 = 0.018) (Figure 3(a)). 75% of sequences
with SNPs had lower and 77% of sequences with mutations
had higher values of amplitudes compared to wild type
(Figure 4).

EZH2 is frequently mutated in lymphoid malignancies,
with the hot spot on Tyr641 [45]; however, mutations in
myeloid malignancies are spread throughout the entire seq-
uence with no hot spot. ISM algorithm identified frequency
𝐹(0.411) that significantly discriminates sequenceswith SNPs
and mutations, with 𝑝 = 0.003 (Figure 3(b)). Six SNPs
containing sequences had amplitude value corresponding to
this frequency below the value of wild type, while approxi-
mately half of sequences with mutations had higher values of
amplitudes than wild type (Figure 4).

In DNMT3A sequence, 6 SNPs and 41 mutations were
separated at IS frequency 𝐹(0.071) with 𝑝 = 0.041
(Figure 3(c)). Contrary to the ASXL1 and EZH2,the majority
of sequences with SNPs had amplitude values above wild
type value (83%), while more than half of the sequences with
mutations (51%) had corresponding amplitudes lower than
wild type (Figure 4).

Finally, we analyzed 45 TET2 sequences with SNPs and
121 with mutations. IS frequency 𝐹(0.491) was shown to be
significant classifier (𝑝 = 0.025) (Figure 3(d)) separating
sequences with SNPs (60% below wild type value) and with
mutations (55%abovewild type value) (Figure 4). SinceTET2
variationsmake the largest proportion of our dataset, we used
them for cross-validation of our method for frequency selec-
tion. We randomly split them into five groups, and each time
we submitted four different groups to the ISM-based algo-
rithm.All analyses resulted in the identification of𝐹(0.491) as

http://dx.doi.org/10.1155/2013/948617
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Table 4: Performance statistics of PolyPhen-2, SIFT, and ISM binary classification of AASs outside CFDs.

Accuracy Precision Sensitivity Specificity NPV AUC
PolyPhen-2 (𝑝 = 0.863) 0.52 0.31 0.39 0.58 0.67 0.49
SIFT (𝑝 = 0.236) 0.57 0.37 0.51 0.59 0.72 0.55
ISM (𝑝 < 0.001) 0.69 0.51 0.65 0.70 0.81 0.68
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Figure 5: ROC curves on the ISM, PolyPhen-2 and SIFT scores for nCFD variations.

the most important frequency, which indicates minimal bias
in our performance evaluation.

4.4. Performance of ISM Algorithm on AASs outside CFDs
and Comparison with PolyPhen-2 and SIFT. This research
is focused on predictions of functional effects of AASs in
nCFDs. We compared predictive power of ISM algorithm
and commonly used MSA-based PolyPhen-2 and SIFT on
the subset of our data, which contained 108 SNPs and 51
mutations.

ISM scores represent the difference between mutated and
wild type sequence. Higher ISM scores were associated with
mutations in ASXL1, EZH2, and TET2, but in DNMT3A this
relation was inversely proportional. In order to allow ISM
scores for all analyzed genes to be drawn to a same scale and
compared, we transformed DNMT3A by multiplication with
factor 𝑎 = −1. In this way, the DNMT3A scores, 0.37473 asso-
ciated with an SNP and −0.24349 associated with a mutation,
were transformed into SNP related −0.37473 and mutation
related 0.24349.

Further, we created ROC curves and found that ISM
algorithm outperformed PolyPhen-2 and SIFT, with the AUC
values 0.70, 0.55, and 0.57, respectively (Figure 5). In addition,
we evaluated binary classification. Accuracy of ISM for this
dataset was 17% and 12% better than that of PolyPhen-2 and

SIFT, respectively (Table 4).Theoverall better performance of
ISM is also shown through 17% and 13%higher values of AUC
compared to PolyPhen-2 and SIFT, respectively (Figure 6).
It is important to stress out that sensitivity measuring false
negative rate shows better performance of ISM algorithm
compared to PolyPhen-2 and SIFT for 26% and 14%, respec-
tively. Finally, cross tabulation and Fisher’s exact test showed
that only ISM-based classification of AASs in nCFDs is
statistically significant, with 𝑝 < 0.001 (Table 4).

5. Discussion

Most computational methods that predict deleterious AASs
are sequence- or structure-based and presume that most
disease-causing AASs affects evolutionarily conserved
domains. PolyPhen-2 and SIFT recognize AASs clustered
in CFDs with high accuracy, assuming that residue in the
conserved position affect protein function. In our dataset,
97.2% and 90.2% CFDmutations were predicted as damaging
by PolyPhen-2 and SIFT, respectively. This 7% difference is
perhaps due to the sequence-based feature of PolyPhen-2,
named pfam hit, that accounts for position of the mutation
within/outside a protein domain as defined by Pfam, which
is a database of known CFDs [46]. However, compared to
overall performances of PolyPhen-2 and SIFT evaluated
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Figure 6: ROC curves for binary classification.

on HumDiv and HumVar datasets, their accuracy and
specificity on our dataset are lower, which is in accordance
with previous study of four other cancer genes, BRCA1,
MSH2, MLH1, and TP53 [47]. For AASs outside conserved
regions, this low specificity is accompanied with the
significantly decreased value of sensitivity, as well. Weak
performance of PolyPhen-2 and SIFT on the subset of AASs
positioned in nCFDs suggests that conservation of amino
acid position in these parts of proteins does not account
for its functional role. Predictions based on homology
and evolutionary conservation often cannot describe the
underlying mechanisms of how substitutions result in
changes in the protein phenotypes. In that regard, ISM is
useful as it sheds light on the effect that given AAS has on
protein-protein interactions.This technique allows the detec-
tion or definition of amplitude/frequency pairs determining
the specific long-range recognition between interacting
proteins [16, 48]. Therefore, the disruption of EIIP profile
along a protein, which is manifested in ASXL1, EZH2, and
TET2 through the increase of amplitudes on 𝐹(0.476),
𝐹(0.411), and 𝐹(0.491), respectively, and in DNMT3A
through the decrease in amplitude on 𝐹(0.071), is probably
associated with the significant effects on large interaction
networks. This is supported by the observation that cancer
proteins are characterized by the promiscuity in transient
protein-protein interactions [49] which frequently engage
not conserved residues [50].

In future, it will be important to consider IS classification
criteria based on more than one IS frequency and therefore
accounting for more than one cellular function. This will
improve annotation of genes, such as EZH2 in which 3 muta-
tions outside CFDs were correctly classified (L149Q, A384T,

and T568I), while three others were incorrectly annotated as
SNPs (M134K, C534R and L575P). Detail examinations have
shown that correctly classified mutations are from cases with
MPN and false negatives are fromMDS.This finding implies
that IS frequency 𝐹(0.411) correlates with dysfunction in
proliferation that leads toMPNandnot differentiation, which
is underlying dysfunction of MDS [51].

Besides the effects on functions, some mutations play
their pathological roles through affecting the stability of
proteins [52]. Actually, it was shown that 75% of mutations in
inherited diseases affect protein stability [53]. Recently, meta-
tools have been proposed [54, 55] that appear to achieve bet-
ter performance by combining prediction scores from mul-
tiple tools. In that regard, it would be interesting to combine
methods predicting AAS effects on protein stability, such as
FoldX [56], CUPSAT [57], or Eris [58], and feature-based
methods.

6. Conclusions

This work suggests that classical phylogeny-based methods
are not suitable for prediction of functional effects of AASs
outside CFDs and that these predictions need additional
approach. Here, we propose the use of disruption of distribu-
tion of EIIP, a physicochemical feature of amino acids, esti-
mated by the FT-based ISM technique, as a suitable approach
to detect mutations outside CFDs. We see no obstacles to
apply this approach for the prediction of functional effects of
AASs outside CFDs on any other type of proteins, hoping that
this will bring us one step closer to understanding mutations
as molecular markers of diseases.
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