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Abstract

Autotrophic CO, fixation is the most important biotransformation process in the biosphere. Research focusing on the
diversity and distribution of relevant autotrophs is significant to our comprehension of the biosphere. In this study, a draft
genome of a bacterium from candidate phylum SBR1093 was reconstructed with the metagenome of an industrial activated
sludge. Based on comparative genomics, this autotrophy may occur via a newly discovered carbon fixation path, the
hydroxypropionate-hydroxybutyrate (HPHB) cycle, which was demonstrated in a previous work to be uniquely possessed by
some genera from Archaea. This bacterium possesses all of the thirteen enzymes required for the HPHB cycle; these
enzymes share 30~50% identity with those in the autotrophic species of Archaea that undergo the HPHB cycle and
30~-80% identity with the corresponding enzymes of the mixotrophic species within Bradyrhizobiaceae. Thus, this bacterium
might have an autotrophic growth mode in certain conditions. A phylogenetic analysis based on the 16S rRNA gene reveals
that the phylotypes within candidate phylum SBR1093 are primarily clustered into 5 clades with a shallow branching
pattern. This bacterium is clustered with phylotypes from organically contaminated environments, implying a demand for
organics in heterotrophic metabolism. Considering the types of regulators, such as FnR, Fur, and ArsR, this bacterium might
be a facultative aerobic mixotroph with potential multi-antibiotic and heavy metal resistances. This is the first report on
Bacteria that may perform potential carbon fixation via the HPHB cycle, thus may expand our knowledge of the distribution
and importance of the HPHB cycle in the biosphere.
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Introduction SBR 1093 was established as a candidate phylum using several
16S rRNA gene clones in phosphate-removing activated sludge
from a sequencing batch reactor [5] that was supplied with sodium
acetate for phosphate removal. Thereafter, they were continuously
detected in an industrial wastewater treatment system receiving

As the most diverse and abundant cellular life forms in the
biosphere, microorganisms play key roles in nearly all biogeo-
chemical processes. However, most microorganisms are not

available in pure cultures and can only be detected with culture- low-molecular-weight organic acids and short-chain alcohols [6],

activated sludge from coking wastewater treatment, chlorinated
hydrocarbon-contaminated soil and hydrocarbon-contaminated
soil [7]. All of these environments were associated with short-chain

significant in the construction of blueprints for evolutionary and  fatty acids, which implied that the bacteria within this candidate
metabolic diversity [1]. With advances in next generation

independent molecular surveys, which greatly inhibits our
comprehension of their roles in ecological and biogeochemical
processes. The genomic sequencing of these microorganisms is

phylum may proliferate effectively with short-chain fatty acids. In
addition to the contaminated environment, 16S rRNA clones
within candidate phylum SBR1093 were also detected in samples

environmental samples via single-cell genome sequencing [2] or from ocean environments, such as ocean crust from the East
genome binning [3]. Therefore, metabolic deductions and

sequencing (NGS) and bioinformatics, draft genomes of uncul-
tured bacteria can be reconstructed from various complex

Pacific Rise [8], polymetallic nodules and the surrounding

evolutionary analyses can be performed based on the reconstruct- sediments, oceanic surface sediment [9], sponges [10], etc.
ed genomes and comparative genomics [4], which may greatly Considering these specific niches, deficiency of light, O, and
expand our understanding of microbial metabolism and its organics, the most probable metabolism for these bacteria may be
potential role in ecology and biogeochemistry. chemoautotrophy rather than heterotrophy. This is consistent with
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a report on a stalactite microbial community found in a desert
cave [11] in which SBR1093-like 16S rRNA gene sequences
comprised up to 10% of the total bacterial 16S rRNA gene
sequences. Thus far, the metabolism of bacteria within candidate
phylum SBR1093 remains elusive because there are no available
pure cultures or enrichments from experiments or genomes.
Because their abundance in the known microbial community is
very low (less than 1% [11]), the metabolism of SBR1093 in these
artificial and biogeochemical processes is difficult to deduce.
Therefore, genome binning using the metagenome of a microbial
community enriched with a member from this phylum could shed
light on its metabolic properties and ecological functions.

As opposed to microbial communities in municipal wastewater
treatment plants, which are fed with a mixture of natural organics
and dominated by bacteria within Proteobacteria, Bacteroidetes,
Actinobacteria, etc. [12], those in industrial wastewater treatment
plants show unique populations in each plant [13]. Shaped by the
specific substrates and physical-chemical conditions, microbial
communities in industrial wastewater treatment plants are often
enriched with uncultured microorganisms with specific metabo-
lisms [14], and their metabolisms are associated with the
biotransformation and biodegradation of specific substrates.
Considering their relatively high abundance in these systems,
draft genomes of the dominant populations could be reconstructed
via the genome binning of the metagenome [15,16] in an attempt
to elucidate their physiological and ecological functions in the
microbial community (as well as their taxonomy) [17]. Based on a
survey of 454 pyrosequencing for the microbial community
pyrosequencings in industrial-activated sludge (data not shown
here), a bacterium of candidate phylum SBR1093 was enriched in
a full industrial wastewater treatment plant (WW'TP), which fed
with morpholine distilling-wastewater and performed an alternat-
ing anoxic/aerobic process. The objective of this study is to
reconstruct the draft genome of a bacterium from candidate
phylum SBR1093 with the metagenome of activated sludge from
this WWTP. This may shed light on its taxonomic identity,
metabolic properties and ecological role, thus be helpful in
determining potential conditions for its cultivation and isolation.

Materials and Methods

Sample collection and DNA extraction

Activated sludge samples were collected from a local industrial
wastewater treatment plant: two samples from anoxic and aerobic
tanks, respectively, which were fed with morpholine distilling-
wastewater and that operated in alternate anoxic/aerobic
processes (There is no specific permission required for the
collection of sludge samples. This sampling site is located at the
Shanghai Industrial Park, N31.01, E121.41, and the field studies
did not involve endangered or protected species.). The collected
samples were fixed onsite with absolute ethanol at a volume ratio
of 1:1, and then transported in an icebox and stored at —20°C
prior to DNA extraction. For the DNA extraction, the microbial
cells in the samples were collected after centrifugation and washed
twice with phosphate-buffered solution (PBS). The DNA extrac-
tion was performed according to the protocol of the FastDNA
SPIN Kit for soil (Qbiogene Inc., CA, USA), which was verified as
the most suitable method to extract DNA from the activated
sludge samples [18].

Metagenomic sequencing

With the extracted DNA, libraries with insert sizes of 200 bp
and 800 bp were constructed for each sample according to the
manufacturer’s instructions (Illumina, San Diego, USA). Then, the
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metagenomic sequencing was performed with an Illumina HiSeq
2000 Platform (Illumina, San Diego, USA) using the 101 bp
paired-end (PE101) strategy (BGI, Shenzhen, China). With a 2/5
IMlumina sequencing run for the 200-bp library and a 1/5
sequencing run for the 800-bp library, approximately 101 and 35
million sequencing reads (100 bp) were obtained, respectively.
Raw reads containing any ambiguous bases or those with an
average quality score lower than 20 were removed prior to the
following analysis.

De novo assembly

The filtered reads were imported into the CLC genomic
workbench (version 4.9), and the paired-end sequences were used
for the following de mnovo assembly in the CLC genomic
workbench. The K parameter (k-mer size) was set to 51 (half of
the PE sequencing length) during the assembly. Only contigs
longer than 500 bp were output as well as the corresponding
mapping reads for further analysis. More than 50% of the reads
were assembled into contigs >500 bp (98,505 contigs), with a
maximum length of 349,894 bp. As a test to examine the potential
errors in the assembly, the coverage consistence of the assembled
contigs was checked according to the previous report [15].

Genome binning

Genome binning was performed according to the previous work
[19], based on a plot of coverage and GC ratio of contigs,
including PE-tracking and reassembly, which was further refined
with Metacluster 4.0 [20]. Then, the integrity and redundancy of
the binning draft genome were assessed via the comparison of
essential single copy genes (ESCGs) of most organisms in the
domain Bacteria [15,19].

Gene annotation and comparison

Open reading frames (ORFs) were predicted online with
MetaGeneMark [21], and the deduced amino acid (AA) sequences
were obtained for BLASTp against the NCBI nr database
(released on July 18, 2018) with an E-value of 10™> and minimum
alignment of 50 AA, respectively [22]. The results were taxonom-
ically assigned with the lowest common ancestor (LCA) algorithm
and functionally annotated based on KEGG using MEGAN 4.0
[23]. A Pfam search with an E-value of 107> was performed based
on the Hidden Markol Model and against PfamA database version
26.0 [24], which could also be used for the comparison of gene
clusters and verification of MEGAN annotation.

Results and Discussion

Genome binning and completeness assessment

A draft genome containing 94 scaffolds with a total size of
3,099,643 bp with GC contents of 56.4% was reconstructed
(Figure 1). According to the prediction of MetaGeneMark,
3,228 ORFs were presented and 3,037 were in full length with
the sole initiator and terminator, implying that the de movo
assembly was accurately performed and that only the ORFs at the
ends of the contigs were incomplete. Considering the functional
assignment, 2,532 ORFs shared a mean similarity of 51.2% with
the known enzymes in the nr-database (released on July 18, 2013),
which is nearly at full align length (with a mean cover ratio of
0.87). All of the 40 universally occurring clusters of orthologous
groups (COGs) [25] and tRNAs for all 20 amino acids are
presented in this draft genome (Table S1 in File S1), which implies
that it is near completeness. Additionally, based on the Hidden
Markov Model (HMM) search, 102 unique ESCGs were found in
this draft genome (Table S2 in File S1), indicating a completeness
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>96% [26]. Among the four suspected repetitive ESCGs,
TIGRO00436 and PF00750 are not always a single copy gene
[19], and TIGRO02350 is hit with the duplicate genes located
within contig_838, implying no contamination from other
bacteria. The only suspected duplicate ESCGs (PF00162) are
distributed in different contigs and in best hit on the NCBI web to
sequences in heterotrophic Anoxybacillus sp. (YP002316858) and
autotrophic  Nitrososphaera sp. (YP006862459), respectively.
These two sequences are assigned as glyceraldehyde 3-phosphate
dehydrogenase and triosephosphate isomerase, which are respon-
sible for glycolysis and gluconeogenesis, respectively, and thus may
coexist in an autotrophic or mixotrophic bacterium (consistent
with the following metabolism analysis). In summary, this draft
genome has no verifiable contamination from other bacteria.

Phylogenetic and biogeographic characterization

This draft genome contains a complete rRNA operon (168, 5S
and 238, 3,379-8,941 bp) on contig_439, and the 16S rRNA gene
(1,567 bp, 6,992-8,558 bp) is used for the taxonomic identifica-
tion with BLASTn against NCBI and the Greengenes 16S rRNA
gene database (released at May, 2013). The genome shares only
85.9% similarity with the 16S rRNA gene of pure culture Vibrio
sp. Gp-3-5.1 (HF912444) but approximately 94.9% similarity with
the first nominated SBR1093 sequence (AF269002) and 99.9%
with the uncultured bacterium (HE646343). Therefore, this draft
genome should represent a bacterium from candidate phylum
SBR1093, named as SBR1093 HKSP. The neighbor-joining and
maximum-likelihood phylogenetic tree of the 16S rRNA gene in
this bacterium and strains from relative phyla revealed that the
candidate phylum SBR1093 represented by this bacterium is close
to Proteobacteria (Figure S1 in File S1). Additionally, as shown in
the phylogenetic tree of this 16S rRNA gene and the reference
sequences (Figure 2), phylotypes from candidate phylum SBR1093
are primarily divided into two subdivisions, terrestrial and marine.
They are further clustered into 5 clades within which SBR1093

Carbon Fixation of Candidate Phylum SBR1093

HKSP belongs to clade I. The shallow branching pattern within
this phylum (the largest distance between these phylotypes is less
than 0.12) implies that bacteria within SBR1093 are recently
radiated [27]. It should be noted that some sequences named
SBR1093 (GQ348518, 350258, 350948, AY907765, EF573230)
are clustered with Vibrio sp. (HF912444) and should be excluded
from this candidate phylum. Clades within this candidate phylum
are distinguished clearly according to their biogeographic distri-
butions, which are differed from dissolve oxygen, salinity, pH, as
well as organic nutrients. Bacteria in clades I and II are primarily
found in terrestrial environments associated with fertile organics,
whereas those in clade IV and V are primarily found in barren
marine environments. The 16S rRNA gene of this draft genome
SBR1093 HKSP 1is clustered with phylotypes found in the
activated sludge or contaminated environment (with similarity >
99.9%), conditions with plenty of organics, thus implying the
potential of organic metabolism (see details below).

In addition to the taxonomy of the 16S rRNA gene, proteins
encoding in the genome may be another important resource in
determining the phylogenetic position of an unknown bacterium.
With the results of BLASTp checked against those in the nr-
database, MEGAN may be used to classify these proteins using an
LCA algorithm. Therefore, the ancestry of this bacterium can be
speculated according to the phylogenetic relationship of proteins
encoding in this draft genome. Of the 2,532 proteins in SBR1093
HKSP that have homologs with proteins in the nr-database, the
largest section is clustered within the phylum level of Proteobac-
teria (n=>549), which is followed by Firmicutes (n=70), Cyano-
bacteria (n=>53) and Bacteroidetes (n=42) (Figure S2 in File S1).
On the genus level, the most hits (n = 104) belong to Geobacter in
Deltaproteobacteria, and the rests are evenly distributed among
more than 50 genera. Therefore, candidate phylum SBR1093
represented by this bacterium may be close to Proteobacteria and
Firmicutes but nonetheless separate from them, which is consistent
with the taxonomy analysis of the 16S rRNA gene.
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Figure 1. Genome binning of the dominant population with a plot of assembly contigs (based on coverage versus GC ratio). The
circles represent the contigs with the size of the square root of their length. Clusters of contigs with similar color present potential genome bins, and
contigs cluster with a coverage of approximately 80 (enclosed with black line) were collected for genome binning in this study.

doi:10.1371/journal.pone.0109571.g001
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Figure 2. Phylogeny of phylotypes affiliated with the candidate phylum SBR1093. This phylogenetic tree is constructed with 16S rRNA
gene sequences based on the neighbor-joining method with Jukes and Cantor distances. The main clades with nodes supported by a bootstrap value
of >50% are labeled and marked with different background colors (Clade | green, Clade Il blue, Clade IIl yellow, Clade IV pink and Clade V purple). The
phylotypes derived from different sources are labeled with the following: dark red, activated sludge; orange, soil; blue, sediments; dark green, ocean
crust; pink, lava; purple, seawater; green, mine tailings; brown, marine organisms; black, others. The phylotype SRB1093 HKSP obtained in this study is
enclosed with a solid red line, whereas the first reported phylotype is enclosed with a red dashed line. The scale bar represents 0.05 nucleotide

substitutions per site.
doi:10.1371/journal.pone.0109571.g002

Bacterial morphology and cell wall type

This SBR1093 bacterium might be rod-shape, for there is a
complete set of genes for rod shape proteins identified in this draft
genome (gene_1559-1563). Considering with the cell wall type, a
complete set of genes responsible for peptidoglycan biosynthesis
(gene_1066-1072) and outer membrane lipoprotein encoding
(gene_41, 44, 411 and 2121) are identified, which are only present

PLOS ONE | www.plosone.org

in Gram-negative bacteria, suggesting this bacterium might be
Gram negative. During the life cycle, the bacterium may form
spores in adverse conditions and germinate in more suitable
conditions, because there is a complete set of genes for spore
formation, maturation and germination (gene_1062, 1522 and

265).
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Primary metabolism

According to the KEGG annotation in MEGAN, approximate-
ly half of the predicted proteins (1,153 of the total 2,329) belong to
metabolism, including 268 for carbohydrate metabolism, 223 for
amino acid metabolism and 76 for lipid metabolism. The genes
responsible for glycolysis/gluconeogenesis and the citrate cycle are
complete in this draft genome, as well as a set for oxidative
phosphorylation (Table S3 in File S1), indicating that this
bacterium should be an aerobic heterotroph. However, two genes
encoding the CRP/FNR family regulator and five genes for the
Fur family regulators were also identified in this draft genome,
indicating the potential anoxic metabolism of this bacterium.
Therefore, it appears to be a facultative aerobic bacterium. This is
consistent with the conditions of the anoxic/aerobic process from
which these samples were collected, as well as the biogeographic
distribution of the phylotypes from candidate phylum SBR1093.
Additionally, full genes responsible for the upstream metabolism of
glycolysis, such as the metabolism of glycogen/starch and
cellulose, are also identified in this draft genome, but there were
no genes related to the uptake of glucose or metabolism of sucrose,
maltose or xylose. Therefore, this bacterium may use glycolysis
only for the catabolism of self-producing sugar rather than
external sugar.

Based on the genetic analysis, this bacterium may reduce nitrate
via an assimilation path and nitrite via an assimilation or
dissimilation path (Figure S3 in File S1), which indirectly verifies
the facultative aerobic metabolism. Although most of the amino
acid can be synthetized with the assimilated ammonia, no genes
for asparagine synthesis were detected, implying the necessity for
asparagine supplementation in the enrichment of this bacterium.
This is consistent with the branched-chain amino acid ABC
transporters. Additionally, only genes encoding sulfite reductase
exist in this draft genome (none for sulfate reductase), indicating
that this bacterium may survive in niches with relatively high
redox potential rather than strictly anaerobic conditions. This is
also consistent with the conditions in which the microbial
community enriched this bacterium (i.e., cycling between the
anoxic and aerobic tanks).

Regarding the utilization of the substrates, microbes enriched in
a specific condition may adapt to this environment and interact
closely with their habitat through metabolic reactions [28].
Because this bacterium is enriched in an anoxic/aerobic process
and is fed with morpholine distilling wastewater, it may be
mvolved in the metabolism of the main organics in this
wastewater. However, the organics in this influent are primarily
in the form of morpholine (or its derivatives), which is reported to
decompose into glyoxylate and glycolate only by some species of
Mpycobacterium containing a complex of cytochrome p450,
ferredoxin and ferredoxin reductase [29]. Based on the genetic
analysis, there is no p450 gene in this draft genome. Therefore,
this bacterium may not be active in the ring-opening of
morpholine and is more likely involved in the metabolism of the
intermediates of morpholine decomposition such as glycolate and
glyoxylate. This is consistent with multiple genes responsible for
the conversion of glycolate (gene_1890, 1891, 2884, 2885, 2887)
and glyoxylate (gene_55), as well as the fusion protein responsible
for the glyoxylate shunt (Table S3 in File S1, gene_720), which
combines the glyoxylate with acetyl-CoA for the synthesis of
malate.

Identification of the carbon fixation pathway
Interestingly, this draft genome possesses genes encoding

phosphoenolpyruvate (PEP), acetyl-CoA and propionyl-CoA

carboxylase, which catalyze carbon fixation, indicating that this
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bacterium might have autotrophic metabolism potential. Further
comparative genetics reveal that this draft genome contains all of
the 13 enzymes required for the hydroxypropionate-hydroxybu-
tyrate (HPHB) cycle (Figure 3), a carbon fixation pathway
possessed only by Archaea [30]. The enzymes in this draft genome
share 30~50% amino acid identity with those involved in the
HPHB cycle in Metallosphaera sedula, a typical strain of Archaea
that undergoes the HPHB cycle (Table 1). In this carbon fixation
pathway, two molecules COy are assimilated in form of
bicarbonate with the carboxylation of a bifunctional biotin-
dependent acetyl-CoA/propionyl-CoA carboxylase, and the pro-
duced acetyl-CoA is transferred to the citrate cycle for the
synthesis of the amino acids and fatty acids or alternatively
glycogen via gluconeogenesis. For other carbon fixation pathways,
some key enzymes are absent from this draft genome (Figure S4 in
File S1), such as pyruvate synthase (EC:1.2.7.1) for the 3-
dicarboxylate-hydroxybutyrate (DCHP) pathway, ATP-citric lyase
(EC:2.3.3.8) and 2-oxoglutarate synthase (EC:1.2.7.3) for the
reductive citric acid cycle pathway, NADP+ dependent formate
dehydrogenase (EC:1.2.1.43) and formyltetrahydrofolate synthe-
tase (EC:6.3.4.3) for the reductive acetyl-CoA pathway, malyl-
CoA lyase (EC:4.1.3.24) for the 3-hydroxypropionate cycle
pathway, and ribulose-bisphosphate carboxylase (EC:4.1.1.39)
for the reductive pentose phosphate cycle pathway [31]. There-
fore, SBR1093 HKSP may have autotrophic metabolism via the
HPHB carbon fixation pathway, whereas the phosphoenolpyr-
uvate carboxylase may function to maintain the balance of
intermediates within the citrate cycle [32]. Additionally, enzymes
employed for this carbon fixation pathway in Archaea are oxygen-
tolerant, which is also consistent with the living conditions of this
bacterium.

However, microbes possessing the HPHB pathway may evolve
as facultative autotrophs rather than obligate autotrophs because
this carbon fixation pathway is the most energy-consuming
pathway, requiring nine ATP equivalents for one pyruvate [33].
Organisms harboring this carbon fixation pathway may proliferate
via a heterotrophic rather than autotrophic pathway as long as
there are available organic substrates, which is the nutritional
strategy of microbes [34]. For example, although many species
within Sulfolobales are described as autotrophs or mixotrophs via
this carbon fixation pathway, some strains deposited in the public
culture collection could lose their autotrophic ability after
continuous laboratory cultivation in nutrient-rich media [33].
According to the above discussion, SBR1093 HKSP may possess
potential of both autotrophic and heterotrophic metabolisms, thus
should be a mixotroph. This is consistent with the enriching
conditions, as well as the habitats of strains in the same taxonomic
clade. Mixotrophy has been demonstrated to be a widespread and
important phenomenon in the biosphere [35], which combines the
traits of autotrophs and heterotrophs to utilize both inorganic and
organic resources to enable the host survive in oligotrophic or
transient environments. In this study, SBR1093 HKSP is enriched
In an anoxic/aerobic process, which cycled microbes continuously
from feast to fast according to anoxic and aerobic conditions. The
microorganisms thus adapt to the transient environment and strive
for the dominant position in this microbial community.

Additionally, in this draft genome, a key enzyme for this HPHB
pathway, 4-hydroxybutyryl-CoA dehydratase (gene_213), is di-
verged from those in Archaea possessed the HPHB pathway, but
clustered with facultative autotrophic bacteria such as Bradyrhi-
zobtum and Afipia within Bradyrhizobiaceae (Figure 4). This
suggests that this gene is unlikely to be horizontally obtained
across a recent domain for SBR1093. A further comparison
analysis reveals that in addition to the identified autotrophic
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Figure 3. Putative metabolic pathway of SBR1093 HKSP (based on the genetic analysis). Carbon fixation with the HPHB cycle is used for
the biomass synthesis via the transfer of acetyl-CoA to the citrate cycle or gluconeogenesis, and the genes responsible for each step are marked with
green words. Intermediates connected with colored lines represent different metabolic pathways.

doi:10.1371/journal.pone.0109571.g003

Archaea, all of the 13 enzymes involved in the HPHB pathway are
also identified in some species within Bradyrhizobiaceae (Table 1),
implying the wide distribution of the HPHB pathway in the
biosphere and the potential importance of carbon fixation in soils
and oceans. A phylogenetic analysis based on concatenated amino
acid sequences, that are responsible for the transfer of succinyl-
CloA to acetoacetyl-CoA and shared by DCHP & HPHB pathway,
also reveals that this bacterium is closer to bacteria within
Bradyrhizobiaceae than Archaea (those responsible for the transfer
of crotonyl-CoA to acetoacetyl-CoA are not included because they
are fusion proteins of enoyl-CoA hydratase and hydroxybutyryl-
CoA dehydrogenase in bacteria but in reverse order in Archaea).
Therefore, this bacterium may have a nutrition pattern similar to
that of bacteria within Bradyrhizobiaceae.

Compared with the oligotrophic niches in which Archaea reside,
Bradyrhizobiaceae bacteria are often found in fertile habitats rich
in nutrients. Bacteria within Bradyrhizobiaceae often appear as
heterotrophs rather than autotrophs, although most can grow
chemolithoautotrophically using hydrogen, thiosulfate or sulfide as
an electron donor [36]. Similarly, the bacterium SBR1093 HKSP
is enriched in an industrial WWTP with an influent chemical
oxygen demand (COD) concentration of up to 7,000 mg L™ " and
ammonia concentration up to 100 mg L™"; thus, it may also be a
facultative heterotroph or obligate mixotroph.

Antibiotics and heavy metal resistance

It is also interesting to note that this bacterium may have
multidrug resistance, such as penicillin, tetracycline, methyleno-
mycin A, chloramphenicol and some macrolide-specific drugs,
because abundance of genes associated with drug resistance and
efflux transporters are identified in the draft genome. For example,
13 genes encoding a putative drug exporter in the RND

PLOS ONE | www.plosone.org 7

superfamily may catalyze antibiotics efflux via an H+ antiport
mechanism (Table S4 in File S1), and 19 genes encoding MFS
transporter may have antibiotic resistance potential.

Additionally, a complete set gene associated with arsenate
reduction and transport has also been identified in this draft
genome, as well as 12 genes encoding the ArsR family
transcriptional regulator, which may repress the expression of
operons linked to stress of di- and multivalent heavy metal ions
[37]. Therefore, a variety of heavy metal resistances and
transporter genes can be expected in the genome, including the
resistance genes for copper and mercury and transport genes for
Cu*" and chromate (Table S4 in File S1). The variety resistance to
a variety of heavy metals is consistent with the relevant
geographical distribution, ocean crust, marine sediment, contam-
inated soil and activated sludge.

Conclusions

In summary, a draft genome of uncultivated bacteria from
candidate phylum SBR1093 was reconstructed with the metagen-
ome of a microbial community from a full-scale industrial
wastewater treatment plant. According to the phylogenetic
analysis, this bacterium belongs to clade I of candidate phylum
SBR1093, which is associated with a contaminated environment
and indicates the demand of organics for metabolism. Genome
analysis indicates that the bacterium SBR1093 in this phylum may
grow autotrophically via the HPHB cycle, a carbon fixation
pathway recently found only in some genera from Archaea.
Enzymes in this draft genome involved in carbon fixation are
diverged from those in Archaea but share obvious homology to
those found in Bradyrhizobiaceae. Therefore, this indicates that
this bacterium may be a mixotroph. So far, all of the metabolic
properties of this SBR1093 HKSP are deduced only based on the

October 2014 | Volume 9 | Issue 10 | €109571



100

100

100

100

100 100

100 |

Carbon Fixation of Candidate Phylum SBR1093

YP001191403 Metallosphaera sedula
—— YP256729 Sulfolobus acidocaldarius
NP377631 Sulfolobus tokodaii
— YP002833324 Sulfolobus islandicus
100 NP344059 Sulfolobus solfataricus
NP360189 Pyrobaculum aerophilum
YP001056282 Pyrobaculum calidifontis
YP929771 Pyrobaculum islandicum
YPO001793816 Pyrobaculum neutrophilum
YP001435184 Ignicoccus hospitalis KIN4

Crenarchaeota

[ YP874977 Cenarchacum symbiosum A

100 {

95

100

100

100

8

Figure 4. Phylogenetic tree of 4-hydroxybutyryl-CoA dehydrat

I

YP001581541 Nitrosopumilus maritimus

YP003167209 Accumulibacter phosphatis clade IIA-F
WP004337075 Thauera linaloolentis
WP009517590 Hydrogenophaga sp. PBC

WP006 15880 Cupriavidus basilensis

Gene_213 SBR1093 HKSP
'WP018273287 Bradyrhizobium elkanii
WP008968142 Bradyrhizobium sp. STM 3843
| T WP009341161 Afipia sp. INLS2
o7 |~ WP002716765 Afipia felis
91 L yP004632741 Oligotropha carboxidovorans

Proteobacteria
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suspected autotrophic microbes that undergo the HPHB cycle. The num
topography and evolutionary distances are given via the neighbor-joini

ber in front of the taxonomy presents the accession number in NCBI. The tree
ng method with a Poisson correction. The numbers at the nodes indicate the

percentage bootstrap values for the clade of this group in 1,000 replications. The scale bar represents a difference of 0.1 substitutions per site.
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genomic analysis and comparative genomics. Further understand-
ing of the ecological role of this candidate phylum will be obtained
through its effective enrichment in the laboratory and the
investigation on pure culture.

Supporting Information

File S1 Supporting Figures and Tables. Figure SI1.
Phylogenetic tree of sequences of SBR1093 and the
reference sequences from representative phyla. This
phylogenetic tree is constructed with 16S rRNA gene sequences
based on the maximum-likelihood method with Jukes and Cantor
distances. Only bootstrap value of >50% is labeled and the
phylotypes of SRB1093 are marked with red in bold. The scale bar
represents 0.1 nucleotide substitutions per site. Figure S2.
Taxonomy of proteins in this SBR1093 HKSP. Proteins
are converted with the predicted gene, and performed BLASTp
against NCBI nr database (released at July 18, 2013). Therefore, it
is imported into Megan for taxonomic classification. Figure S3.
Putative nitrogen metabolic pathway of this SBR1093
HKSP (Adapted from KEGG). Figure S4. Suspected
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