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Abstract. The aim of the present study was to investigate 
the feature genes in metastatic breast cancer samples. A total 
of 5 expression profiles of metastatic breast cancer samples 
were downloaded from the Gene Expression Omnibus 
database, which were then analyzed using the MetaQC and 
MetaDE packages in R language. The feature genes between 
metastasis and non-metastasis samples were screened 
under the threshold of P<0.05. Based on the protein-protein 
interactions (PPIs) in the Biological General Repository for 
Interaction Datasets, Human Protein Reference Database and 
Biomolecular Interaction Network Database, the PPI network 
of the feature genes was constructed. The feature genes identi-
fied by topological characteristics were then used for support 
vector machine (SVM) classifier training and verification. 
The accuracy of the SVM classifier was then evaluated using 
another independent dataset from The Cancer Genome Atlas 
database. Finally, function and pathway enrichment analyses 
for genes in the SVM classifier were performed. A total of 
541 feature genes were identified between metastatic and 
non-metastatic samples. The top 10 genes with the highest 
betweenness centrality values in the PPI network of feature 
genes were Nuclear RNA Export Factor 1, cyclin-dependent 
kinase 2 (CDK2), myelocytomatosis proto-oncogene protein 
(MYC), Cullin 5, SHC Adaptor Protein 1, Clathrin heavy 
chain, Nucleolin, WD repeat domain 1, proteasome 26S 
subunit non‑ATPase 2 and telomeric repeat binding factor 2. 
The cyclin-dependent kinase inhibitor 1A (CDKN1A), E2F 
transcription factor 1 (E2F1), and MYC interacted with 
CDK2. The SVM classifier constructed by the top 30 feature 

genes was able to distinguish metastatic samples from 
non-metastatic samples [correct rate, specificity, positive 
predictive value and negative predictive value >0.89; sensi-
tivity >0.84; area under the receiver operating characteristic 
curve (AUROC) >0.96]. The verification of the SVM classi-
fier in an independent dataset (35 metastatic samples and 143 
non‑metastatic samples) revealed an accuracy of 94.38% and 
AUROC of 0.958. Cell cycle associated functions and path-
ways were the most significant terms of the 30 feature genes. 
A SVM classifier was constructed to assess the possibility 
of breast cancer metastasis, which presented high accuracy 
in several independent datasets. CDK2, CDKN1A, E2F1 
and MYC were indicated as the potential feature genes in 
metastatic breast cancer.

Introduction

Breast cancer is one of the most commonly diagnosed types 
of cancer, accounting for one-third of cancer cases in the 
USA (1). The survival rate of breast cancer has improved 
steadily with the development of early diagnosis and adjuvant 
therapy; however, the overall survival of patients with meta-
static disease still remains poor (2). It has been estimated that 
>90% of breast cancer mortalities are associated with tumor 
metastasis (3,4).

Metastasis is associated with poor patient prognosis and 
an acceleration of the carcinoma progress (5). Brain, bone, 
lungs and liver are the most frequently targeted organs for 
breast cancer metastasis, and the tumor microenvironment 
is considered to be a critical regulator for the metastatic 
process (6). Comprehensive understanding of metastasis 
progression is very important for identifying novel therapeutic 
strategies to prevent metastatic disease.

The MetaOmics software in R language is comprised of 
the MetaDE, MetaQC and MetaPath packages. The MetaDE 
package primarily contains 12 state-of-the-art genomic 
meta-analysis methods to detect differentially expressed 
genes (7). The MetaQC package is the quantitative and 
objective tool for the determination of the inclusion/exclusion 
criteria for meta-analysis (8). The MetaDE and MetaQC 
packages have been intensively utilized for data digging 
from microarray profiles. Fc fragment of immunoglobulin G 
binding protein, for example, has been reported as a candidate 
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metastasis-associated gene using the integrated method of 
MetaDE and survival analysis (9).

As an effective classifier for identification, the support 
vector machine (SVM) classifier is well suited for signature 
modeling (10). Guyon et al (11) applied the SVM classifier to 
select feature genes from DNA microarrays, and the selected 
genes were proved to exhibit a greater classification perfor-
mance. Fan et al (10) demonstrated that the SVM classifier for 
feature gene selection was able to speed up the classification 
process and the generalization performance.

In the present study, several microarray profiles of breast 
cancer samples (including metastatic and non-metastatic 
samples) were downloaded to investigate the feature genes 
in metastatic samples. A SVM classifier was constructed to 
identify feature genes, which was validated by another inde-
pendent gene expression dataset from The Cancer Genome 
Atlas (TCGA) database.

Materials and methods

Processing of microarray data. Expression profiles matching 
the search terms of ‘breast cancer’, ‘homo sapiens’ and 
‘metastasis’ in the Gene Expression Omnibus (GEO; 
www.ncbi.nlm.nih.gov/geo/) database were screened on 22nd 
April 2016. The profiles were selected using the following 
filtering criteria: i) The data was gene expression microarray 
data; ii) data was collected from cancerous tissue samples or 
cancerous-metastasis samples; iii) and the metastatic statuses 
of the samples were clearly recorded.

A total of 5 microarray profiles were retrieved from 
the GEO database (Table I). The GSE46928, GSE43837, 
GSE46826, GSE39494 and GSE29431 profiles had a total 
of 52, 38, 27, 10 and 31 samples, respectively; these in turn 
included 11, 19, 21, 5 and 13 metastatic samples, respectively.

For GSE46928, GSE43837 and GSE29431 datasets 
based on the Affymetrix platform (Affymetrix; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA), the raw data 
were used to perform background correction via Affymetrix 
microarray software Affy version 1.42.3 (https://biocon-
ductor.org/packages/release/bioc/html/affy.html) in R version 
3.1.0, and normalization via the quantiles method (12).

For GSE46826 and GSE39494 datasets based on the 
Agilent platform (Agilent Technologies, Inc., Santa Clara, CA, 
USA), the gene names in the microarray data were identified 
according to Agilent platform. Then, the average values were 
used as the expression levels of genes corresponding to multiple 
probes. The Limma package 3.22.1 (13) (https://biocon-
ductor.org/packages/release/bioc/html/limma.html) was used 
for the normalization of these data.

Screening of feature genes. All of the selected datasets were 
merged to form a novel dataset for the screening of feature 
genes using MetaDE.ES in the MetaDE package 1.0.5 (14). 
Firstly, principal component analysis and standardized mean 
rank methods in the MetaQC package (8) were applied to 
ensure quality control (QC) within the novel datasets from 
the different profiles. In this process, the following parameters 
were used: Internal QC, external QC, accuracy QC (AQCg), 
precision of AQCg, consistency QC (CQCg) and precision 
of CQCg. Tests for heterogeneity were then performed to 

determinate the gene expression differentiations among the 
different datasets; Qpval >0.05 and tau2=0 were used as the 
criteria for homogenous genes. Finally, the differentially 
expressed genes (DEGs) between metastatic samples and 
non‑metastatic samples in the dataset were identified under the 
threshold of P<0.05, which were considered as feature genes in 
the following analysis.

Construction of the protein‑protein interaction (PPI) network. 
The interactions between human genes in the Biological 
General Repository for Interaction Datasets (thebiogrid.org/, 
BioGRID Version 3.4.154 Released) (15), Human Protein 
Reference Database (www.hprd.org/, HPRD Release 9) (16) and 
Biomolecular Interaction Network Database (BIND 2.0) (17) 
were downloaded. The screened feature genes were then 
subjected to the downloaded interactions to obtain the 
PPI network, which was visualized using Cytoscape 3.6.0 
software (18).

The degree (the connection with other genes) and the 
betweenness centrality (BC) value of feature genes in the 
network were calculated. The following formula was used for 
calculating BC:

Where σst is the shortest path between s and t, and σst (v) is the 
node numbers in the path of σst. A high BC value indicates a 
high degree of feature genes in the network.

Establishment of the SVM classifier. Feature genes were 
ranked according to their BC values, and those that were 
present in the most qualified samples were collected as the 
training dataset for the establishment of the SVM classifier. 
The remaining feature genes were used as the verification 
datasets for the classifier. The feature genes in the SVM clas-
sifier were used to perform the two‑way clustering of samples 
and expression levels. The clustering results were visualized 
using a heatmap (19). The aim of the constructed SVM classi-
fier was to distinguish whether the cancer had metastasized by 
analyzing the primary cancer samples.

A set of microarray data from breast cancer samples 
(https://cancergenome.nih.gov/) was downloaded from TCGA 
(tcga-data.nci.nih.gov/docs/publications/tcga/) for further 
clarification. In total, 597 samples were included in the dataset, 
among which 178 samples had clinical information regarding 
metastasis status, follow-up time and the clinical outcomes. 
There were 35 metastatic samples and 143 non‑metastatic 
samples.

Function and pathway enrichment. Fisher's test was utilized 
with the ‘runHyperKEGG’ and ‘runHyperGO’ functions of 
the Easy Microarray Data Analysis package 1.4.4 (20) for the 
function and pathway enrichment of feature genes. P<0.05 was 
set as the cut-off criterion.

Results

Feature gene selection. The QC results of all 5 microarray 
profiles are displayed in Fig. 1 and Table II; the results 
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indicated there was good quality within all datasets. Next, 
using the MetaDE package, 541 feature genes were identified 
and the top 10 were ranked by their P-values; these included, 
non‑SMC condensing I complex subunit H, small nuclear 
ribonucleoprotein U11/U12 subunit 25, cellular retinoic 
acid binding protein 2, guanosine triphosphate binding 
protein 2, homer scaffolding protein 2, family with sequence 
similarity 64 member A, WD repeat domain (WDR) 45, dual 
specificity tyrosine phosphorylation regulated kinase 4, chro‑
mosome 12 open reading frame 10 and H2A histone family 
member Z (Table III).

PPI network of feature genes. The PPI network of feature 
genes was comprised of 307 nodes (feature genes) and 
586 lines (interactions; Fig. 2). There were 220 nodes (shown 
in green) that exhibited higher expression levels in metastatic 
samples, as well as 87 nodes (shown in purple) that exhibited 
lower expression levels in metastatic samples when compared 
to non-metastatic samples. As shown in Fig. 3, 168 genes 
exhibited a log (degree) of 0-1 and only 5 genes exhibited 
a log (degree) of >3 in the network. In addition, the top 30 
genes with the highest BC values were listed in Table IV. 
The top 10 feature genes were Nuclear RNA Export Factor 1 
(NXF1), cyclin-dependent kinase 2 (CDK2), myelocytomatosis 
proto-oncogene protein (MYC), Cullin 5 (CUL5), SHC Adaptor 
Protein 1 (SHC1), Clathrin heavy chain (CLTC), Nucleollin 
(NCL), WDR1, proteasome 26S subunit, non-ATPase 2 
(PSMD2), telomeric repeat binding factor 2 (TERF2; Table IV). 
Among these feature genes the CDK inhibitor 1A (CDKN1A), 
E2F transcription factor 1 (E2F1) and MYC interacted with 
CDK2.

SVM classifier. Feature genes ranked with BC values were 
picked at 10 intervals from the top 10 to the top 50, for the 
construction of the SVM classifier. The dataset GSE46928 
with the largest sample size was used as the training dataset. 
As shown in Fig. 4A, the accuracy of the SVM classifier 
improved with the increasing number of genes and the accuracy 
stabilized at 100% once the top 30 genes were selected. The 
SVM classifier constructed by the top 30 feature genes was 
able to distinguish metastatic samples from the non-metastatic 

Table I. Basic information of downloaded microarray data.

GEO accession Chip Probe number Total sample number Non-metastasis samples Metastasis samples

GSE46928 HG‑U133A 22,283 52 41 11
GSE43837 U133_X3P 61,360 38 19 19
GSE46826 Agilent-021924 62,977 28 6 22
GSE39494 Agilent‑014850  41,000 10 5 5
GSE29431 HG‑U133_Plus_2 54,675 31 18 13

GEO, Gene Expression Omnibus.

Table II. Results of quality control parameters and standardized mean rank.

Microarray profile IQC EQC CQCg CQCp AQCg AQCp SMR

GSE46928 4.91 4.78 93.87 148.67 153.83 56.44 2.42
GSE43837 5.12 5.00 52.41 101.36 184.06 39.30 1.57
GSE46826 4.56 4.22 68.15 146.58 106.19 29.43 4.83
GSE39494 2.16 2.92 21.58 64.14 46.61 33.90 7.17
GSE29431 3.19 4.16 43.66 89.52 113.24 31.16 3.36

QC, quality control; IQC, internal QC; EQC, external QC; AQCg, accuracy QC; AQCp, precision of AQCg; CQCg, consistency QC; CQCp, 
precision of CQCg; SMR, standardized mean rank.

Figure 1. Quality control results of the merged datasets from 5 microarray 
profiles (marked as 1‑5) obtained via MetaQC analysis. The first principal 
component is presented on the x-axis, while the second principal component 
is shown on the y-axis. QC, quality control; IQC, internal QC; EQC, external 
QC; AQCg, accuracy QC; AQCp, precision of AQCg; CQCg, consistency 
QC; CQCp, precision of CQCg.
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samples with high accuracy (Fig. 4B). The selected 30 genes 
were considered to be the critical biomarkers for metastatic 
breast cancer, and included protein kinase B serine/threonine 

kinase 1 (AKT1), CDKN1A, ETS proto-oncogene 1 transcrip-
tion factor (ETS1), runt related transcription factor 1 (RUNX1), 
RUNX1 translocation partner 1 (RUNX1T1), nitric oxide 

Table III. Top 10 feature genes selected using the MetaDE package.

Gene P-value Q Qp tau2 Exp

NCAPH 4.17x10-5 1.4919 0.8281 0 1
SNRNP25 1.20x10-4 3.8687 0.4241 0 1
CRABP2 1.55x10-4 0.5088 0.9726 0 1
GTPBP2 3.51x10-4 0.4245 0.9804 0 1
HOMER2 3.74x10-4 3.4071 0.4921 0 1
FAM64A 3.93x10-4 2.5196 0.6411 0 1
WDR45 4.34x10-4 2.5287 0.6395 0 1
DYRK4 4.61x10-4 1.4036 0.8436 0 1
C12orf10 4.92x10-4 2.7885 0.5938 0 1
H2AFZ 5.19x10-4 3.0197 0.5545 0 1

NCAPH, non‑SMC condensing I complex subunit H; SNRNP35, small nuclear ribonucleoprotein U11/U12 subunit 25; CRABP2, cellular 
retinoic acid binding protein 2; GTPBP2, guanosine triphosphate binding protein 2; HOMER2, homer scaffolding protein 2; FAM64A, family 
with sequence similarity 64 member A; WDR45, WD repeat domain 45; DYRK4, dual specificity tyrosine phosphorylation regulated kinase 4; 
C12orf10, chromosome 12 open reading frame 10; H2AFZ, H2A histone family member Z.

Figure 2. Protein-protein interaction network of feature genes. Green nodes are the genes that exhibited higher expression in metastatic samples, while the 
purple nodes are those that exhibited lower expression in metastatic samples when compared with non-metastatic samples.
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synthase 2 (NOS2), MYC, phosphatase and tensin homolog 
(PTEN) and CDK2. Clustering analysis of these 30 feature 

genes and the samples in GSE46928 demonstrated that these 
genes have significantly different expression levels between 
the metastatic and non-metastatic samples (Fig. 5).

The classification efficacy of the constructed classi-
fier was also tested on the other 4 microarray datasets 
(Fig. 6). All samples in GSE39494 (Fig. 6B) and GSE46826 
(Fig. 6D) were correctly distinguished, and only 3 samples in 
GSE29431 (Fig. 6A) and 4 samples in GSE43837 (Fig. 6C) 
were misclassified. Overall, the SVM classifier displayed good 
performance in terms of distinguishing between metastatic 
and non-metastatic samples. The correct rate, specificity, 
positive predictive value (PPV) and negative predictive value 
(NPV) were >0.89, sensitivity was >0.84 and the area under 
the receiver operating characteristic curve (AUROC) was 
>0.96 (Table V).

An independent dataset of breast cancer samples was 
downloaded from the TCGA database to test the classification 
effect of the constructed classifier (Fig. 7). The results revealed 

Table IV. Top 30 feature genes with the highest betweeness centrality in the protein‑protein interaction network. 

Gene BC EXP Degree P‑value Q Qp tau2

NXF1 0.3864 1 66 3.43x10-2 3.7163 0.4458 0
CDK2 0.2047 0 44 3.33x10-2 2.2882 0.6829 0
MYC 0.1382 1 27 4.91x10-2 3.4827 0.4805 0
CUL5 0.1006 1 21 2.86x10-2 3.0080 0.5565 0
SHC1 0.0974 1 16 1.60x10-2 1.1518 0.8860 0
CLTC 0.0783 0 20 2.66x10-2 2.8154 0.5892 0
NCL 0.0568 1 15 9.12x10-4 1.3121 0.8593 0
WDR1 0.0532 1 8 8.49x10‑3 2.5722 0.6318 0
PSMD2 0.0476 1 13 8.31x10-4 3.4061 0.4923 0
TERF2 0.0460 0 11 1.65x10-2 0.3161 0.9888 0
RUVBL1 0.0450 1 13 2.51x10-2 0.8904 0.9259 0
PRDX1 0.0394 1 10 4.09x10-2 2.0057 0.7347 0
PTEN 0.0334 0 12 1.99x10‑3 3.5056 0.4770 0
HDGF 0.0313 1 10 3.93x10-2 3.4475 0.4859 0
RUNX1T1 0.0291 0 4 2.88x10-2 0.2956 0.9901 0
IQCB1 0.0283 1 12 1.20x10‑3 0.7995 0.9385 0
AKT1 0.0273 1 15 3.26x10‑3 2.0318 0.7299 0
APEX1 0.0268 1 6 1.09x10-2 1.8543 0.7625 0
TSR1 0.0263 0 7 2.06x10-2 2.2661 0.6870 0
TUBB2A 0.0258 1 9 1.18x10-2 3.4922 0.4791 0
ETS1 0.0257 0 5 4.11x10‑3 3.2520 0.5166 0
PSMC5 0.0249 1 11 1.85x10-2 2.7803 0.5952 0
RUNX1 0.0248 0 4 4.45x10-2 2.3257 0.6761 0
SMAD9 0.0242 0 6 3.52x10-2 1.3518 0.8525 0
STAU1 0.0239 1 14 1.33x10-2 1.7706 0.7779 0
DBN1 0.0235 1 13 2.31x10‑3 2.1547 0.7073 0
SNCA 0.0229 0 10 2.51x10-2 2.9088 0.5732 0
CDKN1A 0.0226 0 12 1.48x10-2 3.7775 0.4369 0
SLC25A1 0.0223 1 2 2.22x10-2 1.1438 0.8873 0
NOS2 0.0222 0 9 4.71x10-2 1.0560 0.9012 0

EXP is the expression value ratio of genes between metastastic samples and non‑metastastic samples, while values of 1 represent high expres-
sion in metastastic samples and values of 0 represent high expression in non-metastastic samples. BC, betweeness centrality.

Figure 3. Distribution of node degrees in the protein‑protein interaction 
network of feature genes. The x-axis is the log (degree) value and the y-axis 
is the corresponding node numbers to the degree.
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an accuracy of 94.38% (168/178) in 35 metastatic samples 
and 143 non‑metastatic samples, with an AUROC of 0.958 

(Fig. 7B). Based on the 30 feature genes, the survival time of 
patients with metastatic breast cancer was significantly shorter 

Figure 4. Accuracy and efficacy of the support vector machine classifier. (A) The accuracy and error ratio of the classifier at different gene numbers (top 10 to 
top 50). (B) The classification efficacy of the classifier constructed using the top 30 genes for samples in the GSE46928 dataset. Non‑metastatic samples are 
marked in black and the metastatic samples are marked in red.

Figure 5. Clustering heatmap of the top 30 genes and samples in the training dataset. The color gradient from red to green represents the changes in expression 
level from high to low. The bars represent the samples (orange refers to metastatic samples; purple refers to non-metastatic samples). Met, metastatic samples; 
Non, non-metastatic samples.

Table V. Classification effect evaluation of the support vector machine classifier.

Dataset Number of samples Correct rate Sensitivity Specificity PPV NPV AUROC

GSE29431 31 1 1 1 1 1 1
GSE39494 10 0.903 0.846 0.944 0.917 0.895 0.975
GSE43837 38 1 1 1 1 1 1
GSE46826 28 0.895 0.895 0.895 0.895 0.895 0.965

PPV, positive predictive value; NPV, negative predictive value; AUROC, area under the receiver operating characteristic curve.
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Figure 6. Classification results on other microarray profiles, including (A) GSE29431, (B) GSE39494, (C) GSE43837 and (D) GSE46826. Non‑metastatic 
samples are marked in black and metastatic samples are marked in red. The receiver operating characteristic curves of the classifier are displayed on the 
right-hand side. AUC, area under the curve.
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than the patients with non-metastatic breast cancer, and the 
survival status was worse (Fig. 7C).

Function and pathway enrichment. The 30 feature genes in 
the SVM classifier were utilized for function and pathway 
enrichment. The results indicated that cell cycle associated 
functions and pathways were the most significant terms (Fig. 8; 
Table VI).

Discussion

As breast cancer metastasis accounts for the majority of 
breast cancer mortalities, there have been a number of 
reports analyzing DEGs associated with metastasis in breast 
cancer. Some previous studies have identified the markers 
associated with metastasis using the protein-network based 
approach (21-23). Walsh et al (24) identified tripartite motif 

Figure 7. Classification effect of the support vector machine classifier on an independent sample from The Cancer Genome Atlas database. (A) The spot graph 
of the different samples (non-metastatic samples are marked in black and metastatic samples are marked in red). (B) The receiver operating characteristic curve 
and (C) the survival curve. AUC, area under the curve.

Figure 8. Enriched functions of the 30 feature genes. Gene numbers are displayed on the x‑axis. The color represents the ‑log (P‑value) and the changes from 
red to blue represents high -log (P-value) to low -log (P-value).

Table VI. Enriched pathways of the 30 feature genes.

Pathway P-value Genes

hsa05200: Pathways in cancer 1.11x10-5 AKT1, CDKN1A, ETS1, RUNX1T1, NOS2, RUNX1, MYC, PTEN, CDK2
hsa04012: ErbB signaling pathway 3.85x10‑3 AKT1, CDKN1A, SHC1, MYC
hsa04115: p53 signaling pathway 2.60x10-2 CDKN1A, PTEN, CDK2
hsa04110: Cell cycle 2.81x10-5 CDKN1A, MYC, CDK2

AKT1, protein kinase B serine/threonine kinase 1; CDKN1A, cyclin-dependent kinase inhibitor 1A; ETS1, ETS proto-oncogene 1 transcrip-
tion factor; RUNX1, runt related transcription factor 1; RUNX1T1, RUNX1 translocation partner 1; NOS2, nitric oxide synthase 2; MYC, 
myelocytomatosis proto-oncogene protein; PTEN, phosphatase and tensin homolog; ErbB, Erb-B2 receptor tyrosine kinase 2; SHC1, SHC 
Adaptor Protein 1.
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containing 25 as a key determinant of breast cancer metastasis 
using an integrated transcriptional interaction network. In the 
present study, MetaQC package was firstly applied to conduct 
QC tests for the different profiles as the MetaQC package is 
the quantitative and objective tool in the determination of the 
inclusion/exclusion criteria for meta-analysis (8). The DEGs 
between metastatic and non-metastatic samples in the dataset 
were identified using the MetaDE package, which contains 
12 state of the art genomic meta-analysis methods that detect 
DEGs (7). In the present study, a total of 541 feature genes were 
identified between metastatic and non‑metastatic samples.

The PPI network of DEGs was constructed and was 
comprised of 307 feature genes and 586 interactions, among 
which 220 nodes exhibited higher expression levels in meta-
static samples and 87 nodes exhibited lower expression levels 
in metastatic samples when compared with non-metastatic 
samples. Feature genes were ranked according to their BC that 
quantifies the importance of a vertex within a graph (25,26). 
The top 10 genes with the highest BC values included NXF1, 
CDK2, MYC, CUL5, SHC1, CLTC, NCL, WDR1, PSMD2 
and TERF2. CDKN1A, E2F1 and MYC were the genes that 
interacted with CDK2.

Then, the SVM classifier of screened feature genes was 
constructed to evaluate the classification performance. The 
SVM classifier constructed by the top 30 feature genes (which 
included AKT1, CDKN1A, ETS1, RUNX1T1, NOS2, RUNX1, 
MYC, PTEN and CDK2, for example) was able to distinguish 
metastatic samples from the non-metastatic samples; this was 
proved by the clustering analysis. Overall, the classifier displayed 
good performance with a correct rate, specificity, PPV and 
NPV of >0.89, sensitivity >0.84 and an AUROC of >0.96. The 
verification on an independent dataset exhibited an accuracy of 
94.38% and an AUROC of 0.958 for the 35 metastatic samples 
and 143 non‑metastatic samples. The survival time of the meta-
static samples was revealed to be shorter than the non-metastatic 
samples, based on the analysis of these 30 feature genes. 
Cell cycle associated functions and pathways were the most 
significant terms of the 30 feature factors.

CDK2 is reported to exert important roles in cell cycle 
regulation and is associated with tumor aggressiveness and 
poor prognosis (27,28). Kim et al (29) demonstrated that 
the specific activity of CDK2 could be used as a prognostic 
indicator for early breast cancer. Roesley et al (30) also 
identified that CDK2 phosphorylates breast cancer metastasis 
suppressor 1 (BRMS1) on Serine 237 and the mutation can 
prevent BRMS1 from suppressing cell migration. In addition, 
sirtuin 2 (SIRT2)-mediated inhibition of the migration of 
fibroblasts can be antagonized by the CDK2‑induced SIRT2 
phosphorylation (31). CDKN1A (also known as p21), one of the 
CDK inhibitor genes, contributes to cell cycle progression (32). 
Variant genotypes of CDKN1A were observed to be associated 
with an increased risk of breast cancer in the Chinese female 
population (33). When mammalian cells are exposed to 
DNA damaging agents, CDKN1A will inhibit cyclin/CDK2 
complexes and participate in mediating growth arrest (34). 
The CDK2/CDKN1A ratio is considered to be a predictive 
factor of major clinical events in patients with oral squamous 
cell carcinoma (35). E2F1 is a target of cellular (c)-Myc that 
promotes cell cycle progression (36). The E2F1 mRNA levels 
are a strong determinant of clinical outcome in primary breast 

cancer (37). The CDK2-E2F1 signaling pathway exerts a 
pivotal role in regulating the G1 to S phase transition in the 
cell cycle (38). The interactions between CDK2/CDKN1A and 
CDK2/E2F1 identified in the present study indicated that they 
may influence the metastasis of breast cancer via their effect 
on the cell cycle.

The proto-oncogene c‑MYC encodes a transcription factor 
that regulates cell growth, proliferation and apoptosis. c‑MYC 
is commonly amplified in breast cancer and promotes the 
phenotypic transformation of mammary cells by synergisti-
cally interacting with transforming growth factor α (39). MYC 
gene amplification is often acquired in lethal distant breast 
cancer metastases of unamplified primary tumors (40), and the 
overexpression of MYC significantly decreased the metastasis 
of breast cancer cells to lung (41).

In conclusion, in the present study a SVM classifier was 
constructed to assess the possibility of breast cancer metastasis, 
which exhibited high accuracy in several independent datasets. 
The CDK2, CDKN1A, E2F1 and MYC genes were highlighted 
as the potential feature genes for metastatic breast cancer, 
which may interact synergistically by influencing the cell cycle. 
The results provided some potential markers for breast cancer 
metastasis, which may also be prospective precise treatment 
targets for metastatic breast cancer. In the group's future studies, 
the expression levels of the potential feature genes will be vali-
dated in clinical samples by reverse transcription-quantitative 
polymerase chain reaction or immunohistochemical staining.
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