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Abstract: Vaccination is currently the most effective strategy for the mitigation of the COVID-19
pandemic. mRNA vaccines trigger the immune system to produce neutralizing antibodies (NAbs)
against SARS-CoV-2 spike proteins. However, the underlying molecular processes affecting immune
response after vaccination remain poorly understood, while there is significant heterogeneity in
the immune response among individuals. Metabolomics have often been used to provide a deeper
understanding of immune cell responses, but in the context of COVID-19 vaccination such data are
scarce. Mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR)-based metabolomics
were used to provide insights based on the baseline metabolic profile and metabolic alterations
induced after mRNA vaccination in paired blood plasma samples collected and analysed before the
first and second vaccination and at 3 months post first dose. Based on the level of NAbs just before
the second dose, two groups, “low” and “high” responders, were defined. Distinct plasma metabolic
profiles were observed in relation to the level of immune response, highlighting the role of amino
acid metabolism and the lipid profile as predictive markers of response to vaccination. Furthermore,
levels of plasma ceramides along with certain amino acids could emerge as predictive biomarkers of
response and severity of inflammation.

Keywords: COVID-19; metabolomics; neutralizing antibodies (NAbs); NMR; LC-MS; ceramides

1. Introduction

The spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
has led to the worldwide COVID-19 pandemic. It has infected more than 409 million
individuals worldwide and it is responsible for more than 5.8 million deaths to date
(https://www.worldometers.info/coronavirus/, accessed on 12 February 2022). These
numbers are increasing rapidly every day and have caused an unprecedented global health
crisis. Vaccination is probably the most effective strategy to mitigate the effects of the
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pandemic. Several vaccines have been approved by the Food and Drug Administration
(FDA) to prevent life-threatening COVID-19 (coronavirus disease 2019) (https://www.cdc.
gov/coronavirus/2019-ncov/vaccines/different-vaccines.html, accessed on 12 February
2022). Messenger RNA (mRNA) vaccine technology has only recently become available
for public use, even though scientists have been studying mRNA vaccines for decades [1].
Currently the two approved COVID-19 mRNA vaccines code the production of the “spike”
protein that the SARS-CoV-2 virus uses to enter cells. This protein triggers the immune
system to produce antibodies and activate other immune cells [2]. According to the Center
for Disease Control and Prevention (CDC), two 21-day interval doses of mRNA vaccines
are required in order to achieve immune protection against SARS-CoV-2. Due to the fact
that the vaccine effectiveness declines, a third booster dose is also required in order to
maintain the immunity.

A study of the kinetics of anti-SARS-CoV-2 antibody responses three months after
complete vaccination with BTN162b2, which is an mRNA vaccine developed by Pfizer-
BioNTech, showed that neutralizing antibodies (NAbs) increase until the 36th day from
the 1st vaccine shot, and slightly decrease thereafter. A similar pattern is observed for anti-
SARS-CoV-2 Spike-receptor binding domain (anti-S-RBD) antibodies [3]. It appears that the
highest NAbs production reaches a maximum level 14 days after the second vaccination,
with a slow decline in NAbs levels thereafter. In the same study, it was observed that
the level of NAbs titers vary significantly from approximately 1 to 100% (median 53.8%)
21 days after the first shot and before the second vaccine dose. Among the factors that were
shown to affect the immunization efficacy against SARS-CoV-2 with the BTN162b2 vaccine
were age and gender; aged people were more likely to exhibit a reduced response, while
female subjects had higher response [4]. However, the underlying molecular processes
that affect immune response after mRNA vaccines against SARS-CoV-2 remain poorly
understood. The innate and adaptive immune response to vaccines, such as activation of
immune cells and antibody formation, often require a metabolic reprogramming and can
affect central metabolic processes [5]. For this scope, use of metabolomics was deemed
indispensable. Metabolomics—the systematic analysis of small molecules (50 to 1500 Da)
e.g., carbohydrates, amino acids and lipids produced by regulatory mechanisms and
during cellular processes or from exogenous sources (e.g., diet and drugs)—is a powerful
tool for biomarker discovery, prediction of therapy response and investigation of the
biochemical mechanisms concerning several human diseases, aiming to improve their
diagnosis and prevention, and to design better therapeutic strategies [6–9]. The two most
frequently used analytical techniques in metabolomics are mass spectrometry (MS) and
nuclear magnetic resonance (NMR) spectroscopy [10]. These techniques are complementary
and each one brings both advantages and limitations [11]. The combination of information
from these complementary analytical platforms facilitates the detection and identification
of metabolites that could not be discovered by a single technique thereof.

Since the outbreak of the COVID-19 pandemic, a limited number of metabolomics
studies have been performed in COVID-19 patients, indicating a distinct metabolic profile
associated with COVID-19 infection and/or disease severity [12]. Thus, an LC-MS based
metabolomics study showed perturbations in the amino acid and the kynurenine pathway
in COVID-19 patients compared to healthy controls, while these alterations also corre-
lated with concentrations of pro-inflammatory cytokines and chemokines [13]. However,
metabolomic studies associated with the immunity induced by vaccination against SARS-
CoV-2 are still lacking. To the best of our knowledge, there is only one study in this field
that highlighted the metabolic networks associated with the immune responses induced
by the CoronaVac, an inactivated vaccine against COVID-19, showing that metabolites
involved in the tricarboxylic acid (TCA) cycle and amino acid metabolism were associated
with immunity [14]. Nevertheless, there is still no evidence for the metabolic profiles
associated with the novel mRNA vaccines against SARS-CoV-2.

In this study, a combination of NMR and LC-MS metabolomics were employed in
order to provide insights concerning alterations in the metabolic profiles of human subjects

https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html
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in association with the antibody levels induced by BTN162b2 vaccination and predict the
vaccination efficacy. Metabolic characterization was performed using plasma samples of
individuals, divided into two groups: the “high responders” including individuals with
strong immune response after the first dose of vaccination with BTN162b2, as measured by
the levels of NAbs (n = 29) and the “low responders” (n = 29) showing limited response to
the first vaccine dose with BTN162b2. A combination of both NMR and LC-MS strategies
was adopted in order to gain the maximum amount of information. Our goal was to define
metabolic fingerprints and discover putative biomarkers of immune response to BTN162b2
that will allow us to predict a-priori reduced response to the vaccination from Day 1. The
metabolomic alterations that were identified can highlight predictive biomarkers for the
prediction of response and severity of inflammation, enabling the design of more effective
strategies towards increasing our protection against SARS-CoV-2.

2. Materials and Methods
2.1. Plasma Samples

Plasma samples (stored at −80 ◦C) of 58 healthy individuals after vaccination with the
BNT162b2 COVID-19 vaccine on days 1 (before the first vaccine shot), day 22 (before the
second vaccine shot) and at 90 days (3 months after the first vaccine shot) were analysed.
Samples were selected based on the level of NAbs against SARS-CoV-2 at Day 22 and were
discriminated into A. “low responders” (NAbs < 40%, n = 29) and B. “high responders”
(Nabs > 70%, n = 29). Participants aged from 25 to 68 years old; 40 of them were women
(nLOW = 17, nHIGH = 23) and 18 were men (nLOW = 12, nHIGH = 6).

2.2. Chemicals and Reagents

The chemicals that were used for NMR and UPLC-MS analysis are described in
Supplementary Materials S2 (Section S1.1).

2.3. NAbs Measurements

SARS-CoV-2 NAbs were measured using the FDA-approved cPassTM SARS-CoV2
NAbs Detection Kit (GenScript, Piscataway, NJ, USA). Values were provided as percentage
of SARS-CoV-2 binding inhibition. According to the FDA, a high NAbs titer for this specific
method is considered any value above or equal to 68%.

2.4. Plasma Sample Preparation

The plasma sample preparation is described in Supplementary Materials S2
(Sections S1.2.1 and S1.2.2 for NMR and UPLC-MS analyses, respectively).

2.5. Data Acquisition

All NMR experiments were performed using the NMR Bruker AVANCE III 600 MHz
Spectrometer (Bruker BioSpin GmbH, Karlsruhe, Germany). Details are presented in
Supplementary S2 (Section S1.3.1).

For the MS analysis, a Waters ESI-QTOF Premier mass spectrometer (Waters Corp.,
Milford, CT, USA) coupled to an Acquity UPLCTM system (Waters Corp., Milford, MA,
USA) was used. Details are presented in Supplementary Materials S2 (Section S1.3.2).

2.6. Data Processing

The NMR and MS data processing is described in detail in Supplementary Materials S2
(Sections S1.4.1 and S1.4.2, respectively). Detailed description of the “SMolESY” (Small
Molecule Enhancement SpectroscopY) algorithm is provided in [15].

2.7. Study Approval

All participants were enrolled in a large prospective study (NCT04743388) evaluating
the kinetics of anti-SARS-CoV-2 antibodies after COVID-19 vaccination in healthy subjects.
The study was approved by the Institutional Ethics Committee of General Hospital Alexan-
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dra, Athens, Greece (Institutional Review Board Protocol ID: 900/24-12-2020) in accordance
with the Declaration of Helsinki and the International Conference on Harmonization for
Good Clinical Practice. All participating individuals provided written informed consent
prior to enrolment in the study.

3. Results
3.1. Cohort Characteristics

The demographic characteristics of the 58 healthy individuals and the comparison
of the characteristics of the two groups (“high” and “low” responders) included in this
study are shown in Table 1. At Day 1, the NAbs were low for all participants as expected,
while they reach a high level for all participants in the third month. Relatively high levels
of NAbs (>30%) were observed in two participants at Day 1, putatively due to previous
infection. However, the “high responders” group exhibits higher levels of NAbs (mean,
median, 1st and 2nd quantiles) at all time points. Detailed NAbs measurements of all
individuals are provided in Table S1.

Table 1. Demographic characteristics and number of antibodies for the participants enrolled in this
study for each of the “Low” and “High” response groups.

High Responders Low Responders

No. Observations 29 29

Gender

Female 23 17
Male 6 12

Age

Minimum 27 25
Maximum 64 68

1st Quartile 33 51
Median 45 58

3rd Quartile 54 64
Mean 43.79 54.86

Standard deviation 11.99 12.15

NAbs titers, Day 1

Minimum 0 0
Maximum 43.753 25.64

1st Quartile 5.363 4.142
Median 14.607 9.076

3rd Quartile 23.955 12.762
Mean 14.888 9.55

Standard deviation 11.474 6.916

NAbs titers, Day 22

Minimum 72.027 6.971
Maximum 98.23 38.146

1st Quartile 76.894 22.859
Median 81.742 30.383

3rd Quartile 86.179 34.703
Mean 82.9 27.531

Standard deviation 7.412 8.663

NAbs titers, 3 Months

Minimum 78.478 41.33
Maximum 98.036 96.997

1st Quartile 93.266 78.567
Median 96.682 84.074
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Table 1. Cont.

High Responders Low Responders

3rd Quartile 97.328 91.331
Mean 94.349 82.04

Standard deviation 4.9 13.909

3.2. NMR Results
3.2.1. Metabolite Identification

In total, 41 known metabolites were identified in the plasma NMR spectra including
several amino acids, organic acids, alcohols and sugars involved in core biochemical
processes. Detailed chemical shifts of all annotated metabolites and respective multiplicity
of peaks are provided in Table S2, while spectral annotation is also shown in Figure S1.

3.2.2. Correlation of NMR Metabolic Features with Immune Response

Spearman correlation between the NMR metabolic features measured on the first day
of vaccination with the levels of NAbs after 22 days revealed an association of baseline
metabolite levels with the vaccine-induced immune response. The data were adjusted for
age and gender and highlighted a panel of metabolites, including mainly amino acids,
that were related to vaccination efficacy, independently of the two major confounders (age
and gender). In more details, out of the 6555 examined 1D CPMG NMR spectral bins
reflecting the levels of low molecular weight metabolites, 33 were significant at FDR 95%
(p-value < 2.29 × 10−4) (Figure 1A).

Among these, 27 were assigned to known metabolites including L-histidine, L-phenylalanine,
L-glutamine and 3-methylhistidine (3-MH) (Table 2).

Table 2. Metabolites associated with response at first dose at FDR 95% confidence level
(p-value < 2.3 × 10−4). The partial Spearman correlation between response and each NMR fea-
ture was adjusted for age and sex. Significant spectral areas that were assigned to a known metabolite
along with the partial correlation coefficient (r) and smallest associated p-value is shown. Index is the
numbering used in Figure 1. Positive r indicates direct association with high response at first dose.

Metabolite Peak ppm
Range Index

ppm with
Smallest
p-Value

p-Value Partial
Correlation r

L-Histidine [7.739–7.812] 3 7.772 2.49 × 10−6 0.5824
L-Histidine [7.041–7.069] 3 7.052 1.71 × 10−6 0.5899

L-Phenylalanine [7.400–7.446] 5 7.422 6.03 × 10−5 0.5096
L-Phenylalanine [7.306–7.345] 5 7.333 1.12 × 10−4 0.4933
L-Phenylalanine [7.359–7.387] 5 7.38 1.56 ×1 0−4 0.4842

L-Histidine;
L-Phenylalanine

Overlapping
area 3/5 3.955 1.67 × 10−5 0.5410

3-Methylhistidine [7.649–7.677] 4 7.653 4.40 × 10−4 0.4541
3-Methylhistidine [6.944–6.996] 4 6.951 5.84 × 10−5 0.5105

L-Glutamine [2.092–2.153] * 14 2.136 2.66 × 10−5 0.5300
L-Glutamine [2.428–2.470] 14 2.431 8.60 × 10−5 0.5004

* ppm range overlapping with L-glutamic acid.
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Figure 1. Correlation of NMR metabolic features with immune response. (A) Manhattan-type plot 
showing the analysis of the 6555 CPMG NMR features with response at day 22. The signed −log10(p-
value) is derived from Spearman correlation analysis with adjustment for age and sex. The dotted 
lines represent the threshold after multiple Bonferroni testing correction (blue line, p-value < 1.8 × 
10−5) or FDR (black, p-value < 2.3 × 10−4), and the red dots represent the data points that remain 
significant after FDR. The horizontal axis is the NMR chemical shift (in ppm). In the upper panel, 
the 58 spectra (cyan) and their means (red) are depicted. Associations with (i) L-histidine (His), L-
phenylalanine (Phe) and 3-methylhistidine (3-MH) and (ii) L-Glutamine (Gln) are shown. (B) Box-
plots of the significant metabolites at all the 3 time points. In black, comparison of low vs. high 
responders within each time point. In orange, comparison between the three time points in the low 
responders group. In blue, comparison between the three time points in the high responders group. 
(C) Longitudinal change of the significant metabolites among the three time points. Asterisks indi-
cate statistical significance using ANOVA: **** p < 0.0001, *** 0.0001 < p < 0.001, ** 0.001 < p < 0.01, * 
0.01 < p < 0.05, ns: no significance. 

Among these, 27 were assigned to known metabolites including L-histidine, L-phe-
nylalanine, L-glutamine and 3-methylhistidine (3-ΜΗ) (Table 2). 

Figure 1. Correlation of NMR metabolic features with immune response. (A) Manhattan-type
plot showing the analysis of the 6555 CPMG NMR features with response at day 22. The signed
−log10(p-value) is derived from Spearman correlation analysis with adjustment for age and sex.
The dotted lines represent the threshold after multiple Bonferroni testing correction (blue line,
p-value < 1.8 × 10−5) or FDR (black, p-value < 2.3 × 10−4), and the red dots represent the data points
that remain significant after FDR. The horizontal axis is the NMR chemical shift (in ppm). In the
upper panel, the 58 spectra (cyan) and their means (red) are depicted. Associations with (i) L-histidine
(His), L-phenylalanine (Phe) and 3-methylhistidine (3-MH) and (ii) L-Glutamine (Gln) are shown.
(B) Boxplots of the significant metabolites at all the 3 time points. In black, comparison of low vs.
high responders within each time point. In orange, comparison between the three time points in the
low responders group. In blue, comparison between the three time points in the high responders
group. (C) Longitudinal change of the significant metabolites among the three time points. Asterisks
indicate statistical significance using ANOVA: **** p < 0.0001, *** 0.0001 < p < 0.001, ** 0.001 < p < 0.01,
* 0.01 < p < 0.05, ns: no significance.
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Metabolic features assigned to L-histidine (spectral bins δ 7.772 and δ 7.052) remained
significant even after applying stricter criteria for multiple hypothesis testing using the
Bonferroni correction (p-value < 7.63 × 10−6) (Figure 1A(i,ii), blue dotted line). Detailed
results of all the associated spectral bins at FDR 95%, along with assignment, correlation
coefficients and p-values are provided in Table S3. Other amino acids also showed a
strong association with response but did not reach the level of statistical significance after
correction for multiple hypothesis testing; a positive association was observed for glycine
(p-value = 0.0012) and L-lysine (p-value = 8.9 × 10−4), while a negative association was
observed for L-valine (p-value = 0.0013). Figure S2 shows the strength and direction of effect
of the annotated metabolites on the examined outcome (i.e., the response to vaccination).
Glutamic acid showed an inverse association with glutamine levels (Figure S2, L-Glutamic
acid and L-Glutamine respectively).

We further examined the alterations in L-histidine, L-phenylalanine, L-glutamine
and 3-MH levels in the two examined groups at all 3 time points using the spectral bin
exhibiting the lowest p-value in the correlation analysis (Figure 1B). All four metabolites
were positively associated with the response to vaccination. L-phenylalanine and 3-MH
levels were significantly increased in high responders compared to low responders at
all time points, although for L-phenylalanine the difference was slightly decreased at
3 months. Moreover, although L-phenylalanine levels increased in both groups at Day 22,
they declined at 3 months. L-Histidine and L-glutamine were significantly increased in the
high responders compared to the low responders only at Day 1. L-histidine levels were also
changing across the 3 time points in the high responders, while no significant alterations
were observed in the low responders (Figure 1C). On the other hand, L-glutamine levels
were significantly increased in the low responders’ group at Day 22 and 3 months compared
to Day 1.

3.2.3. NMR Targeted Metabolite Quantification

We further quantified 22 metabolites in the NOESY spectrum using the “SMolESY-
select” platform, which enhances the resolution of small molecules. Citric acid (used as an
anticoagulant) and ethanol (only observed in a few samples) were excluded from analysis.
To normalize the effects of analytical variation in the data, we calculated the metabolic ratios
of these metabolites (20 × 20 = 400 metabolic traits). In Figure 2, the fold changes between
high vs. low responders’ group at Day 1 for each of the 400 traits are provided in a table for-
mat, where columns depict the numerator and rows the denominator of each ratio. Metabo-
lites that emerged as significant included L-glutamine, glycine, acetic acid, L-histidine,
and L-lysine. Significant ratios with amino acids in the numerator were increased in the
high responders’ group (FC > 1), in accordance with the findings from the untargeted
correlation of NMR spectral bins with NAb levels. Four metabolic ratios of glutamine
remained significant using FDR correction (p-value < 4.62 × 10−4), highlighting again the
role of glutamine in immune responses. These ratios included increased glutamine/valine
(p-value = 5.29 × 10−5), glutamine/creatinine (p-value = 9.52 × 10−5), glutamine/glucose
(p-value = 1.09 × 10−4) and glutamine/dimethyl sulfone (p-value = 3.48 × 10−4) ratios in
the high responders, indicating elevated glutamine levels in this group. Other metabolites
that were significant as ratios with the aforementioned metabolites included D-glucose,
L-lactic acid, dimethyl sulfone and L-tyrosine. The L-phenylalanine to L-valine ratio was
also increased in the high responders. The respective metabolic alterations in Day 22 and
3 months are shown in Figure S3. At 3 months, metabolic ratios of L-histidine, L-glutamine
and L-lysine in the numerator were significantly increased in the high responders’ group.
At Day 22, L-histidine emerged again as an important metabolite (8 out of the 19 ratios of
L-histidine were significant), while the strongest increase was observed for acetone.
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Figure 2. Fold-change of high vs. low responders of metabolic ratios in Day 1. Columns show the
numerator and rows the denominator of each ratio. For example, the L-Glutamine/D-Glucose ratio
exhibits a 3.49-fold increase in the high responders compared to the low responders. The changes in
the metabolic ratios found statistically significant using t-tests (p-value < 0.05) are in boxes. Asterisks
(*) indicate statistical significance after FDR correction (p-value < 4.62 × 10−4). Color coding is based
on conditional formatting of fold-change values.

3.2.4. Multivariate Analysis

To take advantage of the global nature of metabolomics, we further exploited mul-
tivariate approaches to investigate distinct metabolic fingerprints in relation to response
at each of the three examined time points. The unsupervised PCA analysis provided in
Figure S4 showed a trend for discrimination between the two groups at Day 1 and to a
lesser extent at Day 22, while this trend was not observed after three months. PCA offered
an unbiased way to detect clusters of samples that share common variation. However, due
to large inter-group variation observed in human studies (introduced by diverse lifestyle,
dietary habits, smoking status, health and medication etc.), supervised methods were
needed for optimized separations to be obtained. OPLS-DA analysis, which also eliminates
the variation in the metabolomics data unrelated to the examined outcome, showed clear
discrimination of low and high responders at all the examined time points, as shown in the
cross-validated score plots (Figure 3A). The quality parameters and prediction power at
the three time points were the following: Day 1: R2Y (cum) = 0.663 and Q2 (cum) = 0.384],
Day 22: [R2Y (cum) = 0.569 and Q2 (cum) = 0.262]; 3 months: R2Y (cum) = [0.368 and
Q2 (cum) = −0.104]. Interestingly, the obtained separation at Day 1 showed stronger sta-
tistical significance compared to the other time points, indicating that the response to
the vaccine after the second dose could have already been predicted from the plasma
metabolic fingerprint of the individual at Day 1. Poor quality parameters were obtained
in the 3 Months model. Permutation testing (n = 100 permutations) provided in Figure S5
(Permutations) also proved the validity of the Day 1 and Day 22 models. On the other
hand, permutation testing on the 3 Months model indicates low quality parameters of
the model, highlighting that the observed metabolic differences were diminished after the
second dose.
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the highest impact in the discrimination, based on the edges of the S-plot (Figure S6B). On 
the other hand, D-glucose emerged as strongly significant in this analysis, highlighting a 
gender-dependent impact for this metabolite. The model was validated through permu-
tation testing (Figure S6C). Similar results were obtained in the male cohort (Figure S7). 
However, quality parameters of the model were poorer, putatively due to smaller sample 
size. 
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analysis of CPMG spectra were attributed to macromolecules, we further analysed our 
data with 1H NMR spectra recorded with a LED pulse sequence. The LED experiment 
reduces the intensities of the small molecules, resulting in a spectrum consisting majorly 
of the broad signals of the large molecules. Therefore, it is considered more appropriate 
for the investigation of lipoproteins and lipid changes. The results from the analysis of 
LED spectra are shown in Figure 4. Spectral annotation of lipid chemical moieties is pro-
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corresponding to lipoproteins and lipid moiety signals at Day 1, as shown in the scores 
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Figure 3. NMR Multivariate Analysis. (A) Scores plots obtained from the OPLS-DA analysis of
NMR CPMG from plasma samples of high vs. low responders at Day 1, Day 22 and 3 Months. The
two groups are discriminated in all time points, with the discrimination being clearer at Day 1 and
Day 22. (B) S-plot obtained from the OPLS-DA of NMR CPMG from plasma samples of high vs. low
responders after first dose at Day 1. Spectral variables on the top-right corner (blue) are considered
significantly increased in the high responders, while those on the lower-left corner (red) are increased
in the low responders. Metabolites with p and p(corr)~0 (colored in grey) do not significantly impact
the separation. Significant spectral variables and their assigned metabolites are shown.

Detailed examination of the S-plot derived from the Day 1 OPLS-DA model was
further conducted to highlight the metabolites with the highest discriminating power at
Day 1 (Figure 3B). Spectral variables on the upper right corner (blue) were considered
significantly increased in the “High responders” group and on the lower left corner (red)
in the “Low responders” group. Assignment of these spectral features showed increased
levels of lipid chain signals in the “Low responders” group. The high responders exhibited
increased levels of several amino acids, including L-histidine, L-tyrosine, L-alanine, and
L-glutamine; L-glycine and L-lysine, organic acids including succinic acid and L-lactic
acid, creatinine, as well as increased intensities of certain fatty acyl lipid chains. Detailed
information about the spectral variables contributing the most to separation and respective
assignments are provided in Table S4. Information on lipid annotation is provided in
Table S5.

In order to examine whether the differences in the lipid profile obtained by the multi-
variate analysis were gender-dependent, we further conducted the OPLS-DA stratified by
gender. Discrimination of female low- and high-responders was observed in the OPLS-DA
scores plot (Figure S6A). The fatty acyl lipid chains and amino acids exhibited again the
highest impact in the discrimination, based on the edges of the S-plot (Figure S6B). On
the other hand, D-glucose emerged as strongly significant in this analysis, highlighting a
gender-dependent impact for this metabolite. The model was validated through permu-
tation testing (Figure S6C). Similar results were obtained in the male cohort (Figure S7).
However, quality parameters of the model were poorer, putatively due to smaller sam-
ple size.
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Due to the fact that several of the discriminative spectral variables in the OPLS-DA
analysis of CPMG spectra were attributed to macromolecules, we further analysed our
data with 1H NMR spectra recorded with a LED pulse sequence. The LED experiment
reduces the intensities of the small molecules, resulting in a spectrum consisting majorly of
the broad signals of the large molecules. Therefore, it is considered more appropriate for
the investigation of lipoproteins and lipid changes. The results from the analysis of LED
spectra are shown in Figure 4. Spectral annotation of lipid chemical moieties is provided
in Figure 4A, as well as in Table S5. Low and high responders exhibited differences
corresponding to lipoproteins and lipid moiety signals at Day 1, as shown in the scores
plot of the OPLS-DA analysis (Figure 4B). Permutation testing using 100 random changes
proved the validity of the model (Figure S8). T-testing of these spectral features revealed
statistical significance for 11 out of the 16 examined macromolecule regions (Figure 4C).
Information regarding signal assignment to each lipid class is provided in Figure S9 and is
based on statistical spectroscopy and previous literature [16].
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Figure 4. Analysis of longitudinal encode-decode (LED) spectra. (A) LED NMR spectra (n = 58)
with assignment. (B) Scores plots obtained from the OPLS-DA of high vs. low responders at Day 1
after first dose. The two groups are discriminated into (•) Low responders at Day 1 and (•) High
responders at Day 1. (C) Boxplots of the statistically significant lipids. The p-value of t-test is indicated
on the top. Lipids numbering is according to Table S5. Asterisks indicate statistical significance:
*** 0.0001 < p < 0.001, ** 0.001 < p < 0.01, * 0.01 < p < 0.05.

The glyceryl group CHOCOR (L14) from lipoprotein glycerophospholipids and tri-
acylglycerols was increased in the low responders. Low responders also exhibited in-
creased signals from unsaturated fatty acids including the methine group CH=CH (L15)
and methylene group next to double bond -CH2-C=O (L10). These signals correlated
with the =CHCH2CH= signal characteristic for the polyunsaturated fatty acids (PUFAs)
(Figure S9B). On the other hand, signals from cholesterol (L1 and L11) (free or from choles-
terol esters) were increased in the high responders. The signal of the choline head group
from sphingomyelins, lysophosphocholines and phosphocholines was elevated in the high
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responder’s group but was excluded from analysis due to overlapping with EDTA region
(Figure S9A). The peaks of the methyl groups (L2 vs. L3), the methylene groups (L4 vs. L5)
and methylene groups next to double bonds (L6 vs. L7) in the different fatty acyl chains and
lipids could not be resolved. Statistical spectroscopy and direction of effect between low
and high responders showed that peaks L2, L4 and L6 correlate with cholesterol levels (L1)
and are increased in the high responders (resembling the HDL spectrum), while peaks L3,
L5 and L7, respectively, correlate with glycerophospholipids and triacylglycerols (L14) and
are increased in the low responders. (Figure S9). Overall, these results indicate alterations
in the lipid profile of high vs. low responders. However, the NMR peaks from different
chains cannot be resolved and assigned to a distinct lipid or lipoprotein; thus, it is difficult
to conclude to a single lipid biomarker.

3.3. LC–MS Results
3.3.1. Multivariate Analysis

PCA frequently fails to produce any meaningful or appropriate clustering, as it also
occurred in the current MS data. PCA-based approaches reveal separation between group
sets only when the group variability is sufficiently greater than the variability within the
group. In the current case, using the PLS-DA approach, a clear separation between the
“low” and “high” responders’ groups was observed. The R2X, R2Y and Q2 values were
0.242, 0.863 and 0.238, respectively, employing 3 components in ESI (+), and 0.253, 0.853
and 0.247, respectively, employing 3 components in ESI (−). Permutation testing allowing
100 random permutations indicated that the PLS-DA models were reliable. The supervised
OPLS-DA model was also employed to obtain even better discrimination between the
two groups, as it separates predictive from orthogonal (non-predictive) variation. The
two groups were clearly separated in both ion modes. The R2X, R2Y and Q2 values were
0.289, 0.957 and 0.317, respectively, in ESI (+), and 0.291, 0.92 and 0.224, respectively, in ESI
(−). The PLS-DA and OPLS-DA models for ESI (−) are presented in Figure 5. Taking into
consideration the variable importance in projection (VIP) scores and the S-plot, 15 features
were selected as the most influential variables. Further efforts for the identification of
features that contribute to the differentiation of the data at Day 1 between “low” and “high”
responders were undertaken.
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Figure 5. LC–MS Multivariate Analysis. (A) Scores plots obtained from the partial least squares-
discriminant analysis of ESI (−) MS analysis from plasma samples of high vs. low responders after
first dose at Day 1 and (B) Scores plots obtained from the orthogonal partial least squares-discriminant
analysis of ESI (−) MS analysis from plasma samples of high vs. low responders after 1st dose at
Day 1. Clear clustering is observed between low and high responders: (�) Low responders at Day 1;
(N) High responders at Day 1.
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3.3.2. Annotation of the Selected Variables

An example of the feature annotation workflow that was adopted in the current
metabolomic study is presented below. The feature with m/z 634.6120 in ESI (−) and
tR = 18.99 min (ID: 634.6120_18.99) was detected in both MZmine and MS-Dial software.
Compound annotation was performed, initially, by MS-Finder, which supports MS/MS
spectra mining and provides formula prediction based on the isotope ratio and structure elu-
cidation exploiting public spectral databases such as MassBank, LipidBlast, and GNPS. For
the feature 634.6120_18.99, the formula C41H81NO3 had the higher score (score = 3.96/5.00,
with Error = −0.33 mDa) and annotated as the ceramide (Cer) d18:1/23:0 according to the
spectra matching (experimental vs. reference spectrum, score = 7.40/10). The m/z was
searched also against HMDB, LIPID MAPS and MassBank for the verification of the results.
Eventually, six compounds were annotated and presented in Table 3. The ROC curves of
the annotated features are presented in Figure S10.

Table 3. Candidate metabolites identified in low and high responders from the plasma-based
metabolomic approach obtained from both (+) and (−) ESI analyses. The features are presented as a.
m/z feature, b. tR (min), c. theoretical m/z, d. ∆m (ppm), e. possible identification name, f. possible
molecular formula, g. corresponding monoisotopic exact mass, h. trend in low responders (up or
down regulation), i. dataset (positive or negative ESI mode) and j. adducts.

m/z tR
(min)

Theoretical
m/z ∆m (ppm) Name Molecular

Formula
Exact
Mass Trend a Dataset Adduct

622.6114 18.92 622.6133 −3.05 Cer(D18:0/22:0) C40H81NO3 623.6211 ↑ ESI (−) -
646.6098 18.81 646.6109 −1.70 ESI (+) [M+Na]

634.6120 18.99 634.6133 −2.05 Cer(D18:1/23:0) C41H81NO3 635.6211 ↑ ESI (−) -
658.6120 18.96 658.6109 1.67 ESI (+) [M+Na]

594.5802 18.28 594.5820 −3.02 Cer(D18:0/20:0) C28H77NO3 595.5898 ↑ ESI (−) -

684.6241 19.39 684.6265 −3.49 Cer(D18:1/25:0) C43H85NO3 663.6524 ↑ ESI (−) [M+Na-2H]
436.2816 15.30 436.2823 −1.60 LysoPE(P-16:0/0:0) C21H44NO6P 437.2901 ↑ ESI (−) -

552.3055 14.65 552.3085 −5.33 LysoPE(0:0/24:6) or
LysoPE(24:6/0:0) C29H48NO7P 553.3163 ↑ ESI (−) -

a: (↑): up regulated in low responders.

3.3.3. Ceramides

Among the six annotated compounds, four belonged to the ceramide class. It was
observed that the levels of the detected ceramides were lower in the high responders at
Day 1 than in the low responders (Figure 6A).

The differences between the two groups were statistically significant according to the
results of the t-test; p-values were equal to 0.020, 0.003, 0.005 and 0.001 for Cer (D18:0/22:0),
Cer (D18:1/23:0), Cer (D18:0/20:0) and Cer (D18:1/25:0), respectively. Examining the levels
of ceramides between the genders, no statistically significant difference was observed
(p > 0.05) at Day 1 for all ceramides (Figure S11). In order to investigate the levels of those
ceramides after the vaccination, further data analysis was undertaken. The levels of the
four ceramides were identified in the LC-MS data after 3 months. Our study revealed that
22 days after the first dose, the levels of ceramides were again lower in high responders,
presenting almost the same trend as at Day 1 (Figure 6B). Nevertheless, no statistically
significant difference was observed between the two groups 3 months after the vaccination,
implying alteration of plasma ceramides levels over time. The p-values were equal to 0.216,
0.075, 0.685 and 0.104 for Cer (D18:0/22:0), Cer (D18:1/23:0), Cer (D18:0/20:0) and Cer
(D18:1/25:0), respectively.



Cells 2022, 11, 1241 13 of 21Cells 2022, 11, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 6. Box and whiskers plots of the detected ceramides for the low vs. high responders. (A) Day 
1: The differences were statistically significant; p-values < 0.05. (B) three months after the first dose 
(3M): The differences were not statistically significant; p-values > 0.05. Asterisks indicate statistical 
significance: *** 0.0001 < p < 0.001, ** 0.001 < p < 0.01, * 0.01< p < 0.05; ns: not significant. 

In order to determine whether the ceramide levels alterations were due to the vac-
cination, the data was analyzed separately for the two groups. Specifically, the ceramide 
levels were compared at the three time points (first dose at Day 1, Day 22 and 3 Months) 
for the low, and the corresponding levels for the high responders. For example, the results 
for the Cer (d18:0/22:0) are presented in Figure 7. It should be noted that all the studied 
ceramides followed the same trend. 

 
Figure 7. Comparison of the Cer(d18:0/22:0) levels, employing ANOVA test, among the three time 
points; Day 1 (D1), Day 22 (D22) and 3 Months (3M) for low and high responders. Asterisks indicate 
statistical significance: *** 0.0001 < p < 0.001, ** 0.001 < p < 0.01; ns: not significant. 

Figure 6. Box and whiskers plots of the detected ceramides for the low vs. high responders. (A) Day 1:
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(3M): The differences were not statistically significant; p-values > 0.05. Asterisks indicate statistical
significance: *** 0.0001 < p < 0.001, ** 0.001 < p < 0.01, * 0.01< p < 0.05; ns: not significant.

In order to determine whether the ceramide levels alterations were due to the vaccina-
tion, the data was analyzed separately for the two groups. Specifically, the ceramide levels
were compared at the three time points (first dose at Day 1, Day 22 and 3 Months) for the
low, and the corresponding levels for the high responders. For example, the results for the
Cer (d18:0/22:0) are presented in Figure 7. It should be noted that all the studied ceramides
followed the same trend.
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According to the ANOVA tests (significance level 95%), the model of the three time
points for the low responders is significant (p = 0.0003), indicating that the means differed,
whereas the model for the high responders is non-significant (p = 0.0644). Tukey’s multiple
comparisons tests were also performed in order to study further the means among the
days. The results showed that for low responders, the ceramide levels were significantly
decreased 22 days after the first dose (D1 vs. D22, p = 0.0006), but no further decrease
was observed (D22 vs. 3M, p = 0.9697). It suffices to say that the decrease of ceramide
levels was significant between Day 1 and after three months of the first dose (D1 vs. 3M,
p = 0.0013). For high responders, no statistically significant alteration was observed after
the vaccination (D1 vs. D22, p = 0.800; D22 vs. 3M, p = 0.052; D1 vs. 3M, p = 0.275). It was
observed that the levels of Cer (d18:0/22:0) were reduced three months after the vaccination
to the levels of the high responders.

4. Discussion

To the best of our knowledge the current study is the first that provides a compre-
hensive approach to metabolomic changes induced by vaccination with the mRNA-based
BNT162b2 COVID-19 vaccine and attempts to identify a potential metabolomics-based
fingerprint of response to vaccination. We observed distinct plasma metabolic profiles
among healthy individuals that had a strictly defined difference in response to vaccination
(i.e., response after first dose), as assessed by the assessment of the levels of neutralizing
antibodies (NAbs). Importantly, we used both CPMG and LED 1H NMR spectra with
information on small molecules and lipids, respectively, and an untargeted UPLC MS-based
approach offering a comprehensive coverage of the plasma metabolome.

Published data for the metabolomic changes during and after COVID-19 infection
have shown alterations in the levels of lipoproteins, amino acids, and glucose. Kimhofer
et al., used LC-MS and NMR data to show such alterations compared to healthy con-
trols. A prediction model of SARS-CoV-2 infection based on the metabolic profile was
constructed [17], employing a similar approach concerning the instrumental arrangement.
A small number of lipidomic studies have shown that alterations in the lipid metabolism,
including upregulated levels of triglycerides [18,19] and ceramides [20], also predispose
to severe COVID-19 infection. However, in the current study we have focused on healthy,
non-infected subjects who developed differential immune responses to vaccination.

Metabolomic studies have previously examined the role of metabolic regulation in
immune response to various vaccines against bacteria (e.g., M. tuberculosis) and viruses (e.g.,
influenza, variola virus), highlighting the role of purine metabolism, glycolysis, tryptophan
and other amino acid pathways among others [8]. In this study, we evaluated the plasma
metabolic alterations and differences observed between high and low responders in 58
healthy individuals vaccinated with the BNT162b2 COVID-19 vaccine. Distinct metabolic
profiles were observed and response to vaccination was associated with alterations in the
amino acid and lipid metabolism, highlighting putative biomarkers of response. Impor-
tantly, the results were consistent between the NMR and MS approaches. Interestingly, the
strongest discrimination was observed on Day 1 (prior to first dose) compared to Day 22.
This indicates that there are inherent metabolic differences in the plasma of low responders,
already detected before the first dose of vaccination, that have the potential to predict
immune response to the specific vaccine. After the 3-month period, when most of the par-
ticipants had reached a high level of immune response, these differences tend to diminish,
and no significant discrimination of individuals could be observed. This indicates that the
identified metabolic differences may reflect the state of immune status of the individual,
and the immune system’s adaptation and response. Moreover, after vaccination an intense
metabolism stage (e.g., generalized inflammation) is observed, which potentially equalizes
their metabolic status. These results pave the way to more personalized vaccination proto-
cols (i.e., people with disturbed amino acid and lipid metabolisms may be at higher need
of response monitoring).
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4.1. Amino Acid Metabolism in Immune Response

In this study, baseline levels of amino acids, mostly L-histidine, 3-MH, L-phenylalanine
and L-glutamine, were positively associated with response to vaccination. Amino acids
are tightly related to the immune response, as a large number of amino acids are uti-
lized to build antibodies and cytokines [21]. Several amino acids also pose a regulatory
role in inflammation through the activation of innate, adaptive, and regulatory immune
responses [22].

L-Histidine has been associated with immune response to acute inflammation. It
has been hypothesized that this is due to the imidazole functional group related to the
scavenging of reactive oxygen species produced in cells during acute inflammatory re-
sponses [23]. Involvement of L-histidine in immune response is also mediated through
the production of histamine. In fact, free histidine can be catabolized to urocanic acid to
form glutamate, and histidine observed in the plasma of high responders indicates an
altered histidine metabolism and a decrease in histamine supply [24]. A histamine-1 recep-
tor antagonist, rupatadine, was proposed for COVID-19 prophylaxis [25]. Histidine-rich
glycoprotein, a protein dependent on the sufficiency of dietary histidine, is involved in
immune responses [26] and was elevated in survivors of severe COVID-19 infection [27].

L-Phenylalanine is linked to immune activation as shown by increased serum levels in
sepsis and HIV-infection; however, the underlying mechanisms remain unknown. Both
L-phenylalanine and L-tyrosine are precursors of catecholamines, which are epinephrine-
like neurotransmitters that can also act on the immune system [28,29]. Increased serum
L-phenylalanine and L-tyrosine levels were observed in COVID-19 patients compared
to healthy controls [13,30] and were altered along the different phases of disease [31].
L-Phenylalanine was also proposed as a biomarker of COVID-19 severity [32]. Increased
phenylalanine levels in both severe COVID-19 and high response to vaccination may reflect
the common immune signatures between vaccine immunization and SARS-CoV2 infection,
including humoral immune response and complement activation. Moreover, vaccination
with a viral vector-based vaccine against COVID-19 led to alterations in L-phenylalanine
and L-tyrosine metabolism [14].

L-Glutamine is the most abundant amino acid in human plasma and is involved in
several core biochemical processes, including the synthesis of proteins, nucleotides and
sugars. Cells of the immune system utilize glutamine as a fuel for their proliferation and
growth. Rapid division of lymphocytes is critical for efficient immune responses [33], and
to do so they use glutamine as a nitrogen donor for the synthesis of nucleotides and energy
production [34]. Glutamine also affects the production of cytokines by monocytes and
macrophages [35] and is essential for the production of antibodies. When subjected to an
inflammatory stimulus, immune cells increase the utilization and uptake of glutamine. Due
to the beneficial effects of glutamine in immune responses, interventions with glutamine
supplements have been examined in relation to COVID-19. Glutamine supplementation
reduced the hospitalization period of COVID-19 patients [36], reduced serum levels of
interleukin-1 β, hs-CRP and tumor necrosis factor-α, and increased appetite [37]. Inclusion
of glutamine as an adjuvant in the treatment of COVID-19 patients showed a putative
synergistic effect on immune defense [37]. Glutamine deficiency and increased hyaluran
in the lungs have emerged as central metabolic characteristics that prompt COVID-19
patients to severe pathophysiology [38]. Metabolomic studies have also shown a reduced
glutamine/glutamate ratio in COVID-19 patients, indicating a metabolic rewiring of energy
metabolism and systematic implications during infection that could be clinically valu-
able [17,39]. However, since glutamine is also utilized by SARS-CoV-2 for replication,
caution should be given in glutamine supplementation during infection [40].

4.2. Lipoproteins and Lipids

Lipids are very important as key components of cellular membranes and sources or
stores of energy. Several lipids are also involved in cell signaling and can modulate immune
response and inflammation, including the synthesis of anti-inflammatory cytokines [41],
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macrophage differentiation [42] and immune cell activation [43]. On the other hand, they
can induce the synthesis of pro-inflammatory cytokines, as well as promote viral entry
into cells [12]. Dyslipidemia has been described as a risk factor for autoimmune and
inflammatory diseases [44,45], while perturbed lipoprotein levels in relation to COVID-19
were reported by several researchers since its outbreak. Decreased total cholesterol, LDL
and HDL correlated with disease severity and were proposed as predictors for the prognosis
of COVID-19 patients [46–49]. Low apolipoprotein-1 and high triglyceride levels were also
associated with disease severity [48,50]. Using an NMR metabolomics approach, COVID-19
patients were characterized by alterations in several lipoproteins (decreased total and HDL
apolipoprotein A1, low HDL triglycerides, and increased LDL and VLDL triglycerides)
using quantitative measurements of lipoprotein subfractions [17]. Cholesterol was shown
to promote the interaction of spike protein with the ACE2 receptor and facilitate the entry
of the virus into cells [51,52]. In this study, NMR resonances attributed to polyunsaturated
fatty acids, glycerophospholipids and triacylglycerols from lipoproteins discriminated
between low and high responders already before the first vaccine dose. Thus, apart from
promoting viral infectivity during SARS-CoV-2 infection, lipids and lipoproteins could
affect and predict vaccine-induced immune responses.

4.3. Role of Ceramides in SARS-CoV-2 Antibody Production

Four of the six identified compounds by the non-targeted UPLC-MS metabolomics
approach belong to the ceramide class. Ceramides are lipids composed of sphingosine and
an amide-linked fatty acid chain, varying in length within the range C14:0–C26:0 making
up sphingomyelin, one of the major lipids in the lipid bilayer. Sphingomyelin is cleaved
into ceramides by sphingomyelinase (ASM) following infection with SARS-CoV-2, with
these ceramide platforms serving as a gateway for cell infection by the virus.

Ceramides are critically involved in immune system function [53]. Ceramide levels in
human dendritic cells (DCs) are tightly regulated and their accumulation, due to inhibition
of their catabolism, sensitizes DCs to ceramide-induced cell death [54]. DCs are professional
antigen-presenting cells [55,56] and key players in innate and adaptive immune responses
against viral infections; as expected, their involvement in development of immune response
against SARS-CoV-2 infection is critical [57]. After vaccination, the mRNA contained in the
vaccine enters DCs at the injection site or within lymph nodes and high levels of the viral S
protein are produced. The DCs are activated and present the antigen (S protein) to S protein-
specific naive T cells, which are differentiated and form cytotoxic T lymphocytes or helper T
cells. Subsequently, B cells are differentiated into antibody-secreting plasma cells and high
affinity anti-S protein antibodies are produced. After the mRNA vaccination, S protein-
specific memory T and B cells as well as SARS-CoV-2 antibodies circulate, preventing a
subsequent infection [58,59]. Thus, DCs have a key role in SARS-CoV-2 antibody production
and their levels and functional capacity could be critical to the level of immune activation
and response. Accumulation of ceramides leads to DC death, and inhibits the antigen-
capturing ability and presentation of DCs [60]; thus in individuals with high levels of
ceramides, a “blunted” DC response could partially explain the lower levels of antibodies
22 days after the first vaccine dose.

4.4. Strengths and Limitations

The main advantage of this study was the combined use of the two main analytical
techniques exploited in metabolomics, NMR and MS, which offered a comprehensive
coverage of the plasma metabolome. With untargeted NMR approaches up to one or a
few hundreds of metabolites can be detected in a single run due to overlapping signals,
compared to thousands of metabolites that can be detected in MS applications due to
higher sensitivity. However, NMR results are very reproducible, and the confidence level
of annotation is high. On the other hand, MS-based approaches have higher sensitivity
and provide a wider range of metabolites with structure identification afforded by MSn

analysis. In our analysis, LED NMR experiments highlighted the effect of lipids in immune
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responses; however, these signals only provided information on the chemical moieties
present in several lipid classes and lipoproteins rather than a single biomarker. Our
MS analysis was able to provide further information regarding the affected lipid classes
and suggested plasma ceramides as biomarkers of response. Fragment fingerprinting
using MSn experiments also led to high confidence of assignment. On the other hand,
NMR provided robust and reproducible information regarding amino acid levels, further
exploiting the “SMolESY-select” platform for targeted NMR metabolite identification.
Finally, the associated metabolites were examined in three core time points of vaccination,
providing new insights on time-dependent metabolic alterations.

A limitation of our study was the relatively small size of the cohort. Considering
the variability within the low/high responders’ groups regarding gender, age, smok-
ers/nonsmokers and other lifestyle factors, subsequent studies with larger sample size may
be required to overcome within-group variability issues; however, our analyses were cor-
rected for age and gender, which are known to be implicated in vaccine-induced immune
responses. The limited size did not allow adjustment for other lifestyle factors; nonethe-
less, all the subjects were “healthy” without any known immunosuppression. However,
it is notable that the discrimination of individuals was based on the evaluation of NAb
levels, which provides a more reliable (and validated) evaluation of the humoral immune
response that is not restricted to the measurement of specific immunoglobulin subclasses.
In the current study, we have not replicated the results in independent cohorts, wherein
the significantly identified metabolites (or the candidate metabolic fingerprint) should be
further validated. Finally, further experimental work with in vitro and/or in vivo studies
are required for a causal relationship between amino acid metabolism and ceramides in
response to BNT162b2 COVID-19 vaccination to be established.

5. Conclusions

In summary, distinct plasma metabolic profiles were observed in healthy individuals
who had differential immune responses after the first dose of the mRNA BNT162b2 COVID-
19 vaccine. Our analysis highlighted the role of amino acid metabolism and the lipid profile
as predictive markers of response to vaccination while the levels of plasma ceramides
indicate that this class of lipids, along with certain amino acids, could emerge as a predictive
biomarker for immune response and severity of inflammation. Moreover, these findings
could drive the search for ways to reduce levels of ceramides via the use of ASM inhibitors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11071241/s1, Table S1: Detailed NAbs measurements of
all individuals at Day 1, Day 22 and 3 months after first vaccination. Table S2: Chemical shifts
of annotated metabolites and respective multiplicity of peaks. s: singlet; d: doublet; t: triplet;
q: quadruplet and dd: doublet of doublets; Table S3: Detailed CPMG spectral bins associated with
response at first dose at FDR 95% confidence level (p-value < 2.29 × 10−4 respectively). The partial
Spearman correlation coefficients of each significant spectral bin along with their p-values are shown.
Analysis was adjusted for age and sex. Assignment of spectral bins to known metabolites are shown;
Table S4: Spectral variables and assigned metabolites contributing the most to the discrimination
of high and low responders at Day 1 as derived from the S-plot from the orthogonal partial least
squares- discriminant analysis of NMR CPMG from plasma samples shown in Figure 4. The table
shows the number of significant spectral bins attributed to the same metabolite (# bins), as well as
the overlapping metabolites when peak overlay occurs; Table S5: Information on lipid annotation
along with Fold Change (FC) values (average levels in the low responders/average levels in the high
responders) and p-values from t-test. FC free cholesterol, CE cholesterol ester, STOCSY statistical
correlation spectroscopy, TG triacylglycerols, GPL glycerophospholipids, PUFA polyunsaturated fatty
acids, MUFA monounsaturated fatty acids, and LPC lysophosphocholines; Figure S1: (A) Aromatic
(δ 6.6–8.5), (B) aliphatic (δ 3.3–4.3; the EDTA region is not shown), and (C) aliphatic (δ 0.8–2.4) regions
of the 58 spectra (cyan) and their mean (red) (upper panels) along with corresponding Manhattan-
type plot showing the analysis of the 6555 CPMG NMR features with response as low or high levels of
NAbs (lower panels). The signed−log10(p-value) is derived from Spearman correlation analysis with
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adjustment for age and sex. The dotted lines represent the threshold after multiple Bonferroni testing
correction (blue line, p-value < 1.8 × 10−5) or FDR (black, p-value < 2.3× 10−4) and the red dots
represent the data points that remain significant after FDR. The horizontal axis is the NMR chemical
shift (δ, ppm). Histidines, phenylalanine and glutamine levels at Day 1 are positively associated with
response. 1: Formic acid, 2: Hypoxanthine, 3: L-Histidine, 4: 3-Methylhistidine, 5. L-Phenylalanine,
6. L-Tyrosine, 7. L-Threonine, 8. L-Proline, 9. Lactic acid, 10. Creatinine, 11. Unknown, 12. D-Glucose,
13. L-Alanine, 14. L-Glutamine, 15. L-Glutamic acid, 16. Glycine, 17. Acetoacetic acid, 18. Methanol,
19. Proline betaine, 20. Succinic acid, 21. Pyruvic acid, 22. Acetone, 23. Acetic acid, 24. L-Lysine,
25. L-Leucine, 26. 3-Hydroxyisobutyric acid, 27. L-Valine, 28. L-Isoleucine; Figure S2: NMR pseudo-
spectrum showing the covariance between the 6555 CPMG NMR features in the spectra of Day 1
and immune response (low vs. high NAb levels). Coloring based on the correlation coefficient, with
red indicating a strong positive correlation and blue a strong negative correlation. (A) Aromatic
(δ 8.50–5.80), (B) aliphatic (δ 4.40–3.25) and (C) aliphatic (δ 2.50–0.70) regions. The EDTA region has
been removed. The horizontal axis is the NMR chemical shift (δ, ppm). Numbering is referring to
annotation shown in Figure S1. Peaks denoted with L are lipids described in Table S5 (LED spectra);
Figure S3: Fold-change of high vs. low responders of metabolic ratios in (A) Day 22, (B) 3 Months.
The changes in the metabolic ratios that were statistically significant using t-test (p-value < 0.05) are
in boxes. Color coding is based on conditional formatting of fold-change values; Figure S4: Scores
plots obtained from the PCA of NMR CPMG spectra of plasma samples from high vs. low responders
at (A) Day 1, (B) Day 22, and (C) 3 Months. It is observed that a trend for discrimination is already
observed from Day 1, while this trend is diminished at 3 months.; Figure S5: Permutation testing
results from the OPLS-DA of NMR CPMG spectra from plasma samples of high vs. low responders at
(A) Day 1, (B) Day 22 and (C) 3 Months. In order to assess the validity of the generated classifications,
100 random permutations were performed, and the quality parameters are plotted (on the left)
along/together with R2X and Q2 of the original model (on the right). Validity of the Day 1 and
Day 22 models was proven (“random” values lower than model parameters); Figure S6: OPLS-DA
of NMR CPMG from plasma samples of female high vs. low responders at Day 1. (A) Scores plot.
The two groups are discriminated. (B) S-plot. Spectral variables on the top right corner (blue) are
considered significantly increased in the high responders, while those on the bottom left corner
(red) are increased in the low responders. Metabolites with p and p(corr)~0 (coloured in grey) do
not significantly impact the separation. Significant spectral variables and their assigned metabolites
are shown. (C) Permutation testing results (100 random permutations); Figure S7: OPLS-DA of
NMR CPMG from plasmasamples of male high vs. low responders at Day 1. (A) Scores plot. The
two groups are discriminated. (B) S-plot. Spectral variables on the up- right corner (blue) are
considered significantly increased in the high responders, while those on the down-left corner (red)
are increased in the low responders. Metabolites with p and p(corr)~0 (coloured in grey) do not
significantly impact the separation. Significant spectral variables and their assigned metabolites are
shown. (C) Permutation testing results (100 random permutations); Figure S8: Permutation testing
results (100 random permutations) from the OPLS-DA of NMR LED spectra; Figure S9: STOCSY plot
using (A) δ = 0.68 (increased in the high responders) and (B) δ = 5.21 (increased in the low responders)
as “driver peaks” [shown with an arrow]. Signal assignments were based on the fact that spectral
features exhibiting high correlation belong on the same molecule or lipid class. Numbering of lipids
is the same as in Figure 4A. (C) Loadings plot (in line format) from the OPLS-DA of NMR LED
spectra from plasma samples of high vs. low responders after first dose. Spectral variables increased
in the high responders (red) and increased in the low responders group (blue). Coloring based on
the correlation p(corr). The pq1 value refers to the weight that combines the X and Y loadings (p
and q); Figure S10: ROC curves of the annotated features; Figure S11: Box and whiskers plots of the
detected ceramides for male vs. female at Day 1. The differences were not statistically significant;
p-values > 0.05. ns: not significant.
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