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Gliomas are primary malignant brain tumors. Monocytes have been proved to actively
participate in tumor growth. Weighted gene co-expression network analysis was used to
identify meaningful monocyte-related genes for clustering. Neural network and SVM were
applied for validating clustering results. Somatic mutation and copy number variation were
used for defining the features of identified clusters. Differentially expressed genes (DEGs)
between the stratified groups after performing elastic regression and principal component
analyses were used for the construction of risk scores. Monocytes were associated with
glioma patients’ survival and exhibited high predictive value. The prognostic value of risk score
in glioma was validated by the abundant expression of immune checkpoint and metabolic
profile. Additionally, high risk score was positively associated with the expression of
immunogenic and antigen presenting factors, which indicated high immune infiltration. A
prognostic model based on risk score demonstrated high accuracy rate of receiver operating
characteristic curves. Compared with previous studies, our research dissected functional
roles of monocytes from large-scale analysis. Findings of our analyses strongly support an
immune modulatory and prognostic role of monocytes in glioma progression. Notably,
monocyte could be an effective predictor for therapy responses of glioma patients.

Keywords: monocyte, glioma microenvironment, immune infiltration, machine learning, immunotherapy,
prognostic model

INTRODUCTION

Gliomas are one of the most malignant solid cancer types, which grade 2 and grade 3 glioma are
defined as diffuse lower-grade glioma (LGG) and grade 4 glioma is defined as glioblastoma (GBM)
based on the WHO 2016 classification (1). GBM, with the highest incidence rate (3.23 per 100,000
population) in United states, accounted for the majority of gliomas (57.7%) (2). The 10-year survival
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rate of LGG is 47% whereas the median overall survival (OS)
time of GBM is less than 3 years (3). Recently, increasing
molecular markers have been identified for prediction of
glioma patient survival rate, including mutational status, and
DNA methylation (4, 5). Given that, WHO proposed an updated
grading system for CNS tumors integrating molecular diagnosis
(6). However, the inevitable tumor recurrence and drug
resistance due to the high heterogeneity of gliomas make it still
urgent to identify novel biomarkers to help illustrate the
pathological mechanism of gliomas and develop the
corresponding therapeutic strategies.

Tumor microenvironment (TME), consisting of
noncancerous cells and tumor associated biomolecules, have
become increasingly attractive as potential targets for the
treatment of gliomas (7). Accumulating evidence has
demonstrated the immunosuppressive context in TME of
gliomas, such as tumor associated macrophages (TAMs),
regulatory T cells (Tregs), cancer associated fibroblasts (CAFs),
myeloid derived suppressor cells (MDSCs), and monocytes (7,
8). Monocytes, emerged as important regulators of cancer
progression, are innate immune cells of the mononuclear
phagocyte system. Monocytes perform diverse functions that
contribute to both pro- and antitumoral immunity during cancer
development, including phagocytosis, secreting tumoricidal
mediators, promoting of angiogenesis, remodeling extracellular
matrix, and recruiting lymphocytes (8). Monocytes comprise as
many as 30-50% of all cells in GBM microenvironment (9).
Previous study has proved that monocytes closely adhere to
GBM via vascular cell adhesion molecule-1 (VCAM-1) (10).
Notably, monocytes also serve as the important source of
TAMs and dendritic cells (DCs) that shape a more permissive
TME (11). Moreover, monocyte-mediated nano drug delivery in
GBM has been proposed and proved with effective cancer cell
damage. Although several studies have highlighted the potential
roles of monocytes in tumor growth, the in-depth mechanism of
monocytes in TME and its overall prognostic value in gliomas
has not been fully elucidated due to its eventual destiny
of differentiation.

Weighted gene co-expression network analysis (WGCNA)
has been known for its ability to explore the specific genes
related to clinical traits. In this study, WGCNA was employed
to identify meaningful monocyte-related gene modules in
glioma patients. Genes within the identified module were
extracted for clustering. Machine learning including neural

Abbreviations: CDF, cumulative distribution function; CGGA, Chinese Glioma
Genome Atlas; CNA, copy number alternations; CNV, copy number variation;
GBM, glioblastoma; GEO, Gene Expression Omnibus; GO, gene ontology; GSEA,
gene set enrichment analysis; GSVA, gene set variation analysis; KEGG, Kyoto
Encyclopaedia of Genes and Genomes; LGG, low grade glioma; PCA, principal
component analysis; TGF-B, tumor growth factor-B; SNP, single-nucleotide
polymorphism; SNV, single-nucleotide variant; TAM, tumor associated
macrophage; TCGA, The Cancer Genome Atlas; TME, tumor
microenvironment; WGCNA, weighted gene co-expression network analysis;
PD-L1, programmed cell death 1 ligand; DEG, differentially expressed genes;
VCAM-1, vascular cell adhesion molecule-1; DC, dendritic cell; PAM, partition
around medoids; MSI, microsatellite instability; HRD, homologous recombination
deficiency; CTA, cancer testis antigen.

network and Support Vector Machines (SVM) was used to
validate the clustering results. Significant differentially
expressed genes (DEGs) between the stratified groups after
performing elastic regression and Principal component
analyses (PCA) were used for the construction of risk scores.
Risk scores could also predict immunotherapeutic efficiency.
These results are expected to promote the development of novel
therapeutic targets based on monocytes and provide the basis
for future research on monocytes in gliomas. Besides, given the
current shortcoming in diagnostic and therapeutic options in
GBM, the remarkable prognostic value of monocytes can better
achieve precise medicine and promote the clinical management
of GBM patients.

METHODS

Patient and Cohort Inclusion

2405 diftuse glioma samples were collected from three databases:
The Cancer Genome Atlas (TCGA), Chinese Glioma Genome
Atlas (CGGA), and Gene Expression Omnibus (GEO). For the
TCGA cohort (672 glioma samples), the RNA-seq data and
corresponding clinical information were retrieved from TCGA
database (http://cancergenome.nih.gov/). Three CGGA
validation cohorts were employed in this study, including two
RNA-seq cohorts (CGGA325 and CGGA693) and a microarray
cohort (CGGAarray). The RNA-seq and microarray data, clinical
and survival information were downloaded from the CGGA
database (http://www.cgga.org.cn). Expression matrices of
GSE108474 (414 glioma samples) were obtained from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/).

WGCNA Identifying Monocytes

Related Genes

The WGCNA package in R version 3.6.1 was used to perform
WGCNA. The association between individual genes and
monocyte densities was quantified by gene significance, and
the correlation between module eigengenes and gene
expression profiles was represented by module membership. A
power of B = 2 and a scale-free R2 = 0.89 were set as soft-
threshold parameters to ensure a scale-free topology network. A
total of seven modules were generated, and turquoise module
showing the strongest correlation was used for further analysis.
Genes within the turquoise module were thus chosen for GO
(gene ontology) and KEGG (Kyoto Encyclopaedia of Genes and
Genomes) functional enrichment analyses. Metascape (https://
metascape.org/) was also used for functional annotation of
turquoise module genes.

Delineation and Validation of Immune
Subtypes

Based on the 806 genes extracted from turquoise module, we
applied consensus clustering algorithm of partition around
medoids (PAM) to identify robust clusters of TCGA patients
(12). The cumulative distribution function (CDF) and consensus
heatmap were used to assess the optimal K value of 2. To validate
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the immune subtypes in three CGGA cohorts, we trained a neural
network classifier in the discovery cohort to predict the immune
subtypes for patients in the validation cohort based on 300
overlapped module-derived genes in TCGA and three CGGA
cohorts using R package Rcpp, RSNNS, and “e1071”. Among the
three learning functions (Quickprop, BackpropBatch, SCG),
Quickprop was used for the training. The clustering results were
further validated by SVM using R package caret and “e1071”.
Three types of models (C-classification, nu-classification, one-
classification) and four types of kernels (linear, polynomial, radial,
sigmoid) in SVM were analyzed. The combination of C-
classification and radial was found with the highest accuracy.

Genomic Alterations in Immune Subtypes
Somatic mutations and somatic copy number alternations
(CNAs) which corresponded to the cases with RNA-seq data,
were downloaded from the TCGA database. GISTIC analysis was
performed to determine the genomic event enrichment. CNAs
associated with the two clusters and the threshold copy number
at alteration peaks were obtained using GISTIC 2.0 analysis
(https://gatk broadinstitute.org).

Annotation of the Immune Infiltrating
Microenvironment

ESTIMATE was performed to evaluate the immune cell
infiltration level (immune scores) and stromal content (stromal
scores) for each sample. The enrichment levels of 64 immune
signatures were quantified by the xCell algorithm (13). The
relative fraction of 22 immune cell types in tumor tissues were
estimated using CIBERSORT algorithm (14). Gene set variation
analysis (GSVA) was performed to study GO pathways, and GO
items with p value < 0.05 were identified. Seven types of classified
immune checkpoints signaling pathways were investigated from
two previous published studies (15, 16).

Identification of an Immune-Related
Signature

Univariate Cox regression analysis was performed to determine
the differentially expressed immune genes with prognostic
significance with a p value < 0.05 between subtypes. Elastic
regression analysis and PCA were further used to calculate the
risk scores of patients. The extracted principal component 1
served as the signature score. The risk score of each patient after
the prognostic value of gene signature score was obtained by the
following calculation: XPCli - XPC1j, where i represented the
expression of genes with HR>1, and j the expression of genes
with HR<1.

Prediction of Immunotherapy Response

The IMvigor210 cohort, which is an urothelial carcinoma cohort
treated with the anti-PD-L1 antibody atezolizumab was used for
prediction of patient response to immunotherapy (16). Based on
the Creative Commons 3.0 License, complete expression data
and clinical data were downloaded from http://research-pub.
Gene.com/IMvigor210CoreBiologies. Raw data were then

normalized using the DEseq2 R package, and the count value
was transformed into the TPM value.

Construction and Validation of a
Prognostic Model

Ultimately, nomogram is a form of visualized multi-factor
regression analysis commonly used for cancer survival rate
prediction. Variables selected for construction of the
nomogram included the calculated prognostic scores, ages,
pathological stages of glioma and mutation status. Univariate
and multivariate regression analyses were also used to evaluate
the prognostic value of these factors.

Statistical Analysis

Kaplan-Meier curves with log-rank test were used to assess
survival difference between groups. The univariate and
multivariate Cox regression analyses were performed to detect
the prognostic factors. Pearson correlation and distance
correlation analyses were used to calculate correlation
coefficients. Contingency tables were analyzed by x>
contingency test. The OS and risk scores were calculated using
the R package survival and cutoff values determined. Based on
the dichotomized risk scores, patients were grouped as with high
or low risk score in each data set, and the computational batch
effect was reduced by the R package sva. Data were visualized
using the R package ggplot2. OncoPrint was used to delineate the
mutation landscape of TCGA by the maftools R package (17). All
survivorship curves were generated using R package survminer.
Heatmaps were generated based on pheatmap. All statistical
analyses were conducted using R software. P < 0.05 was
considered statistically significant.

RESULTS

Identification of Monocyte Density as a
Potential Prognostic Marker

The flow chart of our study design was shown in Figure S1A. We
sought to determine the prognostic value of monocytes in glioma
by studying the monocyte-related genes using WGCNA. After
stratifying patients by high and low median levels of monocytes,
survival analysis revealed a clear distinction between the two
subtypes in LGG, GBM, and pan-gliomas from TCGA,
respectively (Figure S1B). The expression level of monocyte
could also stratify patients in CGGAarray, CGGA325, and
CGGA693, respectively (Figure S1C). To evaluate the potential
prognostic value of monocytes, we performed WGCNA for
monocyte-specific genes. A power =2 was selected as the
software threshold for a scale-free network construction. Seven
modules were identified by clustering dendrogram (Figure 1A).
Tomplot depicting the random 400 genes within the clustering
dendrogram (Figure 1B). The correlation between the turquoise
module and xCell-defined monocytes was 0.58, indicating a
selective expression of the turquoise module in monocytes
(Figures 1C, D). Once established the turquoise module as the
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FIGURE 1 | WGCNA for the monocyte-related genes. (A) Cluster dendrogram generating gene modules. (B) Tomplot depicting the random 400 genes. (C) Hierarchical
clustering dendrogram of module. (D) Correlation analysis of modules and cell types. (E) Scatterplot demonstrating the correlation of intramodular connectivity and monocytes.
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one with the highest significance, we investigated the correlation
between the intramodular connectivity and monocytes, which
reached 0.67 (Figure 1E). Metascape revealed that turquoise-
derived genes were enriched in leukocyte migration and
mononuclear cell migration (Figure 1F). GO functional
enrichment analysis found that the genes were concentrated in
pathways involving neutrophil migration and regulation of
lymphocyte activation (Figure 1G). KEGG analysis showed
that the genes were enriched in the cytokine-receptor
interaction (Figure 1H).

We subsequently extracted 806 genes from module turquoise
by WGCNA. PAM was performed for glioma patients with the
corresponding gene expression profiles in TCGA cohort (Figure
2A). The optimal number of clusters was evaluated by
ConsensusClusterPlus package (Figure S2A). Clustering results
were most stable when the number was set to two (K=2). The
delineated groups based on the 806 genes showed distinct
patterns of clinical traits and monocyte levels with statistical
significance (Figure 2A). Survival analyses of the two clusters
confirmed an obviously lower survival probability curve for
cluster 1 (Figure 2B). PCA managed to differentiate the
samples from the TCGA dataset (Figure 2C). Subsequently,
combining the gene expression profiles from three CGGA
cohorts, 300 genes were identified from these 806 genes by
neural network to validate the clustering results (Figure 2D).
Samples were then clustered into two groups with high or low
death risk by pamr in three CGGA cohorts, respectively (Figures
S2B-D). SVM was performed for validation of the clustering as
well, which the contingency table showed the consistency in
clustering results among SVM and neural network (Figure 2E).
Survival analyses of the two clusters confirmed an obviously
lower survival probability curve for cluster 1 (Figures S2E-G).
PCA also managed to differentiate the samples from three
individual datasets (Figures S2H-J).

Clinical traits and TME Characteristics of
the Monocyte-Stratified Groups

We then proceeded to investigate the TME characteristics of the
two clusters. The expression difference of the levels of 64 cell types
in two defined subtypes were investigated in TCGA and three
CGGA cohorts (Figures 3A and S3A). It was found that increased
cells such as fibroblasts, DCs, M2 macrophages and monocytes
were related to cluster 1 with worse survival probability.
Moreover, CIBERSORT algorithm showed that the expression
of several types of immune cells including M0/1/2 macrophages,
DCs, and neutrophils were higher in cluster 1 in TCGA,
CGGAarray, CGGA325, and CGGA693, respectively (Figures
S3B, S4A, S5A, S6A). The association between ESTIMATE scores
of the immune infiltrating microenvironment, an indicator of the
cancer biological behaviour, and clusters, as well as levels of
immune cells was examined in TCGA and three CGGA cohorts
(Figures 3B and S4B, S5B, S6B). ESTIMATEScores,
ImuneScores and StromalScores were all higher in cluster 1
than in cluster 2 (Figures 3B and S4B, S5B, S6B). We then
compared the levels of several series of immune checkpoint
molecules related to antigen presentation, cell surface receptor,

coinhibition, ligand and cell adhesion between the two clusters.
Immune checkpoint markers tended to be overexpressed in
cluster 1 (Figures 3C and S4C, S5C, S6C).

The pathological gradings of glioma were also significantly
different between clusters 1 and 2 (p<2.2e-16), with a higher
gradings in cluster 1 in TCGA and three CGGA cohorts (Figure
S7A). The proportions of samples with IDH wildtype (WT) and
chromosome 1p/19q codeletion in cluster 1 were higher than
those in cluster 2 (Figures S7B, S7C), also indicating a more
malignant propensity in cluster 1. Results regarding the
proportion of patients with MGMT promoter methylation
were less universal, with data from the TCGA database
showing the most significant difference while data from the
other three databases statistically insignificant difference
(Figure S7D). The proportions of the four GBM subtypes in
clusters 1 and 2 were significantly different in TCGA (p<2.2e-16),
showing that the more malignant CL and ME subtypes
accounted for the majority of cluster 1 samples (Figure S7E).

The expression differences of hypoxia pathways in two
clusters were explored using GSVA. Investigated pathways
included cell response regulation, hypoxia-induced intrinsic
apoptosis, Hypoxia-Inducible Factor 1ow (HIF1A) and others.
These pathways were found to be more activated in cluster 1 in
TCGA and three CGGA cohorts, suggesting a tendency for cell
hypoxia, which is a universal marker for malignant tumor
proliferation, in this group (Figures S8A-D). We also
interrogated the relationship between metabolic pathways, such
as pyrimidine synthesis and sulfur metabolism, and subtypes.
The metabolic pathways were overrepresented in cluster 1,
proving a more active proliferation of glioma cells in these
samples (Figures S8A-D).

Monocyte-Enriched Group Showed More
Malignant Genomic Features

Somatic mutation analysis and copy number variation (CNV)
were performed using the TCGA dataset to explore genomic
traits of the two clusters (Table S1). A global CNV profile was
obtained by comparing the two clusters (Figure 4A and Table
§2). According to somatic mutation analysis, mutations in EGFR
(28%), TP53 (28%), PTEN (23%) and TTN (23%) were most
highly enriched in cluster 1 (Figure 4B). In comparison, IDH1
(92%), TP53 (52%), ARTX (38%) and CIC (25%) mutations were
enriched in cluster 2 (Figure 4C). Missense mutation was the
predominant gene alteration type in all these genes except for
ATRX, in which frame-shifting deletion was the most
common type.

Different types of somatic mutations, including the single-
nucleotide variant (SNV), single-nucleotide polymorphism
(SNP), insertion, deletion and intergenic region (IGR), were
analyzed using the R package. Silent, nonsense, missense,
intronic, 5 and 3’ UTR mutations were more common in
cluster 1 than in cluster 2 (Figure 5A). Among the detected
SNVs, C>T appeared to be the most common mutation in cluster
1 (Figure 5B). The T to A, Cto T and C to A mutations occurred
more frequently in cluster 1 than in cluster 2. While the
frequencies of insertion and deletion were not statistically
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FIGURE 3 | Immune characteristics of the two clusters. (A) Dendrogram correlating the levels of 64 cell types calculated by xCell and clusters in TCGA.
(B) ESTIMATEScores, ImmuneScores and StromalScores of the two clusters in TCGA. (C) Molecule levels of seven types of immune checkpoints in two clusters in
TCGA. *P < 0.05, **P < 0.001, ****

P < 0.0001. NS, not statistically significant.
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altered genes in clusters 2. Nine mutation types were exhibited.

different between the two clusters, SNPs were significantly more
common in cluster 1 (Figure 5C). The top 33 most mutated
cancer-related genes were listed in Figure 5D. Common

carcinogenic pathways were more active in cluster 1 (Figure
5E). The strongest co-occurrent pairs of gene alteration in cluster
1 were ATRX-TP53 and ATRX-IDH]I, which was in accordance
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FIGURE 5 | Genomic alterations in the two clusters. Frequency comparison according to types of mutation (A), SNV (B), INDEL and SNV (C) between the two

clusters. (D) The Forest plot listing the top 17 most mutated genes between the two clusters. (E) Demonstration of the pathways involved in cancer biology in the
two clusters. (F) The heatmap showing the concurrence or mutual exclusivity of the top 25 most mutated genes in the two clusters. *p < 0.05, *p < 0.01, **P < 0.001,
P < 0.0001. NS, not statistically significant.

with previous reports (18-20). It was suggested that acquisition
of a second cancer-related gene alteration may dictate the
development of certain tumor types, and that TP53, IDHI,

ATRX are functionally linked (Figure 5F) (20, 21). On the
other hand, the most mutually exclusive pairs were PTEN-
IDHI and EGFR-IDH1 (Figure 5F).

Frontiers in Immunology | www.frontiersin.org

April 2021 | Volume 12 | Article 656541


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

Zhang et al.

Prognostic Value of Monocytes in Gliomas

Generation of Risk Score and Its
Functional Annotation

By performing elastic net regression analysis and PCA algorithm
(Figure S9A), 33 monocyte-related genes were derived from the
300 genes and their coefficients were obtained (Figure 6A). The
monocyte-related gene signature was used to calculate risk scores
by PCA. Sankey plot revealed a high consistency between
monocyte-related clusters and risk scores (Figure S9B). The
correlation of the expression levels of 64 cell types and risk
scores was then evaluated. There was a positive correlation
between the scores and the levels of fibroblasts, M2
macrophages, DCs, and monocytes (Figure 6B). Pathways
related to macrophage activation and migration, dendritic cell
differentiation and negative regulation of T cell proliferation were
more active in the samples with higher scores (Figure 6C). In the
TGCA dataset, survival analysis demonstrated a good separation of
patients with different death risks by high and low risk scores
(Figure 6D). The prognostic value of risk scores was further
validated in CGGAarray, CGGA325, CGGA693, and GSE108474
datasets (Figure S9C). The receiver operating characteristic (ROC)
analyses with the Area Under the Curve (AUC) of 0.878 and 0.845
confirmed that risk score was a prognostic biomarker in predicting
3 years and 5 years survival status of glioma patients (Figure 6E).

Construction of a Prognostic Nomogram
Based on Risk Scores

After establishing monocyte density as a suitable marker for
survival prediction of gliomas, we further investigated its
prediction efficiency by developing a prognostic nomogram.
Combing prognostic factors, including risk scores, patient ages,
tumor grades, IDH mutation, and chromosome 1p/19q
codeletion, a prognostic nomogram was developed (Figure
S10A). In TCGA dataset, the Kaplan-Meier survival curve
demonstrated a good discrimination of survival probabilities of
the two clusters (p<0.0001) (Figure S10B). The ROC curve
confirmed the discriminative ability of this nomogram
(AUC=0.802, Figure S10C). Predicted probabilities
corresponded well with the actual one- to five-year overall
survival rates of glioma patients (Figure S10D). The efficiency
of the prognostic model was validated in CGGA 693 cohort. The
Kaplan-Meier survival curve demonstrated a good
discrimination of survival probabilities of the two clusters
(p<0.0001) (Figure S10E). The ROC curve confirmed the
discriminative ability of this nomogram (AUC=0.737, Figure
S10F). Predicted probabilities corresponded well with the actual
four-year overall survival rates of glioma patients (Figure S10G).

Monocyte-Stratified Groups Predicted
Response to Immunotherapies

High risk scores were associated with several immune checkpoint
molecules including PDCD1, PDCD1LG2, and LAG3 (Figure
7A). Except for immune checkpoint molecules, the intrinsic
immune escape mechanism was reported to include tumor
immunogenicity and antigen presentation capacity (22).
Factors associated with tumor immunogenicity was first
assessed in glioma samples from TCGA (23). High risk score

group exhibited lower microsatellite instability (MSI) and higher
level of intratumor heterogeneity (Figures 7B, C, respectively).
High risk score group presented higher silent mutation rate,
number of segements, homologous recombination deficiency
(HRD), aneuploidy score, and fraction altered that were all
crucial indicators for genomic alterations (Figures S11A-E).
Cancer testis antigen (CTA) and neoantigens were vital sources
of tumor-specific antigens, and they were both higher in high risk
score group (Figures S11F, S11G). Further, high risk score
group exhibited higher level of macrophage regulation,
lymphocyte infiltration signature score, leukocyte fraction,
TCR Shannon, and TCR richness, all of which were significant
indicators for antigen presentation capacity (Figures SI1H-L).
Six immune subtypes including Wound Healing,
IFN-y Dominant, Inflammatory, Lymphocyte Depleted,
Immunologically Quiet, and tumor growth factor-B (TGF-f)
Dominant have been previously identified across cancer types
(23). Lymphocyte Depleted, representing an immune cold
microenvironment, was more frequently observed in high risk
score group (Figure 7D). We evaluated whether risk scores were
able to predict therapeutic effects of immune blockade treatment.
High and low risk scores succeed in stratifying patients by
survival probability from the IMvigor210 cohort (p=0.012,
Figure 7E). Nevertheless, when further stratifying the patients
according to immunotherapeutic response types, the progressive
disease, stable disease and partial response groups showed
different risk scores (Figure 7F). We also grouped the
therapeutic response in a binary mode, and found that the
complete/partial response group had a higher percentage of
high scores than the stable/progressive disease group (Figure
7G). Besides, glioma patients with high risk score were less likely
to benefit from chemotherapy or radiotherapy (Figures 7H,
I, respectively).

DISCUSSION

In the present study, monocyte density was explored as a marker
for glioma prognosis by using WGCNA for the first time. Genes
derived from the module of WGCNA were used for glioma
patient grouping. Machine learning including neural network
and SVM were applied for validating the clustering results based
on monocyte. An extensive annotation of tumor genomics, TME,
clinical traits, metabolism, and hypoxia was performed for
monocyte-related patient groups. A risk score based on the
DEGs between monocyte -related clusters was generated by
PCA, with biological functions, immune subtypes, and
immunotherapeutic response associated with the risk score
being explored.

As a major population of innate immune cells, monocyte
exert its two-sided roles in facilitating tumor growth (24) and
inhibiting metastatic spread of tumor (25). Notably, monocytes
could primarily differentiate into tumorigenic TAMs, yet
monocytes could also differentiate into DCs responsible for
effective adaptive immune responses. TAMs are recruited early
during tumor formation of GBM and contribute to tumor
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regression analysis and PCA obtained 33 monocyte-related genes and their coefficients. (B) Dendrogram
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development (26). Dendritic Cell-based Vaccination has been
proved with potential therapeutic effect on GBM patient survival
(27). Moreover, monocytes closely adhere to GBM via VCAM-1
and promotes tumor invasion activity (10). In summary,
monocytes could both directly or indirectly mediate the tumor
growth and invasion of gliomas.

To explore and confirm the predictive value of monocyte in
gliomas, monocyte entity is defined by the consensus-based xCell
algorithm in the present study. The WGCNA-derived monocyte-
related genes clustered glioma patients into two groups with
distinctive clinical traits and immune characteristics. It should be
noted that even though almost all GBM patients fell in cluster 1,
some LGG patients also fell in cluster 1. Therefore, the clustering
results are more likely to reflect the similar molecular
characteristics of GBM and LGG. Patients in Cluster 1, with
worse survival, had higher level of IDH WT, 1pl19q
noncodeletion, and MGMT promoter unmethylation that all
correlated with a more malignant phenotype of glioma.
Further, patients in cluster 1 was more associated with hypoxia
and hypermetabolism, both of which correlated with the
malignancy of cancer. Immune infiltrating cells such as
fibroblasts, M2 macrophages, and DCs had higher expression
in Cluster 1. Classical immune checkpoint molecules such as
PD1, PDCDILG2, LAG3, and VTCNI all had higher expression
in cluster 1. Additionally, patients in cluster 1 had higher
ESTIMATE scores. Taken together, monocyte served as an
effective factor stratifying glioma patients with diverse clinical
features and outcomes.

The genomic alteration related to monocyte entity was then
investigated. The IDH missense mutations confer better survival
outcome in glioma patients. Nevertheless, LGGs carrying the
IDH mutations are more prone to develop into secondary GBMs,
especially when tertiary genetic alterations in oncogenes like
PIK3CA and PDGFRA occur in the same patient (28). The
present study finds that the IDHI missense mutations are
overrepresented in the cluster 2 (92%) compared with the
cluster 1 (12%), in accordance with previous findings that IDH
mutations are more enriched in LGGs than in high grade ones
(29). Likewise, EGFR, which is the most enriched mutated gene
in cluster 1 (28%) as identified by somatic mutation analysis, has
been reported to be frequently activated in GBM (30).

Based on the DEGs identified between two clusters, a risk
score calculated by 33 monocyte related genes was reached.
Monocyte related risk score showed high efficiency in
predicting patients’ 3 years and 5 years survival probability. A
nomogram incorporating monocyte further confirmed the
efficacy of monocyte as a prognostic marker.

In recent years, acumulating evidence proved that the tumor
immune microenvironment played an important role in cancer
development (31). Central nervous system was long considered
as an “immune privileged” organ due to the existence of blood
brain barrier. Currently, the discovery of lymphatic vessels has
subverted this opinion, in which immune cells could infiltrate
into the brain during tumor progression as a part of the tumor
immune microenvironment (32). We next tried to establish a
robust relationship between risk score and tumor immune

microenvironment. Glioma cells secret CCL-2 to promote the
activity of tumor-associated macrophages which suppressed the
activities of cytotoxic T cells (33). Besides, glioma cells increase
the expression of programmed cell death 1 ligand (PD-LI), a
classical immune checkpoint molecule, which induces the
immunosuppressive context and mediates the immune escape
of tumor cells (34). High risk score group tended to correlate
with more immune infiltrating cells, such as macrophages and
fibroblasts. High risk score group also expressed more immune
checkpoint molecules including PDCDI and chemokines CCL-5,
CXCL10, and CXCL9. Functional annotation of risk score further
revealed that macrophage activation, fibroblast proliferation, and
regulation of T cell apoptotic process were more frequently
occurred in glioma patients with high risk score. A series of
factors associated with tumor immunogenicity and antigen
presentation capacity such as MSI, intratumor heterogeneity,
and neoantigens were found to be highly expressed in high risk
score group. MSI has been recently reported to predict patients’
responses to immunotherapy, and has been proposed as a
promising biomarker for anti-PD-L1 therapy (35). Likewise,
intratumor heterogeneity has also been proved to influence the
outcome of immunotherapy (36). It is noteworthy that
therapeutic approaches based on neoantigens, another
biomarker in cancer immunotherapy, have been proposed to
selectively enhance T cell reactivity (22). Besides, IFN-y Dominant
and Lymphocyte Depleted immune subtypes were more observed
in high risk score group. The above findings indicated that risk
score was associated with an immunosuppressive and
tumorigenic microenvironment.

Immunotherapy, represented by anti-PD-1 therapy, has been
regarded as a promising therapeutic option in melanoma
and urothelial cancer (37-41). So far, clinical trials of
immunotherapy have not demonstrated satisfactory results in
glioma patients. Based on the IMvigor210 cohort, our analyses
showed that the high risk score group had more frequent stable/
progressive disease patients than responsive patients,
representing a worse response to immunotherapies. Based on
the CGGA693 cohort, high risk score group receiving
chemotherapy or radiotherapy was associated with worse
survival. Therefore, we hypothesized that monocyte could be
an effective factor in predicting glioma patients’ response to
immunotherapy and classical chemoradiotherapy.

In conclusion, our analyses identified a monocyte gene
signature consisting of 33 monocyte-specific genes, and
established its prognostic value in glioma. Our findings
strongly supported a modulatory role of monocytes in glioma
progression and proved that monocyte served as an effective
factor stratifying glioma patients’ survival probability. One major
limitation of this study was the lack of external real-world data to
confirm and support our findings. Another limitation was the
lack of GBM cohort for predicting the immunotherapy response,
which the tumor microenvironment in urothelial carcinoma
might be different from that in GBM. Thus, a GBM cohort was
expected to validate the efficacy of monocyte-derived risk score
in predicting immunotherapy response in the future. Moreover,
the in-depth mechanisms such as governing the differentiation of
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monocytes into protumoral or antitumoral cells in TME of
gliomas remained undermined and needed further experiment
for validation. Additionally, the underlying regulatory role of
monocyte in immune responses remained to be elucidated.
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