
entropy

Article

A Fuzzy Multiple Criteria Decision Making Approach with a
Complete User Friendly Computer Implementation

Ludmila Dymova , Krzysztof Kaczmarek , Pavel Sevastjanov * and Joanna Kulawik

����������
�������

Citation: Dymova, L.; Kaczmarek, K.;

Sevastjanov, P.; Kulawik, J. A Fuzzy

Multiple Criteria Decision Making

Approach with a Complete User

Friendly Computer Implementation.

Entropy 2021, 23, 203. https://doi.

org/10.3390/e23020203

Academic Editor: Meimei Xia

Received: 13 January 2021

Accepted: 3 February 2021

Published: 7 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, Czestochowa University of Technology, Dabrowskiego 73,
42-201 Czestochowa, Poland; dymowa@icis.pcz.pl (L.D.); krzysztof.kaczmarek@icis.pcz.pl (K.K.);
joanna.kulawik@icis.pcz.pl (J.K.)
* Correspondence: sevast@icis.pcz.pl; Tel.: +48-343-250-589

Abstract: The paper presents the generalization of the almost forty years of experience in the field of
setting and solving the multiple criteria decision-making (MCDM) problems in various branches of
a human activity under different types of uncertainties that inevitably accompany such problems.
Based only on the pragmatic intentions, the authors avoid the detailed descriptions of the known
methods for the decision-making, while instead focusing on the most frequently used mathematical
tools and methodologies in the decision-making practice. Therefore, the paper may be classified
as a special kind of illustrative review of the mathematical tools that are focused on applications
and are the most used in the solutions of MCDM problems. As an illustrative example, a complete
user-friendly computer implementation of such tools and methodology is presented with application
to the simple “buying a cat” problem, which, however, possesses all the attributes of the hierarchical
fuzzy MCDM task.

Keywords: hierarchical; fuzzy; MCDM; implementation

1. Introduction

Uncertainty is an inherent property of the decision-making problems. Even when
we deal with the two local criteria, an uncertainty is, for the most part, of a subjective
nature concerned with the local criteria relative to importance assessment. There are
different types of uncertainty that are taken into account when solving the MCDM tasks
dependent on the problem considered. Among them, the following types of uncertainty
and uncertainty focused theories in application to the MCDM should be dedicated: interval
uncertainty [1], ordinal fuzzy sets theory [2], interval-valued fuzzy sets theory [3], type 2
fuzzy sets [4] (see the recent comprehensive review in [5] and the last applications in [6]),
intuitionistic fuzzy sets [7], interval-valued fuzzy sets [8], hesitant fuzzy sets [9], Dempster–
Shafer theory of evidence [10], evidential reasoning [11], rule-base evidential reasoning [12],
rough sets theory [13] and soft set theory [14].

There are a number of papers in the literature devoted to the solution of MCDM
problems—the somewhat exotic new theories such as the L-fuzzy sets, the neutrosophic
fuzzy sets, the Pythagorean fuzzy sets, the cubic fuzzy sets and so on. Of course, they
can be considered as the innovative theories. Nevertheless, although a lot of theorems
were proven, we did not find in the literature any real-world (non-artificial) applications
of them. A similar situation was observed 20–30 years ago, when many new innovative
(but exotic) theories such as relativistic fuzzy sets and quantum fuzzy sets were discussed.
Who remembers them now? Of course, this does not mean that such new innovative exotic
theories should be discarded; on the contrary, they should be thoroughly investigated
not only from the point of view of their mathematical validity (as it is mostly done now),
but also from the point of view of their practical applicability. Nevertheless, they are not
yet mature enough to be recognized as the reliable approaches able to process an important
uncertain information. Therefore here we will not analyze such theories since this paper
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is focused strictly on the approaches that already proved their applicability. On the other
hand, we can say that the applicability-focused analysis of new innovative theories is the
main direction of our future studies.

Of course, the above short review is not comprehensive and demonstrates only a
variety of approaches used in MCDM to take into account different kinds of uncertainty.

There are many problems caused by the specificity of different types of uncertainty,
e.g., the choice of the proper operational laws in intuitionistic fuzzy sets theory, the compar-
ison of uncertain values and so on, but the common problem is the choice of an appropriate
convolution mode. The problem of the determination of local criterion weights is most
often solved using a pairwise comparison matrix, although the methods based on the
estimation of the local criteria reliability are applied as well. The hierarchical MCDM prob-
lems are usually solved using the well-known analytic hierarchy process (AHP) [15,16],
which unfortunately possesses too many disadvantages. We have experience in the use
of different types of uncertainty in MCDM, and our contributions to the solution of these
problems are partially presented in [17–43].

Nevertheless, our experience, accumulated during almost forty years practice of
development and implementation of the MCDM support systems in Russia, Belarus and
Poland [44,45], allows us to conclude that in practice there are relatively few situations
when it is necessary to take into account these complex types of uncertainty. Often this
does not mean that they do not really exist objectively, but the decision makers and the
experts involved do not always have the necessary knowledge and skills to identify and
formalize them.

Therefore, we should recognize that the vast majority of publications of an applied
nature in the field of MCDM are based only on the use of ordinary fuzzy sets. Additionally,
it is important that according to our observations and our own experience, objectively there
is a huge amount of research in the field of fuzzy MCDM which cannot be published in
order to keep trade secrets.

Therefore, the aim of this paper is to present the selected set of mathematical tools
and methodologies that proved their effectiveness and reliability in the solution of MCDM
problems during our (and not only our) many years of practice. Thus, we want to share
our experience with those who have encountered MCDM problems and should choose
the appropriate mathematical tools for their solutions. As a consequence, the paper can
be classified as an unusual practice-oriented review of such selected tools. Of course,
a considerable number of them are already presented in the literature, but here we represent
them while focusing on their ability to build jointly complete systems for MCDM support.

It is important that such practical approaches do not prevent the presentation of some
relevant new results and methods.

Now we are able to present a selected set of mathematical tools that can be used to
formulate and solve most of the real-world MCDM problems. Some of them, e.g., pairwise
comparison matrices used to get local criterion weights, are well known. The other tools
we have developed, such as the generalization of convolution modes, are not so popular
although could to be very useful in practice providing consensus solutions. We can say
the same about our approach to the aggregation of hierarchical structures of local criteria.
In this paper, we present these selected tools using the seemingly toy example of “cat
buying” problem, which, however, turns to be a simple, but complete fuzzy hierarchical
MCDM problem. The solution procedure will be presented by the screenshots of the
friendly computer system we have developed for the solution of such MCDM problems. It
should be emphasized that the choice of the “cat buying” example was due to the desire to
use as an illustration some compromise between academic rigor and the specificity of the
real-world problem. In any case, we hope that this example will be understandable to all
readers. Of course the presented software may be successfully used for the solution of a
relatively wide range of MCDM problems, not only those in pet shops.

We hope this will convince the practitioners that creating valuable and complete
software for the hierarchical fuzzy MCDM support is not so difficult a problem.
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Concerning the originality of this paper, we can say that it first presents a new special
kind of illustrative review of the selected mathematical tools that are focused on the
applications and most used in the solution of the MCDM problems, and this approach to
reviews can be treated as an innovative one. The main contribution of this work is the
justified (also based on the authors’ 40 years of experience) selection of mathematical tools
able to build in their synthesis reliable systems that can be used for the solution of fuzzy
hierarchical MCDM problems in a broad range of fields.

The rest of the paper is organized as follows. In Section 2, the selected set of mathe-
matical tools that have proven their effectiveness for solving MCDM problems is presented
with the remarks concerned with their usage. Section 3 illustrates step by step the software
we developed using the screenshots of the solution of a hierarchical, fuzzy MCDM “cat
buying” problem. Section 4 concludes the paper with some remarks.

2. The Basic Concepts and Mathematical Tools Used

Based on our knowledge and therefore in a somewhat debatable way, the genesis and
actual structure of uncertainty theories with their links may be (not completely) presented
as in Figure 1.
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Figure 1. The proposed linked structure of modern uncertainty theories (under discussion).

We have contributed to the development of some of them (marked by the blue color in
Figure 1) in the context of the MCDM problems. It is seen that the more general Dempster–
Shafer theory of evidence (DST) generates particularly many (asymptotic) cases of the
second order theories. We have successfully used this generalizing ability of DST for the
generalization of Atanassov’s intuitionistic fuzzy sets [28], interval-valued intuitionistic
fuzzy sets [21], hesitant fuzzy sets [23] and fuzzy logic [22] in the framework of DST. This
allowed us to avoid the limitation and shortcomings of the more frequently used second
order theories (intuitionistic, hesitant, etc.) and enhance the performance of the methods
developed for the solution of the MCDM problems. Hence, we can state that we are familiar
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enough with the modern uncertainty theories, and contributed to their development and
applications in the field of MCDM.

Nevertheless, here we will deliberately limit ourselves to only considering the classical
fuzzy type of uncertainty as the most used in practice.

Therefore, here we will present only our approach to the solution of the MCDM
problems, which provided valuable results in solving the different real-world problems we
met in our practice. To make reading the paper easier and for a better understanding of
our approach, its structure reflecting the enlarged implementation is presented in Figure 2.
The components of this structure are described in detail in the corresponding subsections below.

 

Creating a hierarchical structure of local criteria 

(interface) 

 

Formalization of 

fuzzy local criteria 

(interface) 

Building a matrix 

of local criteria 

pairwise 
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(interface) 

Choosing a method 
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Local criteria ranks 

calculation 
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Calculation of the final, generalized by hierarchy 

levels  assessment of  alternatives 

Numerical implementation of mathematical 

operations with fuzzy data 

Figure 2. The enlarged structure of the proposed methodology and an implementation of MCDM.

The above structure (sometimes somewhat extended) we have used to solve MCDM
problems, e.g., in budgeting [37,43], in steel selection [36], in logistics [19,44], in stock [35,36,38],
in stock level 2 quotes [30], currency trading systems [22] and in type 2 diabetes diagno-
sis [25,32] (here we cite only the papers published in the most reputed journals). Hence,
we can say that the proposed approach performs well in the broad range of applications in
different fields from technology and logistics to finance and medicine.

2.1. The Local Criteria Mathematical Formalization

When a set of local criteria and their hierarchical structure are established, a more
complex stage of their mathematical formalization begins. Probably the first approach to
formalize local criteria free of the limitations of classical utility theory, e.g., such that a utility
must be a non-decreasing function, was the concept of desirability function introduced
by E.C.J. Harrington [46] in 1965. This concept was primarily focused on the solution
of multiple criteria optimization problems. The desirability function may be defined as
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follows. For each value of optimized variable, a desirability function assigns the value
lying in the interval [0,1] to the admissible values of this variable—zero for a completely
undesirable value of the variable and 1 representing a completely desirable or ideal value.
The specific type of desirability functions is set out by the decision makers based on their
subjective perceptions. By aggregation of partial desirability functions (usually using the
geometric mean operator) taking into account their weights, a global criterion for the
quality of the process is constructed, the maximization of which delivers the optimum.
This approach is currently successfully used for the optimization in different fields (see,
e.g., the overview in [47]), especially in planning experiments when searching for the
optimal conditions. It has been used most successfully used in optimizing the processes of
chemical technology, material processing, metallurgy and a number of other industries.

Almost simultaneously, in 1965 year, L.A. Zadeh introduced the cornerstone concept
of his new “fuzzy sets theory”, i.e., the definition of a membership function [48]. In the
framework of decision-making and optimization problems, the context and even formal
definitions of desirability and membership functions were equivalent until 1970 when
the seminal paper by Bellman and Zadeh [49] devoted to decision-making in a fuzzy
environment was published; the fuzzy set theory and its conceptual and mathematical
formalism were primarily applied to deal with mathematical objects of a linguistic nature.
Since then, a growing number of studies in the field of fuzzy and extended fuzzy opti-
mization and decision-making problem solutions were released. Meanwhile, Harrington’s
method was not supported by attractive new concepts and constructive mathematical
tools, and therefore it was not so widely developed. Currently it is used, rather, as a useful
practical technique for optimal planning in industrial experiments when searching for the
optimal conditions.

On the other hand, the main attraction of the fuzzy sets theory is that it allows a
decision maker to use more of the different types uncertain information in the problem
formulation and its solution. Therefore, hereinafter we will use the membership functions
to formalize fuzzy local criteria, as these functions are based on the more fruitful semantics
of the fuzzy sets theory rather than the desirability functions.

The formalization of a membership function in practice usually is not a difficult prob-
lem. In many cases, in the production quality management the technological instructions
may serve as a direct method to build membership functions of the product quality criteria.
For example, according to such an instruction, the value of the product’s quality parameter
should be in the interval of admissible values and this interval may be naturally assumed to
be the support of the trapezoidal fuzzy membership function. On the other hand, the value
of quality parameter should be, if possible, in the interval of the best parameter values
included in the interval of the admissible values.

Obviously, the interval of the best parameters values may serve as the top of the
trapezoidal fuzzy membership function. In a similar way, the triangular, rectangular, right
and left trapezoidal membership functions representing local criteria may be formalized.
Hence, the most used in the MCDM shapes of membership functions are presented in
Figure 3.

In practice, we can meet the extremely competent experts or the decision makers
who can draw more complex membership functions (of course convex ones and with
one maximum equal to 1). However, they often cannot clearly explain why the function
should look so difficult. It is interesting that the typical answer to such questions is
something like that: “After working in my workplace for 15–20 years you would draw the
same thing yourself”. In general, this is not surprising, since the long term experience of
experts and their developed intuition, accumulated largely subconsciously—due to the
properties of human thinking—are more easily transmitted graphically than verbally. This
is a remarkable feature of the fuzzy set theory, i.e., an ability to process the information
presented even on the intuition based or graphical levels.
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Figure 3. The most used types of membership functions representing local criteria.

2.2. The Calculation of Local Criteria Relative Importance

We can say that if a decision maker told you that in the MCDM problem at hand
the local criteria have a same importance, this rather means that he/she is not competent
enough. In our practice, we met such equally important local criteria only in the textbooks
(also in our books and some our papers for purely methodological purposes). Meanwhile,
the choice of relative importance (weights) of local criteria is usually a more difficult task
for a decision maker than the local criteria formulation. However, if he/she has problems
with the ranking of to say 10 criteria, he/she usually can easily compare the pairs of them.
It also turns out that decision makers are much more willing to give verbal assessments of
relative importance in pairs of compared criteria while avoiding numerical estimates. This
is an inherent property of a human thinking. Such observations served for T. Saaty [15] as
a methodological basis for the introduction of the so-called linguistic pairwise comparison
matrices, which in turn are a cornerstone of the famous analytic hierarchy process (AHP).
We will consider the AHP as a whole in Section 2.4; here we focus only on the practical
features of using the linguistic pairwise comparison matrices to calculate the weights of
local criteria.

The fist step is the linguistic pairwise comparison matrix building.
The best practice is to obtain primarily from a decision maker the verbal assessments

of relative importance of local criteria pairs. The reason behind this is as follows.
It is established that when we ask a group of experts to scale or rank some known

objects, they usually provide practically coinciding verbal estimations. No wonder, since
these experts learned from the same textbooks and articles used in the field. However,
if we can get them to provide numerical estimates (which is usually not easy to do), there
will be no consensus in the resulting assessments [50].

It has long been established that generally people prefer words to numbers [51]
so that the use of verbal equivalents is considered to be beneficial for the recipients of
expert information who do “not feel confident in handling numbers and react negatively
to mathematical formulae” (p. 447) [52]. Therefore, people are willing to give verbal
estimates, avoiding if possible numerical ones, in which they are usually not very sure.
This empirically justified fact is well known in applied psychology and often used in
practice, e.g., in marketing studies [50].

This is easy to explain. The fact is that “At first there was a Word” (The Holy Gospel of
Jesus Christ). Numbers were invented much later and during the last 4–5 millennia people
simply did not have time to really learn how to handle them, and apparently that is why
they are trying hard to shift this work to their computers. Therefore, currently we prefer to
think using words, not numbers. Regrettably, the human ability to do this in the context of
our problem of verbal ranking local criteria is strongly restricted by the known empirical
law of psychology, according to which a person can normally distinguish no more than
seven plus or minus two classes or grades on some feature scale. If the number of grades is
greater, the adjacent grades start to merge and cannot be clustered confidently (see [53,54]).
Therefore, in all natural languages, the number of verbal estimates of relative importance
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does not exceed nine. They are presented in Table 1. Of course, they can be represented by
another word combinations, but their sense and number remain the same.

Table 1. The linguistic estimates of relative importance.

Verbal Estimates Corresponding Numbers

The two criteria are equivalent 1
Moderate superiority of the first parameter over the second 3
Moderate superiority of the first parameter over the second 5
Significant superiority of the first parameter over the second 7

Extremely strong superiority of the first parameter over the second 9
Intermediate estimates 2, 4, 6, 9

The conventional values on the right hand side of Table 1 are assigned to the linguis-
tic estimates to make possible the calculations that provide the real-valued weights of
local criteria.

Consider an example of filling a pairwise comparison matrix for the criteria X, Y and
Z. The linguistic estimations of relative importance are as follows:

• X is a bit stronger than Y;
• Y is somewhat stronger than Z;
• X is significantly stronger than Z.

The pairwise comparison matrix will therefore look like that in Table 2.

Table 2. An example of a pairwise comparison matrix.

X Y Z

X 1 3 7
Y 1/3 1 3
Z 1/7 1/3 1

Let the denote a component of a pairwise comparison matrix as Aij and the importance
(weight) of ith local criterion as wi. Then for i, j = 1...n.

Aij =
wi
wj

(1)

Hence, the problem is to calculate the local criterion weights based on the correspond-
ing pairwise comparison matrices.

There are many different approaches proposed in the literature to obtain these real-
valued weights. In [55], their approximate classification was presented as follows: the
eigenvector method, the least squares method (LSM), the logarithmic least squares method
(LLSM), the geometric row means method (GRM), the weighted least squares method
(WLSM) and a category of methods that involve only arithmetic operations: the row means
of normalized columns approach [15], the normalized row sum and the inverted column
sum methods [56].

The broad studies of these methods advantages and shortcomings were presented
in the literature for the case of real-valued pairwise comparison matrices [57] and for
the fuzzy-valued matrices as well [55,58]. Nevertheless, because really we have only an
approximate equality in expression (1), the best criterion of pairwise comparison accuracy
can be formulated as follows [57]. Let (w1, w2, ..., wn) be the vector of unknown local
criterion weights. In real situations, the elements of the pairwise comparison matrix
generally are not accurate due to the fact that they reflect the subjective opinions of experts.
Under these conditions, the vector of approximate values of local criterion weights wi, i =
1 to n can be obtained as a vector minimizing the functional F = ∑n

i=1(∑
n
j=1(Aij − wi

wj
)2).
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Therefore the desired values of w1, w2, ..., wn were found from the solution of the following
optimization task:

F =
n

∑
i=1

n

∑
j=1

(Aijwj − wi)
2 → min;

n

∑
i=1

wi = 1. (2)

Based on a large number of experimental data, it was shown in [59] that the method
(2) (LSM) seems to be the best one as it provides the minimal final (optimal) values
of F. Nevertheless, sometimes the simplest row means of normalized columns Saaty’s
method [15]

w
′
i = n

√√√√ n

∏
j=1

Aij, wi =
w
′
i

∑n
i=1 w′i

(3)

provide the results acceptable from the practical viewpoint [59].
This opinion concerned with the accuracy of the approximate approach (3) seems to be

an unduly optimistic one. Therefore, to get a numerical estimation of the inaccuracy of the
simplified approach (3) we have used the known example of the private house evaluation
from the book [60]. The corresponding pairwise comparison matrix is presented in Table 3.

Table 3. The private house evaluation local criteria pairwise comparison matrix.

The Parameters of House Quality T
he

H
ou

se
Si

ze
s

C
on

ve
ni

en
ce

of

B
us

R
ou

te
s

Su
rr

ou
nd

in
gs

A
ge

of
th

e
H

ou
se

Ya
rd

M
od

er
n

Eq
ui

pm
en

t

G
en

er
al

C
on

di
ti

on

Fi
na

nc
ia

lC
on

di
ti

on

The house sizes 1 5 3 7 6 6 1/3 1/4
Convenience of bus routes 1/5 1 1/3 5 3 3 1/5 1/7

Surroundings 1/3 3 1 6 3 4 6 1/5
Age of the house 1/7 1/5 1/6 1 1/3 1/4 1/7 1/8

Yard 1/6 1/3 1/3 3 1 1/2 1/5 1/6
Modern equipment 1/6 1/3 1/4 4 2 1 1/5 1/6
General condition 3 5 1/6 7 5 5 1 1/2

Financial condition 4 7 5 8 6 6 2 1

An informative indicator of the reliability of determining ranks is the so-called incon-
sistency index (I) of the matrix of pairwise comparisons A, which gives information about
the degree of violation of the numerical (cardinal Aij = wi/wj) and transitive (ordinal)
consistency of the expert estimates. If there is poor consistency, we recommend searching
for additional information and reviewing the data used to build the scale. The inconsistency
index for each matrix is calculated based on an estimate of the maximum eigenvalue of the
matrix emax.

It can be approximated as follows: first, each column of judgments is summed; then the
sum of the first column is multiplied by the value of the first component of the normalized
priority vector; the sum of the second column is multiplied by the second component;
and so on. This results in the value emax. The inconsistency index I is calculated using the
expression I = (emax − n)/(n− 1), where n is the number of elements to compare. For a
reciprocal matrix, emax ≥ n always. The lower the inconsistency index is, the better the
consistency of expert opinions. Based on the inconsistency index I, an indicator of the
inconsistency ratio is calculated: IR = I/C, where C is the value of the random inconsistency
of the matrix of the same order.
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The average values of the inconsistency C for random matrices of different orders
obtained by random selection of quantitative judgments from the scale 1/9, 1/8, 1/7, ..., 1,
2, ..., 9 and the formation of an inverse-symmetric matrix, are shown in the Table 4:

Table 4. The random inconsistency values.

Matrix Size 1 2 3 4 5 6 7 8 9 10

Random consistency 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

In [60], it was found that in order to consider the expert judgments consistent, the value
of the IR must be less than 10%. In some cases, an IR value of up to 20% can be considered
acceptable for practice with large dimensions of matrices. If the IR goes beyond these limits,
then experts need to review the task and check their judgments.

In relatively large matrices, starting from 7 to 9 elements, it is often difficult to achieve
a high level of consistency. However, the level of consistency should be consistent with the
risk associated with working with inconsistent results. For example, when comparing the
effects of drugs on the body, due to the special responsibility of the task, it is necessary to
have a very high level of consistency.

The Table 5 shows the results of calculating the ranks, I and IR, for the example of
ranking criteria for evaluating a house (Table 3) obtained using the two compared methods.

Table 5. Ranks and inconsistency indexes in the house selection problem.

Local Criteria Ranks Ranks
of House Quality (Approximate Method (3)) (Optimization Task (2))

The house sizes 0.173 0.137
Convenience of bus routes 0.054 0.054

Surroundings 0.188 0.121
Age of the house 0.018 0.030

Convenience of bus routes 0.031 0.046
Modern equipment 0.036 0.046
General condition 0.167 0.089

Financial condition 0.333 0.475
emax = 9.669 emax = 9.387

I = 0.238 I = 0.198
IR = 0.169 IR = 0.14

As follows from the analysis of the results, the values of ranks obtained using the
compared methods may differ considerably. At the same time, the consistency of estimates
when using the optimization method (2) is only somewhat better than that obtained using
the approximate method (3). This indicates the advantages of the method based on solving
the optimization problem (2) in comparison with the traditional approximate approach.
Meanwhile, although the ranks of local criteria obtained using the compared methods
significantly differ (see Table 5), they provide the same qualitative rankings of local criteria.
Hence, we can say that the approximate solution (3) may be used in practice, however,
with great caution.

In many practically important cases, for example, when comparing the degrees of sig-
nificance of individual characteristics in the overall assessment of health status and ranking
the criteria of the quality of investment projects, often the groups of experts participate in
the construction of pairwise comparison matrices. In such situations, the components of the
source pairwise comparison matrices will contain some sets of numbers. The simplest way
to solve the problems that arise in this case—operating with the average values of these
sets of numbers—obviously leads to a significant loss of information. Therefore, depending
on the quantity and quality of the source data, they can be aggregated in the form of crisp
or fuzzy intervals for each component of the pairwise comparison matrices. The use of
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frequency distributions is usually impractical due to the lack of data necessary for their
construction, and the inability to perform arithmetic operations directly with them. It is
clear that the results of calculating the relative importance (weights) based on the matrix of
pairwise comparison with components being intervals or fuzzy numbers will be intervals
or fuzzy numbers as well.

To solve this problem, we consider a method based on the fuzzy extension of the
approximate method (3). The use of an approximate method as the basis in this situation
is justified by the very fuzzy, approximate nature of the source data and by the natural
requirement of matching to some extent the accuracy and mathematical complexity of the
method with the degree of uncertainty of the source data.

In practice, the method is reduced to replacing a real-valued component in the expres-
sions (3) with their interval or fuzzy representations. The fuzzy extension of the expressions
(3) requires performing operations of fuzzy interval multiplication, addition and division,
and raising the fuzzy value to the power of an arbitrary fuzzy number. Since these op-
erations are well presented in the numerous textbooks, here we present only the power
operation with both operands being fuzzy values, which is seldom shown in manuals,
but often happens to be very useful in the solutions of MCDM problems.

A generalized method for raising a fuzzy value to a fuzzy degree is based on the
general methodology for transforming fuzzy numbers to the sets of intervals on α-cuts and
interval extension of functions.

Let µ and a be fuzzy intervals; then in accordance with the rules of partitioning into
α-cuts and interval extension of functions, raising a fuzzy interval µ to a fuzzy degree a
can be represented as µa =

⋃
α µaα

α , where µα =
[
µ

α
, µα

]
, aα = [aα, aα] are crisp intervals

corresponding to α-cuts.
In accordance with the general methodology for constructing interval arithmetic,

the expression for a crisp interval that is the result of rising µα to the degree aα is represented
as follows:

µaα
α =

[
min

{
µaα

α
, µaα

α
, µaα

α , µaα
α

}
, max

{
µaα

α
, µaα

α
, µaα

α , µaα
α

}]
. (4)

One of the most troublesome problems of the interval and fuzzy arithmetic is the
so-called excess width effect, i.e., the rapid growth of the widths of the resulting intervals
with an increase in the number of arithmetic operations in the problems being solved.
Despite the fact that the growth of interval widths in this case seems inevitable and
corresponds to the general methodological provisions, in practice this phenomenon can
lead to unacceptable results.

In this regard, the developed method of fuzzy calculation of the local criteria ranks
was tested.

The matrix of pairwise comparisons presented in Table 3 was used as a real-valued
basis. Further, all elements of this matrix were replaced with fuzzy numbers. The average
values x of fuzzy numbers were equal to the values of the elements of the original matrix.
The fuzzy values in all cells of the matrix had the same maximum width equal to 0.1
(Figure 4).

The results of calculation of the final fuzzy local criterion weights in comparison with
the calculated real-valued weights are presented in Table 6.

As can be seen from the Table 6, the maximal widths (x4 − x1) of the resulting fuzzy
weights in all cases are significantly less than the maximal widths of the original fuzzy
values (see Figure 4), which are elements of the fuzzy matrix of pairwise comparison. It is
clear that the index IR is also implemented in the fuzzy form.
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Table 6. The calculated fuzzy weights and inconsistency index—inconsistency ratio (IR).

Number of Criterium Real-Valued Weights
The Reference Points of the Fuzzy Values

Corresponding to Fuzzy Weights
x1 x2 x3 x4

1 0.173 0.155 0.171 0.179 0.197
2 0.054 0.050 0.060 0.065 0.076
3 0.188 0.131 0.145 0.152 0.169
4 0.018 0.013 0.018 0.020 0.026
5 0.031 0.028 0.034 0.037 0.044
6 0.036 0.033 0.040 0.044 0.052
7 0.167 0.147 0.163 0.171 0.189
8 0.333 0.325 0.344 0.355 0.380

OC 0.189 −0.006 0.148 0.230 0.411

   𝜇 

    1 

     0

x−0.05 x−0.01    x     x+0.01 x+0.05 x

Figure 4. The fuzzy extension of the pairwise comparison matrix components.

The results of testing the developed method for calculating fuzzy weights indicate
that there is no effect of intensive growth in the width of the final fuzzy values. There is
a completely opposite effect of narrowing the widths of intervals, which at first glance,
contradicts the original methodological principles of operating with uncertainties. How-
ever, a more detailed analysis of the situation shows that in cases where the operations of
exponentiation and division lead to a decrease in the usual crisp values, applying them
to fuzzy values built on the basis of the original real-valued ones reduces the widths of
the results.

You can see that the very semantics of the word “division” implicitly implies some
kind of splitting, reduction by obtaining smaller parts of a whole, etc. It is interesting to
note that the subtraction operation in the conventional interval and fuzzy arithmetic always
leads to an increase in the widths of the final values, which, however, is not surprising if
we analyze the situation of subtracting a negative value from a positive one.

Summarizing, we can say that usually obtaining local criterion weights is so uncertain
a problem that the use of more complex methods (see, e.g., [58,59]) than that based on the
direct fuzzy extension of (see (3)) seems to be methodologically unjustifiable.

Additionally, taking into account that the practical need for fuzzy weights appears
very rarely, we did not include the fuzzy extended approximate method (3) in our set
of selected mathematical tools for the solution of the fuzzy MCDM problems and use it
separately whenever such a need really arises.

Therefore, as a basic tool for calculating real-valued local criterion weights, we use the
method (2) based on the nonlinear optimization task.

Like any well-known numerical method, it has a number of disadvantages identified
in the course of its intensive applications.

Here we consider the most important and discussed one—the rank-reversal problem.
This problem is that when a new criterion or new alternative is added to the MCDM
problem, the ranking of the previous old group of criteria may be violated. Currently there
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is not a consensus concerned with the positive vs. negative treatment of this phenomenon,
as some scholars based on surely reasonable arguments consider it as natural and desirable
one, while others completely reject it (see discussion in [61]).

There are some approaches proposed in the literature that allow a decision maker
to complete avoid ly the rank reversal effect [62,63]. Nevertheless, these approaches are
not well matured yet, and currently all their inevitable shortcomings and limitations are
not known.

On the other hand, based on our—but not only our—experience, we can say that when
using the model (2), we tackle it with the rank reversal effect very rarely and often when
it may be explained in a reasonable way. Therefore, here we will use a reliable, proven
by practice method for calculating the local criterion weights based on the nonlinear
optimization task (2).

2.3. Local Criteria Convolution Problem

Once all local criteria and their weights are established, to obtain the generalized
numerical estimation of an alternative they should be convoluted (aggregated) into the
general criterion using an appropriate approach.

There is a general perception that it is impossible to formulate the best local criteria
convolution (aggregation) method for all possible cases. It is stated in [64] that the choice of
an appropriate convolution is the problem dependent on the context of the issue. However,
there are general theoretical and practical reasons to assess the relative reliability of the
most commonly used local criteria convolution methods (see [41,43]).

To simplify the analysis, let us consider a two-criterion situation. Let X and Y be the
local criteria with their corresponding membership functions µX and µY, and the weights
wX and wY. Then, for each a ∈ A, where A is the set in the space of alternatives, the values
of functions µX(a) and µY(a) can be calculated. Of course, a is not a variable in the usual
sense. Rather, it is a label assigned to the corresponding alternative.

Among the many possible convolution methods, the most commonly used are the
following three, which can also serve as a basis for constructing more complex convolutions:

• Additive convolution (weighted sum):

Cadd = wXµX + wYµY; (5)

• multiplicative convolution (Harrington [46], 1965)

Cprod = µwX
X ∗ µ

wY
Y ; (6)

• min convolution (maximal pessimism) (Yager [65], 1979)

Cmin = min(µwX
X , µ

wY
Y ). (7)

The extension of the above definitions to the case of more criteria is obvious and
therefore not presented.

To simplify the analysis, let us consider the situations of the continuous sets of al-
ternatives. For this case, we have proved in [45] the theorems that are valid for both
decision-making and multi-criteria optimization problems. These theorems are graphically
illustrated in our papers [41,43].

It is shown in [41,43] that the weighted sum convolution (5) provides counter-intuitive
illogical results in the Pareto region. Slightly better results may be obtained using the
multiplicative convolution (6). The min type convolution has no such drawbacks and
should be recognized as the best one. This is the most cautious approach, as in the
optimization task we are seek the best solution in the most pessimistic scenario.

To clarify the features of the convolutions methods (5)–(7) consider the following example.
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In many countries, the degree of air pollution D is assessed as follows:

D =
1
n

n

∑
i=1

αi
Ci

Ci(per)
,

n

∑
i=1

αi = n, (8)

where Ci is the current concentration of the chemical harmful to health; Ci(per) is the
maximum permissible concentration of this chemical according to the standard. αi is the
degree of harmfulness of a given chemical.

Unacceptable air pollution conditions occurs when D > 1, under acceptable conditions
0 ≤ D ≤ 1.

Let us say there is an ice cream factory in the center of the town. It causes almost
no air pollution (all). However, in the industrial refrigerator, the chemical NH3 is used
as a refrigerant. Suppose there was a refrigerator failure and the concentration of NH3
suddenly increases and is 15 times greater than CNH3(per). For simplicity of the analysis,
let us assume that αNH3=1. Then from the above expression (8), given that n = 60, we get
D = 0.4. We can see that formally, based on (8), the ecological situation in the vicinity of the
ice cream factory is still better than in the vicinity of the chemical plant. However, there is
no one who can judge this (everyone in the vicinity of the ice cream factory died because
NH3 is a deadly, potent poison).

As follows from the analysis presented in [66], today the additive convolution is not
used at all in ecological research precisely as the result of the problems detected above.

In other applications, there are situations less spectacular that are also evidence of the
additive convolution’s shortcomings.

It can be said that it was precisely this kind of circumstance that caused the classical
theories of decision-making (e.g., utility theory) to be treated today rather as branches of
pure mathematics.

On the other hand, let us deal with stock trading. Suppose at some time we analyze
the ten indicators used and nine of them are greater than zero, generating the buy signal to
varying degrees, whereas the remaining indicator is equal to zero, suggesting to refrain
from buying.

Obviously, the convolutions (6) and (7) will be equal to zero and therefore we should
reject buying.

On the other hand, in the case under consideration, we have nearly ten times more
arguments in favor of buying than in favor of refusing it and should (of course with some
risk) buy the stocks. It is easy to see that this decision is supported by the value of type (5)
general criterion.

It is worthy to note that the important property of the additive convolution (5) is that
the nearly zero values of some criteria may be completely re-compensated by the large
values of the other ones.

Based on the above analysis, we can say that this property may be treated as positive
or negative dependent on the MCDM problem at hand.

In many practically important cases, we do not have reliable information for a priori
selection of the convolution type. Hence, the problem of the generalization of the convo-
lution modes and finding an appropriate consensus solutions arises. The corresponding
technique developed to solve these problems will be presented in Section 2.5.

2.4. Hierarchical Sets of Local Criteria

The hierarchical structure of local criteria often occurs even in the relatively simple
MCDM tasks. The tremendous number of the publications devoted to the use of the analytic
hierarchy process (AHP) [15] with its modifications for the solution of the hierarchical
MCDM problems causes the dominance of this very controversial method over other
approaches that deserve no less attention.

We avoid here the detailed description of the AHP since it may be found in the
numerous textbooks, and therefore focus on its problems and the presentation of our
method which is free of these problems.
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There were many weaknesses and shortcomings of the AHP revealed during its
intensive applications to the solution of the MCDM problems. Here we present only some
of them which seem to be more important.

The most debatable problem is the rank reversal effect (described above in Section 2.2)
that likely occurs, e.g., when nearly the same new alternative as an existing one is included
to the set of analyzed alternatives.

It was proved in [67] that this effect does not appear if the multiplicative modification
of the AHP is used. As it is shown in [68], the core of the rank reversal problem in the AHP
is the local criterion weights interpretation.

Despite of this, the AHP with some modifications is accepted by many scholars as
the most reliable MCDM method. Generally the AHP may be treated as a fully additive
convolution method.

The compensatory property of this convolution (see Section 2.2) may be treated as
a positive or negative one in different situations, but most researchers consider it as a
non-desirable one as it may provide the loss of important information.

One of the disadvantages of AHP is that the number of pairwise comparisons needed
to implement the method often happens to be very large (n(n− 1)/2), so the AHP seems
to be an expensive task. Another important witness to the AHP method is the artificial
limitation based on the use of a restricted the 9-point scale. The AHP method cannot work in
the situations when, e.g., an alternative A is 15 times more important than alternative C due
to the scale’s restrictions. To simplify the basic AHP method and to reduce its shortcomings,
in [69] proposed a modified procedure using a 2-point-scale. In this approach, the decision
maker only specifies whether a criterion is more or less important or equally important
than another compared one.

In [70], a negative feature of the AHP that may be a stronger shortcoming of the
method than the rank reversal affect was discussed. It is based on the observation that the
addition of indifferent criteria (for which all alternatives perform equally) provides a great
alteration of the aggregated alternatives evaluations with undesired results. Therefore,
in the relatively complex hierarchies (with more than three levels), the rank reversal effect
may appear. Since in almost all applications of the AHP, the set of criteria is not fixed a
priory, but is variable and is built based on the reasons of appropriateness and simplicity,
likely almost all applications of the AHP are potentially flawed.

The known approaches to the improvement of the AHP do not, however, violate its
basic structure. This structure imposes a joint reassessment of all alternatives when adding
each new one.

According to the opinions of many researchers, it is this feature of the AHP that is the
main cause of the rank reversal effect. Nevertheless, it is clear that if we will accomplish
the assessments of alternatives only separately, the causes of the appearance of this effect
disappear. Therefore, in our work [43], we proposed an appropriate and simple enough
scheme of the local criteria hierarchy representation.

The developed method allows us to build in a natural way the multi-leaf and hierar-
chical structures, the scheme of which is shown in Figure 5.

Each higher-order criterion is constructed on the basis of lower-order local criteria
being aggregated or by a combination of convolution methods. A general mathematical
expression for the calculation of criteria at the intermediate levels of the hierarchy can be
presented in the following form:

LCn−1,in−1 = Fn−1,in−1

(
LCn−1,in−1,1, ..., LCn−2,in−1,min−1

, wn−1,in−1,1, ..., wn−2,in−1,min−1

)
, (9)

where Fn−1,in−1 is the operator of local criteria convolution; LCn−2,in−1,min−1
are the inter-

mediate local criteria at the corresponding levels of the hierarchy and wn−1,in−1,1 are the
relative weights corresponding to them.
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As follows from the way the structure is built, LCn−1,in−1 always take values between 0
and 1. At the lowest level of the hierarchy, the direct membership functions of the primary
local criteria determined by the basic quality parameters are used:

LC1,in−1,in−2,...,i2 = F1,in−1,in−2,...,i2
({

µj
}

,
{

wj
})

. (10)

Figure 5 shows a general way of creating the multiple criteria hierarchical structures
within the developed method.
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Figure 5. General scheme of building a hierarchical structure of local criteria.

The building a hierarchical system using the developed method consists of the follow-
ing stages:

• Creating a “tree structure” for the problem under consideration;
• Mathematical formalization of the membership function at the lowest level;
• Filling in the matrix of pairwise local criteria comparisons at the lowest level;
• convolution of local criteria at the lowest level;
• Filling in the matrix of pairwise comparisons of local criteria at intermediate levels of

the hierarchy and assessing their relative weights;
• Computing the global assessment of aggregated criteria by convoluting them from

bottom to top.

The value of generalized criterion LCn is the final evaluation of the considered alter-
native obtained independent on the other alternatives at hand.

The developed method of multiple criteria hierarchical evaluation of alternatives can
also be interpreted in terms of fuzzy logic.

Consider an example of two-level hierarchy presented in Figure 6.
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Figure 6. Two-level MCDM problem.

Using fuzzy logic terminology, the decision process based on the calculation of the
value of the generalized criterion GC, can be represented as follows:

if LC1 is C1 and LC2 is C2 then GC = AGG(w1, w2, LC1, LC2)
e.g. : AGG = min

{
LCw1

1 , LCw2
2
}

; AGG = w1LC1 + w2LC2; AGG = LCw1
1 ∗ LCw2

2
if x11 is A11 and x12 is A12 then LC1 = AGG(µ11(x11), µ12(x12), w11, w12)
if x21 is A21 and x22 is A22 then LC2 = AGG(µ21(x21), µ22(x22), w21, w22)

e.g. : AGG = min
{

µw21
21 (x21), µw22

22 (x22)
}

;
AGG = w21µ21(x21) + w22µ22(x22);
AGG = µw21

21 (x21) ∗ µw22
22 (x22),

(11)

where w1, w2, w11, w12, w21 and w22 are the weights of the corresponding local criteria.
In the above expressions (11), the conditions of type x11 is A11 can be interpreted

linguistically as “x11 meets the conditions of the criterion A11”. In this case, the value
µ11(x11) is the degree of fulfillment of these conditions or the “degree of satisfaction” of
the criterion A11. The obtained value of LC1 is the already calculated degree of satisfaction
of the intermediate local criterion LC1 with respect to the premises of the local criteria
A11 and A12. Based on these intermediate calculations, finally the general evaluation GC
is obtained.

If the parameters x11 and x12 are fuzzy then the values of the local criterion LC1 will
be fuzzy as well.

In terms of decision-making reliability, the defuzzification operation is not only unnec-
essary, but even not desired, especially at intermediate levels of the hierarchy. By avoiding
defuzzification at the highest level of the hierarchy, we obtain estimates of alternatives
GC(ali) in the form of fuzzy values ( ali is the competing alternative, i = 1, ..., n). The best
alternative should maximize the fuzzy value of GC(ali). To find this alternative, we use a
probabilistic approach to compare fuzzy numbers (see our paper [40]).

Of course, the aggregation operator AGG is constructed in such a way that the max-
imum degree of satisfaction of the criterion C1 corresponds to the value C1 = 1 and the
minimum degree of satisfaction of this criterion is zero value.

An important difference in our approach to the solution of the hierarchical fuzzy
MCDM problems from the commonly used AHP is that in contrast to our approach, the
AHP does not allow us to use the fuzzy representations of the local criteria described
in the Section 2.1. Sometimes this is exposed as an advantage of the AHP providing an
opportunity to solve the MCDM problems even in the cases when there is no quantitative
information of local criteria. Nevertheless, in the most of cases we met in our practice,
the membership functions representing fuzzy local criteria were built based directly on the
commonly used information, e.g., technological instructions in the industry (see Section 2.1
for the simple method of such fuzzy criteria building) or diagnostic protocols in the
medicine. Therefore, the artificial exclusion of this kind of important quantitative informa-
tion (fuzzy criteria) only in order to be able to use AHP looks very unjustified. Hence, we
can say that the direct use of fuzzy criteria in our method is its most important advantage
compared to the AHP.
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As there are many possible convolution (aggregation) methods proposed in the litera-
ture, the problem to develop an appropriate method for the generalization of convolution
modes that may provide a consensus solution of the MCDM problems, naturally arises.
The developed method of the generalization of convolution modes based on the synthesis
of the type 2 and level 2 fuzzy sets is presented in the next subsection.

It is worth emphasizing that only independent local criteria are considered in the
framework of the developed approach. However, we have observed that in practice,
for example, when making a decision to buy or sell securities on the basis of the market’s
technical analysis data, the relative importance of the criteria depends on the degree
of execution. At the same time, experienced traders formulate this problem verbally,
for example, as:

if µ11(x11) is medium and µ12(x12) is low then w11 ≈ w12,
if µ11(x11) is large and µ12(x12) is low then w11 >> w12.

(12)

It follows that practice imposes the use of the synthesis of decision-making and fuzzy
logic methods, but this is outside the scope of this paper.

2.5. Generalization of the Local Criteria Convolutions

In practice, it is usually impossible to establish a priori the best in the considered
situation method for convolution of local criteria. Besides such methods may generate sub-
stantially different rankings of alternatives . Therefore the problem of formal mathematical
generalization of convolution methods allowing us to obtain the compromise solutions of
the MCDM tasks becomes very urgent [71].

So in [72], for this purpose, the tools of the possibility theory are used. In [73], the so-
called weighted averaging operation is proposed. The method based on the Yager’s t-norm
is developed in [74]. The method of hierarchical aggregation is developed in [75,76].

Currently, the generalization of convolution modes using the so-called γ–operator is
widely used [64,77]:

β =

(
∏

i
mi

)1−γ(
1−∏

i
(1−mi)

)γ

, i = 1, 2, ..., n; 0 ≤ γ ≤ 1, (13)

where mi is a membership function of the local criterion.
It is clear that this expression is based only on the multiplicative convolution. The more

general approach based on minimum, maximum and additive convolutions was proposed
in [78]:

βmixt = γ min
i
(mi) + (1− γ)

(
∑

i
mi

)
/n. (14)

The problems with this approach are that the local criteria are not weighted and the
additional information concerned with the choice of an appropriate value of parameter γ
is needed.

The expressions (14) were used in [79] for the solution of multi-level decision-making
problems. As the main problem, the lack of strict rules for choosing the parameter γ
was noted. In [80], a method is proposed that formalizes to a certain extent the choice
of γ, but it requires to get a significant amount of additional quantitative information
from the experts. It should be noted that in (14) the local criteria are assumed to be of
equal importance. It is clear that their ranking using, for example, the method of pairwise
comparisons, is a more complex and responsible task than the choice of the parameter γ.
In addition, the considered approaches do not allow us to aggregate simultaneously all
three main types of the local criteria convolutions based on the min operator, additive and
multiplicative operators.

The approaches discussed above do not allow us for the simultaneous aggregation
of all relevant criteria using combinations of min, additive and multiplicative operators.



Entropy 2021, 23, 203 18 of 28

Of course, using these operators for the generalization of convolution methods is not a
solution to the problem because the resulting generalizations need further generalizations,
etc., indefinitely.

Therefore, a method for the generalization of convolution modes based on the synthe-
sis of type 2 and level 2 fuzzy sets has been developed in our papers [41,43] to avoid the
use of the original convolution operators for their further generalization.

Then first, we briefly present the basic definitions of type 2 and level 2 fuzzy sets only
in the extent needed for the subsequent analysis.

2.5.1. Type 2 Fuzzy Sets

The concept of type 2 fuzzy sets were first introduced by L.A. Zadeh [81] in relation to
the linguistic variable presentation and further developed in [82–84].

Let X be a fuzzy set of type 2 on A. Then for every a ∈ A there is a fuzzy set on B and
there is a membership function (for a discrete set):

µX(a) =
{

Fa(bi)

bi

}
, i = 1, ..., n, (15)

which is a fuzzy set on B characterized by the membership function Fa(b). The complement
of the type 2 fuzzy set under consideration can be represented by:

µX(a) =
{

Fa(bi)

1− bi

}
, i = 1, ..., n. (16)

If X and Y are fuzzy sets of type 2 with the membership functions

µX(a) =
{

Fa(bi)

bi

}
, µY(a) =

{
da(ej)

ej

}
i = 1, ..., n, j = 1, ..., m, (17)

then the membership function of the set G = X ∪Y takes the form

µG(a) =

{
Fa(bi) ∧ da(ej)

(bi ∨ ej)

}
, i = 1, ..., n, j = 1, ..., m. (18)

Similarly for the intersection R = X ∩Y we have

µR(a) =

{
Fa(bi) ∧ da(ej)

(bi ∧ ej)

}
, i = 1, ..., n, j = 1, ..., m. (19)

For simplicity and some concretization, we do not use here a generalized representa-
tion of operations with the fuzzy sets presented by t-norms and s-norms.

2.5.2. Level 2 Fuzzy Sets

For the first time, the level 2 fuzzy sets were introduced by L.A. Zadeh [85] and then
were studied and extended in [86,87]. According to L.A. Zadeh [88], the level 2 fuzzy set is
the fuzzy set based on the support consist of usual fuzzy sets. If the elements a ∈ A are
fuzzy subsets of some other set E, then in a discretized case, the fuzzy set X of level 2 can
be represented as follows:

X =
{

µX(ai)
ai

}
, ai =

{ qi(ej)
ej

}
,

X =

{
maxi[µX(ai)qi(ej)]

ej

}
, j = 1, ..., m.

(20)
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From the last expression it follows that the degree of membership of ej to X is

µX(ej) = max
i

[
µX(ai)qi(ej)

]
, j = 1, ..., m. (21)

We will use the mathematical tools of the type 2 and level 2 fuzzy sets described
above to generalize the methods of local criteria convolution, aiming to obtain a some kind
consensus solution of the MCDM problem at hand.

Let is have Km relevant methods of local criteria convolution and Mm selected local
criteria. Let then µCi , i = 1, ..., Km be the membership function reflecting the subjective
opinions of decision makers concerned with the “proximity” of the particular ith convolu-
tion method Ci to the some “ideal” convolution method satisfying all possible criteria and
demands, which possible may not be even formulated explicitly at the verbal level.

Let us emphasize that µ(Ci) can be represented by the experts at the linguistic level,
and then µ(Ci) can be formalized in the form of the fuzzy sets. Then this “ideal” convolu-
tion method can be represented as the type 2 fuzzy set:

Cid =

{
µ(Ci)

Ci

}
, i = 1, ..., Km, (22)

where Ci denotes the used convolution method, e.g., C1 (5), C2 (6) and C3 (7).
In turn, each Ci can be presented as the fuzzy set based on the usual set of alternatives

considered. Then we have:

Ci =

{
Ci(ej)

ej

}
, j = 1, ..., Mm, (23)

where ej is the alternative, Ci(ej) is the degree of adequacy of the alternative ej with respect
to the convolution of type Ci.

Substituting (23) into the expression (22), we obtain the mathematical construction
that is simultaneously a fuzzy set of type 2 and level 2:

Cid =

{
µid(ej)

ej

}
, j = 1, ..., Mm, (24)

where
µid(ej) = max

i

(
µ(Ci) ∗ Ci(ej)

)
, j = 1, ..., Mm. (25)

Of course, the best alternative ej will be that providing the largest value of µid(ej).

2.5.3. Consider an Example

Suppose a set of four tender applications TAi, i = 1 to 4, was evaluated. Let us assume
that using the methods of the local criteria convolution, e.g., C1, C2 and C3 of the same types
as (5), (6) and (7) presented earlier, the assessments of the attractiveness of the competing
TAi were made and the results are presented in Table 7.

Table 7. The results of the tender applications assessment.

C1 C2 C3

TA1 0.28 0.03 0.37
TA2 0.07 0.02 0.92
TA3 0.599 0.240 0.85
TA4 0.444 0.08 0.60

It is not clear from the results obtained, what the tender application is the most
attractive. Of course, intuitively we can suspect that TA3 is better than the others because
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for this tender application the results of two convolutions C1 and C2 are better than the
other. On the other hand, the convolution C3 provides the greatest results for TA2. It is
seen that such an uncertain reasoning do not enough to make a final decision. Therefore,
to obtain an unambiguous result, we will use the previously presented method for the
generalization of convolution modes.

According to this method, to solve the problem of multiple criteria evaluation of the
tender applications under consideration, we should first find the coefficients of relative
reliability (weights) of the used convolution methods C1, C2 and C3. Based on the analysis
provided in [37], the following verbal assessments of the relative reliability of the considered
methods for convolution can be accepted: C3 is somewhat better than C2, whereas and C3
and C2 are definitely better than C1. Based on these verbal estimations, the corresponding
pairwise comparisons matrix presented in Table 8 was obtained.

Table 8. The matrix of the pairwise comparison of convolution modes.

C1 C2 C3

C1 1 1/8 1/8
C2 8 1 1/3
C3 8 3 1

Based on the this matrix, we the coefficients of the relative reliability of the con-
sidered methods for convolution were calculated as follows: µ(C1) = 0.07, µ(C2) = 0.35,
µ(C3) = 0.58.

Then the “ideal” generalized global convolution method can be represented as the
fuzzy set defined on the set of considered convolution methods:

Cid =

{
µ(C1)

C1
,

µ(C2)

C2
,

µ(C3)

C3

}
=

{
0.07
C1

,
0.35
C2

,
0.58
C3

}
. (26)

In turn, each of C1, C2 and C3 can be represented as the fuzzy sets in the space of the
considered tender applications:

Ci =

{
Ci(TA1)

TA1
,

Ci(TA2)

TA2
,

Ci(TA3

TA3
,

Ci(TA4)

TA4
,
}

i = 1, ..3, (27)

where Ci(TAj) is the evaluation of the jth TA by the ith convolution method.
Taking into account (26) and (27), it can be concluded that Cid is the fuzzy set of level

2. Hence, substituting (27) in (26) we get:

Cid =

{
µid(TA1)

TA1
,

µid(TA2)

TA2
,

µid(TA3)

TA3
,

µid(TA2)

TA2

}
, (28)

where
µid(TAj) = max

i

(
µ(Ci) · Ci(TAj)

)
(29)

is the final evaluation of the jth tender application TAj based on the generalization of all
three considered types of convolution.

From the expression (28) it is clear that for the final choice of the best tender application
based on the local criteria convolution and generalization of convolution modes, we should
find the tender application characterized by the maximum value of µid. Using the data
obtained as the results of the local criteria convolution presented in Table 8 and the values
of their relative reliability µ(C1) = 0.07, µ(C2) = 0.35, µ(C3) = 0.58, calculated from the
expression (29), we obtain the results presented in Table 9.
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Table 9. The final evaluations of the tender applications.

µopt

TA1 0.190
TA2 0.064
TA3 0.430
TA4 0.287

As can be seen from the Table 9, the best alternative is the tender application 3. This
conclusion confirms the previously provided (on an intuitive level) result of analysis of the
local criteria convolutions (see Table 7). However, it should be borne in mind that when
making decisions, we may encounter much more controversial situation when we will not
be able to make such a qualitative analysis. The presented method for the generalization
of convolution modes allows us to obtain the consensus solution of such complicated
MCDM problems.

3. An Example of the Hierarchical Fuzzy MCDM Problem Solution (the “Cat Buying”
Problem)

Let us consider the problem of cat shopping. This problem, seemingly trivial at first
glance, may become not so simple if there is a pet shop big enough nearby.

Then our purpose is to provide decision-making support in problems of fuzzy multiple-
criteria hierarchical choices of cats.

As to the solution of this problems, a corresponding application based on the mathe-
matical tools presented in Section 2 was developed.

Let us consider the algorithm of this application step by step based on the example of
buying a cat problem.

Figure 7 presents one of the possible hierarchies of the local criteria we may come up
with when considering the problem.

 

                      ideal eye               ideal ears    

                                                                          ideal smile 

                                                 

                                                                                                               

                                                                                                ideal internal   

                                                                                                    organs  

           ideal face                                        ideal fuzziness                                                                             ideal tail 

                                                                                                                         𝑊𝑂𝑊𝑜   

           ideal nose 

  

  

           !                                                                                                                                                             ! 
  

  

  

       ideal hart                                                                                                                 ideal leg #3 

                                                                           ideal cat capacity 

                                 ideal leg #1                                                                                    ideal leg #4 

                                                                          (0; +∞) I, pt, kg, lb 

                                 ideal leg #2 

 

 

                                                                             ideal length  

Figure 7. The possible local criteria of cat quality.

Let us comment on it little bit more. For the sake of simplicity, limit the number of
major parameters of cat’s quality to three: “fuzziness in cm”, “activity” and “weight in kg”.

Obviously, since when buying a cat we hope to get a friend, money does not matter.
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First obtain the weights of local criteria using the matrices of pairwise comparison
(see Figure 8).

 

Figure 8. The local criterion weights (ranks) and the pairwise comparison matrix.

Generally, we like fuzzy animals, so “fuzziness in cm” is our top priority. The numbers
5 and 7 in the first row of the pairwise comparison matrix (the right window in Figure 8)
mean that “fuzziness” is essentially more important for us than “activity” and considerably
more important than “weight in kg”.

On the other hand, we would like to have a playful cat. Hence, “activity” gets number
7 against “weight in kg”.

“Activity” is quite a vague (fuzzy) notion, so we separate it onto two more parameters:
overall playfulness of a cat on the scale from 0 (absolutely inert creature) to 10 (twister with
a tail), and, as a measure of laziness, the number of hours per day it spends sleeping. We
prefer passive or over-active cats to the ones that are never awake (perhaps it is dead), so
“hours a day sleeping” gets 5 against “playfulness” (see Figure 9). It is easy to see that in
this case we deal with the hierarchical structure of local criteria.

 

Figure 9. Playfulness against laziness.

The resulting ranks of all local criteria are presented in the left window in Figure 9.
Let us formalize the local criteria, representing them by the corresponding member-

ship functions.
Suppose we consider a cat’s fur to be perfect when its length is 1 cm, and we are

not ready to deal with heaps of lint, so a cat with the two-centimeter length fur will do.
The corresponding membership function for the criterion based on the fur length is shown
in Figure 10.
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Figure 10. The local criterion based on the fur length.

We can see that the provided application allows us to choose first the type of member-
ship function among those presented in Figure 3 and then establish needs in the consid-
ered case reference values (points) characterizing the concrete triangular or trapezoidal
local criterion.

Usually we love playful cats, so “twister with a tail” is our dream. The membership
function representing the criterion based on this parameter is shown in Figure 11.

 

Figure 11. The membership function of the “playfulness” criterion.

A cat sleeping more than 16 h sounds quite boring, and while remembering our
fondness for playful cats, it is not wise to wish for a cat that sleeps less than 10 h a day
(Figure 12).

 

Figure 12. The membership function of the “laziness” (“hours a day sleeping”) criterion.
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We think a healthy cat should not weigh less than 4 kg, and it may be not so good of
an idea to have a very active cat weighting more than 6 kg (Figure 13). Something more
than 10 kg is becoming plainly dangerous.

 

Figure 13. The membership function of “weight in kg” criterion.

Since different methods for convolution of local criteria may be used, to obtain the
compromise based on their generalization according the approach presented in Section 3,
their relative importance should be established. In our case, we will use three types of
convolution and the matrix of their pairwise comparison. The results are presented in
Figure 14.

It is possible to change the relative ranks of convolution methods in the generalized
criterion using the third tab “Aggregation” in the left window of application (see Figure 14).

 

Figure 14. Ranking of the convoluting modes.

Now we are ready to go shopping. Suppose in the pet shop we can choose among
the following cats: “Supercat”, “Beast”, “Berta”, “Tiger” and “Anfisa” which belong to
different races. The parameters of these cats and the resulting values of convoluted criteria
obtained using different convolutions modes are presented in Figure 15, where the results
of their generalization are shown as well (see tab “Aggregation”).
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Figure 15. The results of the evaluation of the cats.

We can see that in the considered example the compromised solution should be the
choice of “Supercat”.

The presented application can be applied not only to help us choose a cat, but for
the solutions of a considerably broad range of hierarchical fuzzy MCDM problems. The
above presentation was aimed to convince the readers that building a relatively simple but
useful and complete application supporting the solutions of the hierarchical fuzzy MCDM
problems is not so difficult a task. We hope this aim will be achieved.

4. Conclusions

This paper is based on the experience accumulated by the authors during nearly
forty years of practice focused on the development and implementation of the systems for
the solution of the MCDM problems in different firms and institutions in Russia, Belarus
and Poland. This experience was obtained in various branches of human activity, e.g., in
technology, economics, ecology and medicine, under different types of uncertainties that
inevitably accompany the MCDM problems.

By focusing on the practical aspects of the MCDM, the authors did not intend to
provide the detailed descriptions of all known methods and presented only such math-
ematical tools and methodologies that were most often applied in their practice, while
taking into account the types of uncertainty met in the concrete practical cases. That is
why the paper may be considered as a practice-oriented illustrative review of the selected
application-focused mathematical tools and methodologies most often used in the solution
of the MCDM.

Hence, this paper is directly addressed to the practitioners who meet in their practice
hierarchical fuzzy MCDM problems.

Based on the authors’ experience, it was found that in the majority of practical MCDM
problems, we have insufficient information to use more complicated types of uncertainty
than the usual fuzzy one. Often this does not mean that such complex uncertainties do not
exist objectively; the decision makers and the experts involved just do not always have the
necessary knowledge and skills to identify and formalize them.

Of course, in some relatively rare cases, the use and processing of more sophisticated
forms of uncertainty is needed and justified. It was shown that the authors considerably
contributed to the solution of such problems.

Many of the mathematical tools selected by the authors used in MCDM support are
already available, but in this paper they are considered from the point of view of their
synthesis into some general, but practical and not so complicated methodology for the
solution of the hierarchical MCDM problems in the fuzzy setting. As an illustration of each
methodology’s practical applicability, a complete user-friendly computer implementation
of the selected mathematical tools is presented with the use of the simple “buying a cat”
problem, which, however, has all the attributes of the hierarchical fuzzy MCDM task.

In Section 1, we have noted that many of new theories such as the L-fuzzy sets,
the neutrosophic fuzzy sets, the Pythagorean fuzzy sets, the cubic fuzzy sets and so on,
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undoubtedly may be treated as innovative ones. However, now they are not mature enough
and their practical applicability is not clear. Therefore, the preferred direction of our future
work will be a deep analysis of these theories not only regarding their mathematical
justifications, but mainly based on their applicability for the solutions of MCDM problems
under these innovative types of uncertainty.
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