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Abstract: Methylmercury (MeHg) causes severe damage to the central nervous system, and there
is increasing evidence of the association between MeHg exposure and vascular dysfunction,
hemorrhage, and edema in the brain, but not in other organs of patients with acute MeHg
intoxication. These observations suggest that MeHg possibly causes blood–brain barrier (BBB)
damage. MeHg penetrates the BBB into the brain parenchyma via active transport systems, mainly
the l-type amino acid transporter 1, on endothelial cell membranes. Recently, exposure to mercury
has significantly increased. Numerous reports suggest that long-term low-level MeHg exposure can
impair endothelial function and increase the risks of cardiovascular disease. The most widely reported
mechanism of MeHg toxicity is oxidative stress and related pathways, such as neuroinflammation.
BBB dysfunction has been suggested by both in vitro and in vivo models of MeHg intoxication. Therapy
targeted at both maintaining the BBB and suppressing oxidative stress may represent a promising
therapeutic strategy for MeHg intoxication. This paper reviews studies on the relationship between
MeHg exposure and vascular dysfunction, with a special emphasis on the BBB.

Keywords: blood–brain barrier; methylmercury; vascular endothelial growth factor; l-type amino
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1. Introduction

Mercury is one of the most toxic heavy metals. Mercury exists in the environment in three forms:
elemental, inorganic, and organic. Although elemental and inorganic mercury can cause human health
problems, exposure to these forms is generally limited to certain subpopulations, e.g., people working
in the manufacturing of mercury-containing drugs or dentists using dental amalgam. Methylmercury
(MeHg) is the most common and toxic form of organic mercury. In humans, mercury is readily
absorbed into the body, which has no active excretion system for this element [1]. MeHg severely
damages the central nervous system (CNS), and increasing evidence shows an association between
MeHg exposure and vascular dysfunction.

In the 1950s, industrial waste containing MeHg caused severe poisoning, the so-called "Minamata
disease" and “Niigata Minamata disease”, in Japan [2–6]. MeHg bioaccumulates through the food chain;
thus, people who ingested highly contaminated fish and shellfish were affected. Clinical manifestations
of these diseases include cerebellar ataxia, concentric constriction of the visual field, and sensory
and auditory disturbances. The specific symptoms depend on the lesions induced by MeHg, which
includes damage to the cerebellum and occipital lobes. However, the underlying mechanism of
MeHg-induced selective tissue vulnerability remains to be elucidated. Post-mortem pathological
studies of the abovementioned diseases showed petechial hemorrhage and edema in the brains of
patients with severe disability [7]. This suggests that MeHg possibly causes blood–brain barrier (BBB)
damage. Numerous studies have shown that long-term exposure to small amounts of mercury affects
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endothelial cells and may be associated with an increased risk of cardiovascular diseases [8,9]. MeHg is
found not only in industrial waste, but also occurs in nature, where it is formed through microbial
methylation of mercury. Although extensive artificial MeHg pollution has not occurred recently,
emissions of mercury into the atmosphere from human activities such as gold mining or fossil fuel
burning are increasing and are regarded as a public health concern [8,10]. Mercury may also have
adverse effects on child development and is considered one of the top 10 chemicals of major public
health concern by the World Health Organization [11].

This paper reviews studies on the relationship between MeHg exposure and vascular dysfunction,
with a special emphasis on the BBB to raise awareness of the importance of BBB dysfunction in
MeHg-induced toxicity.

2. Systemic Vascular Effects of MeHg Intoxication

In contrast to the abovementioned MeHg intoxication due to exposure to relatively high amounts,
most studies have investigated cardiovascular effects caused by long-term low-dose MeHg exposure.
One major source of continuous MeHg exposure is fish, especially large carnivorous fish such as
tuna, which bioaccumulate MeHg at high concentrations [12]. Another source is grain crops grown
on contaminated soil near gold mines [13] or coal-fired power plants [14] in developing countries.
Since the 1990s, numerous reports have suggested that long-term consumption of these contaminated
foods may cause hypertension or be associated with an increased risk of ischemic heart disease [8].
In the area around Minamata bay, where the Minamata disease outbreak occurred, the incidence
of hypertension increased during the period of MeHg exposure and subsequently decreased [15].
Numerous studies have shown a positive correlation between mercury exposure and hypertension or
cardiovascular events [16–19].

Diverse molecular mechanisms underlie these cardiovascular risks, and the most widely reported
is damage to vascular endothelial cells induced by oxidative stress produced in response to MeHg.
It is not clear how MeHg raises the production of oxidative agents, but several studies have shown
that MeHg induces both a decrease in antioxidant activity and an increase in oxidative stress.
Oxidative stress via various pathways induces endothelial inflammation, resulting in endothelial
dysfunction [20,21]. MeHg has a high affinity for sulfhydryl groups, including glutathione, and thus
can bind and inhibit several antioxidants in the blood [22–24]. Decreases in glutathione levels and
glutathione-related enzymes have been observed in animal [25,26] and human [27–29] studies. MeHg
also has a high affinity for selenium compounds, and this leads to decreased antioxidant activity of
selenium-containing enzymes, such as glutathione peroxidase [30,31]. Polymorphisms in antioxidant
genes, such as glutathione-related genes, in mercury-exposed regions have been associated with
methylmercury retention and risk of myocardial infarction [32–34]. In addition, MeHg is thought to
induce oxidative agents independently of its effects on antioxidants [35,36]. Increased oxidative agents
induce mitochondrial dysfunction through mitochondrial DNA damage and respiratory changes and
activate a positive feedback loop, resulting in the generation of more oxidants.

Endothelial cells are vulnerable to oxidative stress, which when increased by MeHg causes
endothelial dysfunction, leading to the development of atherosclerosis, thrombosis, vasospasm,
and inflammation [37,38]. Consequently, it is associated with risk of atherothrombotic diseases, such
as hypertension, cerebrovascular diseases, renal dysfunction, and acute myocardial infarction [39–43].
In addition, MeHg reduces endothelial cell formation and migration [44,45], stimulates vascular
smooth muscle cell proliferation [46], and causes platelet activation [47,48] or increases the activity of
several coagulation factors, such as factor XIII [49], resulting in a tendency toward hypercoagulation.
These effects concomitantly increase the risk of atherosclerotic vascular disease.

3. CNS Effects of MeHg Intoxication

The CNS is the organ system most susceptible to MeHg toxicity, and CNS selectivity is mediated
by the efficient transport of MeHg into the brain. MeHg interacts with and binds to sulfhydryl group
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molecules, such as l-cysteine. The MeHg–l-cysteine complex is a substrate for the l-type amino acid
transporter 1 (LAT1), which actively transports MeHg across membranes [50]. LAT1 is expressed in
various types of brain cells, including neurons, and tissue distribution studies have shown that LAT1
is expressed at higher levels in brain tissue than in other organs [51]. In vitro studies have shown
increased MeHg uptake in cells overexpressing LAT1, whereas the uptake of MeHg–l-cysteine and
MeHg cytotoxicity were attenuated after LAT1 knockdown [52].

Several mechanisms underlie the toxicity of MeHg towards neuronal cells, including its affinity
for sulfhydryl groups. MeHg interacts with sulfhydryl groups of tubulin in microtubules [53,54],
which are important in CNS development, and thus inhibits their organization. MeHg also affects
gamma-aminobutyric acid receptors by its action on sulfhydryl groups [55] and modifies the
N-methyl-d-aspartate receptor system [56,57]. However, the most extensively studied and confirmed
mechanism is related to the oxidative stress induced by MeHg [58–60], which is one of the reasons
why MeHg primarily affects the brain. The brain consumes oxygen at a high rate and is a rich
source of fatty acids and metals, and therefore is more prone to oxidative stress. MeHg decreases
cellular antioxidant activity by directly interacting with antioxidants or selenium. Neurons have more
limited defense functions against oxidative stress than other brain cells, such as astrocytes. Therefore,
neurons are vulnerable to oxidative stress and are considered to be impaired by oxidative stress in
various diseases, including cerebrovascular disease [61,62], Parkinson’s disease [63–65], Alzheimer’s
disease [66–68], amyotrophic lateral sclerosis [69–71], and other neurodegenerative diseases. Numerous
studies have shown that the presence of antioxidant or selenium reduces MeHg toxicity both in vivo
and in vitro [72–75].

There have been several reports on the relationship between MeHg and immunoreactions.
Proinflammatory cytokines, such as interleukin-6 and tumor necrosis factor-alpha, are highly expressed
in MeHg intoxication models [76–78]. However, these reactions are commonly seen in tissues exposed
to oxidative stress; therefore, it is possible that these immune responses are responses to oxidative stress.
These cytokines stimulate microglia, leading to changes in microglial polarization and subsequent
induction of cellular damage [79].

4. MeHg Causes BBB Dysfunction In Vitro

Endothelial cells are also damaged by oxidative stress. Hemorrhage and edema are seen in the
brains but not in the systemic vessels of patients with MeHg intoxication. MeHg causes dysfunction
of systemic vessels and increased risk of ischemic heart disease or hypertension, but there are only
a few reports on associations between MeHg exposure and increased risk of cerebrovascular diseases.
These phenotypic differences in vascular dysfunction between the brain and systemic vessels may
be caused by structural differences, e.g., vessels with or without BBB. The BBB is composed of brain
microvascular endothelial cells, pericytes, astrocytes, and a noncellular component, the basement
membrane. The differential vascular reactivity may be due to differences in the reactivity of cells that
constitute the BBB other than endothelial cells, namely pericytes and astrocytes. Pericytes surround
the endothelial cells and their contraction and relaxation regulate microcirculation [80]. Pericytes
also play an important role in vascular remodeling; for example, they secrete extracellular matrix
proteins to support vascular integrity [81–83]. Astrocytes are attached to the basement membrane of
vessels and neurons by end feet processes that extend from the cell body. Astrocytes are thought to
maintain cellular homeostasis by regulating water, ion, and amino acid balances through interaction
with neurons and endothelial cells [84–86]. Astrocytes have high levels of antioxidants, including
glutathione-related enzymes, which may be suppressed by MeHg intoxication [87,88].

The BBB controls the selective delivery of molecules from the blood to the brain parenchyma.
Disruption of the BBB allows inappropriate molecules or cells to penetrate the brain, causing serious
damage. It has been hypothesized that when inflammatory cells and cytokines infiltrate the brain
parenchyma, uncontrolled inflammatory responses might occur and injure the brain tissue around
the vessels. This has been considered a potential pathological mechanism in several diseases, such
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as cerebral ischemia, viral encephalitis, and traumatic brain injury [89–91]. Dysfunction of any of the
three cell types of the BBB, which play different critical roles in maintaining vascular integrity, can
impair the barrier function. MeHg passes the BBB mainly via LAT1 on endothelial cells [1]. Similar to
all other endothelial cells in the body, brain endothelial cells are impaired by MeHg-induced oxidative
stress. MeHg inhibits the proliferation of endothelial cells [44,92] by reducing the expression of
fibroblast growth factor-2 [93]. The expression of vascular endothelial growth factor (VEGF) and VEGF
receptor-1/-2 in endothelial cells is upregulated after MeHg exposure [94]. VEGF, which is important
for endothelial cell migration, proliferation, and maturation, induces hyperpermeability of vessels,
resulting in vascular leakage and edema [95].

Pericytes also express LAT1, and they are relatively more vulnerable to MeHg than endothelial
cells because they express lower amounts of protective sulfhydryl-containing molecules [96].
Pericyte contraction is induced by oxidative stress, leading to BBB breakdown and blockage of
the microvascular blood flow [97]. Pericytes secrete hyaluronan, one of the extracellular matrix
components. Hyaluronan has strong water retention ability and regulates the water content of the
extracellular fluid. After MeHg exposure, hyaluronan secretion from pericytes is increased [98], which
might be one of the causes of brain edema seen in the brains of patients with MeHg intoxication.

Astrocytes have high antioxidant capacity and protect neurons from oxidative stress. However,
astrocytes are also subject to oxidative stress as they are vulnerable to oxidative stress when cultured
with neurons. Astrocytes show higher uptake of MeHg and glutamate in coculture with neurons than in
monoculture, indicating that they protect neurons from toxicity [99]. In addition, aquaporin-4 (AQP4)
inhibition by MeHg may contribute to dysfunction of astrocytes. AQP4 is a member of the aquaporin
family of water channel proteins. It is distributed predominantly in the mammalian brain and is
specifically expressed in the end feet of astrocytes [100]. Mercury is a strong inhibitor of AQP4 [101].
AQP4 regulates the cerebral water balance and is involved in edema development induced by several
neurological diseases, such as cerebral ischemia, subarachnoid hemorrhage [102,103], acute water
intoxication [104], and traumatic brain injury [105,106]. Although the exact mechanism underlying
edema formation associated with AQP4 is unclear, MeHg possibly affects the water-regulating function
of astrocytes.

A study in an in vitro BBB model using primary porcine brain capillary endothelial cells revealed
that both organic and inorganic mercury induced hyperpermeability of the BBB [107]. While in vitro
experiments suggest that BBB disruption occurs if one of the three types of cells of the BBB is
impaired, there are no reports that directly show that the dysfunction of astrocytes or pericytes induces
BBB disruption.

5. MeHg Causes BBB Dysfunction In Vivo

It remains to be confirmed whether MeHg induces BBB disruption and worsens tissue damage
in vivo. A recent study demonstrated that MeHg induces VEGF expression in cultured endothelial cells.
Increased VEGF expression results in hyperpermeability not only of systemic vessels, but also of the
BBB. BBB leakage leads to hemorrhage, edema, and microcirculation failure in a number of diseases [95].
Therefore, we investigated whether MeHg causes BBB damage by inducing VEGF expression in vivo
using a rat model of subacute MeHg intoxication [108]. The model was established by exposing
the rats to 20-ppm MeHg for up to four weeks, which caused severe pathological changes in the
cerebellum, although there were no significant differences in mercury content among the different brain
regions. BBB damage in the cerebellum after MeHg exposure was examined based on extravasation
of endogenous immunoglobulin G (IgG). The passage of IgG into the brain is usually very limited,
and immunohistochemical staining revealed that IgG was detected in the brain parenchyma only in
the MeHg exposure group (Figure 1a). In addition, the expression of rat endothelial cell antigen-1
(RECA-1), an endothelial cell marker, was reduced in the MeHg exposure group. Next, we examined
the effect of MeHg exposure on VEGF expression. VEGF expression was markedly increased in the
cerebellum and mildly in the occipital lobe following MeHg exposure (Figure 1b). We also investigated
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the cellular localization of VEGF using antibodies against the astrocyte marker glial fibrillary acidic
protein (GFAP) and RECA-1. VEGF was expressed on the outer side of RECA-1-positive endothelial
cells, and most of the VEGF-expressing cells were GFAP-positive astrocytes. In MeHg-exposed rats,
intravenous administration of anti-VEGF neutralizing antibody mildly reduced the rate of observed
hind-limb crossing signs, a standard motor functional sign considered an expression of limb ataxia in
animal models of MeHg intoxication. Thus, we demonstrated that MeHg induces BBB damage by
upregulating VEGF expression in the BBB in vivo. In our study, upregulation of VEGF was detected
only in the cerebellum. The BBB of the cerebellum is thought to be more vulnerable than that of the
cerebrum because the expression levels of tight junction proteins and P-glycoprotein, one of the barrier
proteins, are lower in the cerebellum than in the cerebrum [109,110]. Moreover, vascular permeability
reportedly is increased more strongly in the cerebellum than in the cerebrum in nonphysiological
conditions, such as inflammation [109–112]. The selective damage, hemorrhage, and edema in the
cerebellum as seen in the brains of patients may be explained in part by the specificity of VEGF
expression in the cerebellum. Increased VEGF expression causes vascular hyperpermeability, which
exacerbates several disease conditions [113–115]. Administration of anti-VEGF neutralizing antibody
suppressed the deteriorative effect in our experiment [108] as well as in these conditions [113,114].
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Figure 1. (a) Immunoglobulin G (IgG) extravasation in rat cerebellum exposed to methylmercury
(MeHg). Rat cerebellum sections from control and 4-week exposure groups (upper and lower panels,
respectively) were stained with antibody against rat IgG. Vascular hyperpermeability was evaluated by
immunostaining intrinsic IgG outside vessels in control and 4-week exposure groups. Arrows indicate
IgG extravasation in the 4-week MeHg exposure group. No IgG staining was detected outside vessels
in the control group. Scale bar: 25 µm. (b) Vascular endothelial growth factor (VEGF) expression
associated with MeHg exposure. Immunohistochemical staining was performed using rabbit anti-VEGF
antibody to detect VEGF expression in the frontal and occipital regions and cerebellum of rats in control
and 4-week MeHg exposure groups (left and right panels, respectively). Scale bar: 50 µm.

To date, there are no established therapies to treat mercury poisoning. Chelating therapy, which
accelerates the excretion of mercury [116,117], is recommended, particularly in the early phase of
mercury exposure. However, evidence for the beneficial effect of chelation therapy is limited, and
chelating therapy occasionally induces adverse effects, including sudden cardiac death, because
chelators also increase the excretion of essential metals. In addition, in the USA, inappropriate use of
chelating agents promoted by alternative medicine societies without essential clinical examination
for mercury exposure has raised concern. Although there might be beneficial effects in some cases,
chelating agents should be used with caution. While chelating therapy alone is not sufficient to improve
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symptoms, it is possible that combinations with other therapeutic approaches, such as antioxidant
or anti-VEGF neutralizing therapy, can reduce the toxicity of mercury. Combination therapy aimed
at maintaining the BBB, suppressing oxidative stress, and chelation may have a synergic and thus
better effect.

6. Summary

• MeHg causes severe damage to the CNS. MeHg penetrates the BBB into the brain parenchyma via
active transport systems, mainly LAT1, on membranes of endothelial cells.

• Growing evidence suggests that even low-level MeHg exposure can induce endothelial dysfunction
and increase the risk of cardiovascular disease.

• The most widely reported mechanism of MeHg toxicity is oxidative stress and its consequences,
such as neuroinflammation.

• VEGF upregulation is observed after MeHg exposure in vitro and in vivo. The selective damage
in the cerebellum after MeHg exposure may be explained in part by the specificity of VEGF
expression in the cerebellum.

• BBB dysfunction has been suggested by studies on in vitro and in vivo models of MeHg intoxication,
and therefore, maintaining the BBB may represent a promising therapeutic strategy for the
treatment of MeHg intoxication.
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