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Abstract: Cleaning is one of the fundamental tasks with prime importance given in our day-to-day
life. Moreover, the importance of cleaning drives the research efforts towards bringing leading edge
technologies, including robotics, into the cleaning domain. However, an effective method to assess
the quality of cleaning is an equally important research problem to be addressed. The primary
footstep towards addressing the fundamental question of “How clean is clean” is addressed using an
autonomous cleaning-auditing robot that audits the cleanliness of a given area. This research work
focuses on a novel reinforcement learning-based experience-driven dirt exploration strategy for a
cleaning-auditing robot. The proposed approach uses proximal policy approximation (PPO) based
on-policy learning method to generate waypoints and sampling decisions to explore the probable
dirt accumulation regions in a given area. The policy network is trained in multiple environments
with simulated dirt patterns. Experiment trials have been conducted to validate the trained policy
in both simulated and real-world environments using an in-house developed cleaning audit robot
called BELUGA.

Keywords: audit robot; path planning; reinforcement learning; cleaning-auditing

1. Introduction

Cleaning is one of the indispensable factors associated with everyday life. It is a
progress indicator for a plethora of organizations spanning from a small living space to
a nation’s development index [1,2]. The importance of cleanliness accelerates the global
cleaning industry to a steep annual growth of 10% by 2026, and valued more than 46 Billion
USD in 2020 [3,4]. The significance of the cleaning industry acted as a catalyst for bringing
bleeding-edge technologies in the field of domestic and professional cleaning [5–10]. The
rise of cleaning robots is an excellent example of technological advancement in the field
of the cleaning industry. The success of robot-based automated cleaning has pushed the
boundaries of cleaning robots even further towards the adaptation of novel strategies for
mechanism, control, perception, etc. For example, the work mentioned in Prabakaran
et al. [11] reports the studies on shapeshifting techniques for a self-reconfigurable floor
cleaning robot. Muthugala et.al. developed novel adhesion-awareness strategies for vertical
glass panel cleaning robot [12] by exploiting the fuzzy inference system for achieving
control goals. An adaptive floor cleaning strategy has been introduced in work reported
in Sivanantham et al. [13], where authors used the human density surveillance factor as
the driving factor for the floor cleaning strategy. The study mentioned in Chang et al. [14]
reports the development of an efficient automatic recharging mechanism for cleaning robots.
In the research work mentioned above, the authors used neural networks for location
estimation and infrared spots to guide the robot for successful docking. Pathmakumar,
et al., proposed a novel cleaning path-planning strategy for hydro-blasting robots, where
the authors exploited genetic algorithms for determining the functional footprint that aids
an optimal coverage path-planning strategy [15].
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Despite the technological advancement in automated cleaning and cleaning robots,
few crucial research problems are left unaddressed. One is the performance evaluation of
the cleaning robot based on the quality of cleaning it delivers and to benchmark the quality
of cleanliness. However, the aforementioned problems can be fundamentally addressed
by defining a method for auditing cleanliness. At present, a primitive research focus is
given in auditing cleanliness. For example, the work reported in Diab-El Schahawi et al. [5]
discusses the possibilities, advantages, and limitations of the usage of UV disinfection
robots to reinforce the cleaning technology amidst the COVID-19 pandemic. The research
article mentioned in Giske et al. [16] reports the effectiveness of robot-based cleaning in
the fish processing industry. Furthermore, the work mentioned in Lewis et al. [17] details
the usage of ATP (Adenosine Triphosphate) bioluminescence techniques for assigning a
benchmark value for cleanliness. Systematic procedures for performing cleaning validation
are presented in the article mentioned in Asgharian et al. [18]. The above mentioned article
suggests guidelines for cleaning validation and report generation in the pharmaceutical
industry. A validation assessment report for cleaning disinfection in a hospital setting is
presented in Malav and Saxena [19]. This article explains the inspections and swab analysis
of the surfaces and appliances of concern, followed by laboratory analysis. Currently,
the effort towards evaluating the quality of cleaning is targeted only to specific sectors,
like hospitals, food processing, and pharmaceutical industries, etc. [20,21]. However,
cleaning is a routine that cuts across all levels of domestic and industrial sectors. Hence,
the strategy for cleaning auditing has to be adaptable to a broad spectrum of domains
beyond specific sectors. Besides, the reported techniques for the assessment of cleanliness
remain manual, less scalable, and laborious. Hence, there is an apparent necessity for
a cleaning-auditing strategy that addresses the limitation of prevailing methods. From
the prior art, it is evident that automated cleaning lacks an effective solution for auditing
despite its technological advancement. Leveraging upon the advances in robotic technology,
developing an autonomous cleaning-auditing robot is an effective solution to address the
problem. The primary footstep to address this problem was reported in our previous
research work mentioned in Pathmakumar et al. [22]. The above mentioned research
work introduces a framework for cleaning-auditing using an autonomous mobile robot
with a sample audit sensor as a critical payload. The sample audit sensor audits over
a small region and assigns an audit score proportional to the extent of cleanliness (also
known as sample-auditing). The robot does the auditing for a larger area through multiple
sample-auditing in different locations autonomously (also known as space-auditing).

This article proposes a new strategy for autonomously auditing a given area using
an cleaning-auditing robot. The proposed system exploits Deep Reinforcement Learning
methods and guides the robot towards a region with a higher possibility for dirt accu-
mulation. Thus, the proposed method makes the robot capable of performing auditing
entirely driven by its experience. The rest of the manuscript is organised as Section 2
detailing works related to the proposed approach; Section 3 gives overview of the proposed
approach, followed by Section 4 which provides formal definitions of system modeling,
Section 5 reports strategy for training of the modeled system. The systematic validation
of the proposed approach through simulations, experiments, and interpretation of results
are given in Section 6, followed by the conclusion of our findings and future work in
the Section 7.

2. Related Works

In robotics, application of reinforcement learning (RL) is a topic that is given significant
research importance [23–27]. The application of Reinforcement learning is mostly used
for solving challenges in perception, navigation, and control problems. For instance,
reinforcement learning is used for solving complex locomotion tasks for a multi-joint
snake-like robot, where a model-free RL algorithm is used to map visual observations,
and the state of the joints [28]. The approach mentioned above used the proximal policy
optimization (PPO) [29] for model training. A two-stage RL approach is proposed as a
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solution for collision avoidance in UAV under imperfect sensing circumstances [30]. In
the aforementioned work, the implementation of policy training for a collisionless path
from noisy local observations is discussed. Deep deterministic policy gradient (DDPG)
was used in the above mentioned work [31]. A three-layer deep reinforcement learning
architecture that enables goal generation, perception, and planning is given in discussed
in Mousavi et al. [32]. The work mentioned also discusses the hierarchical training of
planners and classifiers with policy gradient algorithm implemented in actor-critic style. A
novel ultrasound image-driven motion planning was introduced to a robot manipulator,
where the Double Deep Q-Network (DDQN) approach is utilized for achieving a navigation
accuracy of 82.91% [33]. Possibilities of a cost-efficient navigation strategy using depth
camera with limited Field of View (FoV) explored in Choi et al. [34]. In the abovementioned
research work, authors have done an empirical analysis of FOV upon the efficiency of RL
agent and formulation of strategies to improve agent’s performance in real-time. Work
mentioned in Pfeiffer et al. [35] reports the usages of reinforcement learning for map-less
navigation in mobile robots. The work mentioned above details the use of an end-to-end
neural network that maps the raw sensor data to motion commands to the mobile robot.
Besides solving complex perception and navigation problems, reinforcement learning is
also widely used for task-based robot applications. For example, an A3C algorithm based
for search and rescue operation is reported in Niroui et al. [36], where authors modified
the state of the art frontier exploration with deep reinforcement learning methods for
efficient area exploration in a mobile. Similarly, strategy has been used for achieving
a UAV-based search and rescue operation in Zuluaga et al. [37]. Again, A multi-robot
collision-free exploration strategy is discussed in work mentioned in Hu et al. [38]. The
authors used novel dynamic Voronoi partitions for robot exploration and a model-free
deep deterministic policy gradient (DDPG) algorithm for collision avoidance. Similarly,
DDPG based reinforcement learning methods are used for search and rescue operation in
unmanned areal vehicles [39].

The proposed approach treats the robot as a reinforcement learning agent, and it
learns and generalizes the dirt distribution pattern from multiple environments during its
training phase. Then, based on the policy it learned, the robot chooses the locations it has
to go to in the rollout phase. The proposed method enhances the space-auditing procedure
in the cleaning-auditing framework [22], since its performance depends on training data
which can be simulated easily. The overall objective of this research work is subdivided
into four components.

1. Model the autonomous auditing as a Markov decision process (MDP).
2. Train the model with representation of indoor environments with manually assigned

dirt distributions.
3. Evaluate the learned policy on multiple simulation environments.
4. Using in-house developed BELUGA cleaning audit robot, evaluate the performance

of the proposed strategy.

3. System Overview

To start with the proposed strategy for auditing, the background of the audit robot
mentioned in Pathmakumar et al. [22] (also known as BELUGA robot) for completeness and
clarity. The Figure 1 shows the overview of components and procedures involved in clean-
ing auditing. The robot is designed for auditing the cleanliness of a region autonomously
(Figure 1a). The BELUGA robot runs cleaning-auditing framework shown in Figure 1b.
The BELUGA platform has a three-point contact differential drive mechanism and carries
visual and inertial sensors for autonomous navigation Figure 1c. Besides, a sampling
audit sensor is a crucial component onboard the BELUGA robot aiding cleaning-auditing
Figure 1c. The sample audit sensor evaluates the dirtiness of a small area (sample area) by
a “touch and inspect” analogy and assigns a sample audit score for the location. The sensor
uses adhesive tape to extract the dirt from the floor with the help of the co-coordinated
movement of stepper motors associated with it. Figure 1d shows a sampling cycle, which is
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comprised of three steps: (1) pressing action that makes the adhesive tape stick on the floor
with adequate pressure to extract the tiny dirt particles to its sticky surface; (2) The winding
of adhesive tape by winding stepper motors to move the adhesive tape surface to the field
of view (FoV) of a camera; and finally, (3) capturing of the images of the adhesive tape
surface for dirt analysis. The extent of dirtiness of the sampled region is estimated using
structural similarity index (SSIM) analysis [40] and saliency-based dirt detection [41,42]
using the embedded computer on the BELUGA platform.

Figure 1. The components associated with autonomous cleaning-auditing , the BELUGA robot (a) , the cleaning-auditing
framework (b), robot with navigation sensors and sample audit sensor (c), components inside the sample audit sensor (d),
and the steps involved in sample auditing process (e).

The sampling audit sensor inspects a sample area (2 cm× 2 cm) and provides an audit
score (in the range of 0–1) that defines the extent of dirtiness. This method of estimating
the uncleanness of a given area is called sample auditing in auditing framework shown
in Figure 1b. Performing a repeated sampling auditing for the entire region can estimate
global dirt distribution in the robot’s area of operation. This process of repeated sampling
auditing is called space auditing in the auditing framework shown in Figure 1b.

Performing sample auditing for a large area is not efficient and time-consuming.
Nevertheless, it is more practical to do sampling only in regions where the possibility of
accumulating dirt is higher. In addition, to execute the sampling strategy, the global dirt
distribution pattern of the environment has to be known prior, making the dirt sampling
problem more challenging to address. However, RL can be used to solve the problem men-
tioned above and formulate a dirt exploration strategy. The Figure 2 shows the overview of
the proposed dirt exploration strategy that can be implemented in an autonomous mobile
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robot with a sampling audit sensor. The central component in the proposed system is an
RL-Engine composed of trainable RL models. The input to the RL-Engine can be taken
either from a real-world environment or a simulation with models for robot and environ-
ment. The dirt exploration strategy is modeled as a model-free RL algorithm executing
within the RL engine. The output from RL-engine is the location where the robot needs
to go, which is fed into the robot or to a robot model in the simulation. Besides, the RL
engine also provides the sampling command that triggers a sampling action by the sensor.
The input to the RL-engine will be the map of the environment, the position of the robot,
and the sample audit score. The above mentioned inputs to the RL engine are provided
by the simultaneous localization and mapping module, dirt density estimator, and robot
localization module. The RL-engine training can be done by taking the input from the
simulations of the environments where the cleaning auditing has to be carried out. The
approach mentioned above for dirt exploration has the following advantages:

1. Simple: Easier to model the problem since an analytical model for dirt distribution is
harder to compute.

2. Scalable: The dirt accumulation patterns can be simulated easily for training, and the
RL model can be scaled to any environment.

3. Reliable: The system’s performance depends upon the learned policy for selecting
actions and less relies upon limiting factors like sensor accuracy, external lighting, etc.

The rest of the sections provide detailed information regarding the RL-algorithms
implemented inside RL-engine, simulation environments, strategy adapted for train-
ing, and the integration proposed dirt exploration strategy on our in-house developed
BELUGA robot.
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Figure 2. The overview of RL based dirt exploration strategy for autonomous cleaning-
auditing robot.

4. Problem Formulation

This section discusses the modeling and formulation of autonomous dirt exploration
problem for cleaning-auditing, treating as a deep RL problem. The foremost step is model-
ing the system as a Markov decision process (MDP) and providing a formal definition of
processes and states associated with MDP. We have used proximal policy approximation
(PPO) [29], a gradient-based optimal policy approach to determine the best action to be
taken by the RL agent. The action selection by the agent is made based on the output of a
neural network. We considered RL agent, as the BELUGA robot with a sample audit sensor.
The map of the environment, dirt profile, and position of the robot are the observations
made by the robot from the environment. The observations are fed into the networks to get
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the probability distribution of actions and value. The detailed descriptions on the formal
definition of MDP and PPO are given below.

4.1. Markov Decision Process (MDP)

The dirt exploration is treated as a discreet time finite MDP. MDP is defined by a
tuple 〈S ,A,R,P〉 where, S is the state space, A is the action space and R is the reward
function respectively. P is the state transition probability function P : S ×A× S → R.
We consider the robot as an RL agent that make observation from different states st ε S .
For a time step t the agent performs an action at ε A. The environment assigns a reward
r(st, at) ε R corresponding to the action performed by the agent in every state. The
procedure mentioned above will be restarted when agent progress to the next state st+1.
The environment is the region of operation of the robot. In the scenario of concern, the
environment consists of profile of static obstacles and dirt distribution on the floor. The
sate of the robot at any time step t can be represented as a vector, as given in Equation (1).

st =
{

lt, M
}

(1)

where lt is the position of the robot and M is the obstacle profile, which is a binary repre-
sentation of obstacles (0—free space and 1—obstacle) in a 2D-map. The action performed
by the robot is visiting location in the map and performing a sampling action. The modeled
action space A is given in Equation (2)

A =
{

p, S
}

(2)

where, p : p ∈
{

p1, p2, p3...pi
}

represents the location for sampling and S : S ∈
{

S1, S2, S3...Si
}

is the state of the sample audit sensor. In this work, we defined four locations for the robot
and two states for sampling audit sensor for defining the action set. The Table 1 provides
the list of locations and sensor states used.

Table 1. The list of actions done by the robot p, and audit sensor state S.

p Waypoint in Robot Coordinates Action Taken by the Robot

p0 (0, 0) Robot stay in the current position
p1 (0, 0.5) Robot move to left
p2 (0.5, 0) Robot move forward
p3 (0,−0.5) Robot move right

S Sensor state

S0 Sensor in idle state
S1 Sensor performs sampling

The agent (robot) gains a reward from the environment based on the action performed
in a state. The reward is determined by a reward function that can be represented as
a real-valued function that maps all the state-action pairs to a real number, defined as
R : S × A → R. In the given scenario, the reward is decided based on, (1) whether
the sampling is done in locations where dirt is accumulated (2) sampling is done only
in a unique location where sampling is not done before, (3) sampling is done in a place
where possibilities of collision with an obstacle is less. Hence, the reward function can be
represented as given in Equation (3) :

R = Rdirt +Runique +Rcollision (3)
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The parameterRdirt is the rewarding factor for the agent for a sampling action done
in a location where dirt exists. If the output of the sample audit score given by the sensor σ
is greater than zero,Rdirt is assigned as reward Equation (4).

Rdirt =

{
1, σ > 0
0, otherwise

(4)

The parameterRunique is the punishing factor for the agent if the sampling is done in
a location which is already sampled. The robot keeps record of all the locations visited in a
data vector psampled. The parameter pt is the location of the robot at the current time step t.
The parameterRunique is assigned as reward if the sampling is done in a unique location as
given in Equation (5).

Runique =

{
1, pt /∈ psampled

−1, otherwise
(5)

Similarly, pcollision the set of all points with high chances of collision and a reward of
Rcollision is assigned to the robot for an attempt to move to a location in pcollision as given in
Equation (6).

Rcollision =

{
−10, pt /∈ pcollision

0, otherwise
(6)

The goal of the agent is to learn a behavior that maximizes the reward obtained. This
behavior of the agent is known as policy π such that π : S × A → R. The policy is a
probability distribution of an action taken given in a state represented as π(a|s). However,
for a deterministic case, the policy function can be defined as π(s), a function that maps
elements in state space to action, which can be represented as π : S→ A. The agent have
to find an optimal policy to choose the action that maximize the reward, and it is achieved
using Proximal Policy Optimization.

4.2. Proximal Policy Optimization (PPO)

PPO, is similar to the policy gradient (PG) method for reinforcement learning. Unlike
the conventional PG method the training of a PPO agent is less challenging. This is because,
PPO has less hyperparameters, and it employs the principle of importance sampling
to ensure the data-efficiency during training. The objective function of a PPO given in
Equation (7):

J PPO = Ê
[
min

(
rt(θ)Â , clip(rt(θ), 1− ε, 1 + ε)Â

)]
(7)

The J PPO is also know as the PPO’s clipped surrogate objective function. The rt(θ)
(policy ratio) is the ratio of action probabilities for the present and previous policies as
shown in in Equation (8)

rt(θ) =
πθ(at | st)

πθold(at | st)
(8)

In Equation (8), πθ is the action probability under the current policy and πθold is the
action probability under the old policy used for the rollout. When the value for rt(θ) ≤ 1
implies, the action under the current policy is more probable, and a value for rt(θ) in
between 0 and 1 shows, action under the current policy is less probable than the previous
one. However, a larger value for rt(θ) is not advised since it can results in over sized
gradient steps. Hence, in the the surrogate objective (Equation (7)), the rt(θ) ratio has been
clipped in a range of 1− ε and 1 + ε. The Â in Equation (7) is estimated using general
value estimation [43]. The ε is one of the hyperparameter for PPO.



Sensors 2021, 21, 8331 8 of 19

4.3. Network Architecture

The Figure 3 shows the network structure implemented for the PPO. The action
probability πθold and values are estimated using a neural network that is composed of
one input layer and two outputs. The input to the neural network is the representation
of obstacle profile (7× 7), locations of the dirt identified via sample auditing (7× 7), and
robot position in 2D coordinates (2× 1) stored in tensors. The input tensors are flattened
to 100× 1 and fed into the input layer of the neural network. The network comprises of
three hidden layers of size 512× 1 sizes each. The neurons in all stages are activated using
tanh [44] activation function. The first neuron in the output layer is taken for the value
estimation, and the rest carries the logits. An additional softmax layer converts the logits to
the corresponding probability distribution. The Equation (7) is used as the loss function for
training the network and θ is updated by maximizing the objective function J PPO. The best
action from the distribution is rolled out to the robot model as action trajectories, which are
the waypoints that the robot has to visit next. The Algorithm 1 shows the pseudo-code for
implementation of PPO mentioned in [29].
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Figure 3. The reinforcement learning architecture based on Proximal Policy Optimization.

Algorithm 1 Pseudocode for PPO implementation [29]

1: while i = 1,2,3... do
2: while action = 1,2,3,... N do
3: Run policy θold for T time-steps
4: a← max(action_array)
5: Compute advantage estimates Â1; Â2, ...ÂT

6: Optimize J PPO with K epochs and M ≤ NT
7: θ ← θold
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5. Training and Validation

This section details the training and validation for the modeled RL approach for dirt
exploration. We simulated four different environments with obstacles, closed walls, and
dirt regions. We chose a square space in each environment and randomly distributed the
dirt around the walls and obstacles on the map. This map is subdivided into 49 square
zones of size 1 m × 1 m. The environment is represented using a 7 × 7 matrix, where
the elements represent the possible locations for sampling with dirt regions and possible
collision regions. The 7 × 7 reduced representation of the environment is used for training
the system. The reduced environment representation is used to make the training process
faster with minimal computation. For implementation, we used Gazebo for modeling
the environments, and a SLAM algorithm-generated map has been downsampled to
generate the reduced environment representation. Figures 4–7 shows the 7× 7 reduced
representation of the environments used for training.

(a) (b)

Simulated dirt 
locations

Figure 4. The simulation environment 1 (a), and 7× 7 reduced environment representation (b).

(a) (b)

Simulated 
dirt location

Figure 5. The simulation environment 2 (a), and 7× 7 reduced environment representation (b).
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(a) (b)

Simulated dirt 
locations

Figure 6. The simulation environment 3 (a), and 7× 7 reduced environment representation (b).

Simulated dirt 
locations

(a) (b)
Figure 7. The simulation environment 4 (a), and 7× 7 reduced environment representation (b).

Policy Training and Evaluation

The training and rollout of the model is implemented using RLLib [45,46] with
Pytorch [47] and OpenAI Gym [48] toolkit. RLlib is an open-source framework devel-
oped based on Ray [49], that allows optimized implementation of reinforcement learning
models using scalable and unified application programming interface (API).

The nested parallelism and resources-aware computation property of RLlib allows an
efficient training and evaluation of the model. The Table 2 shows the list of hyperparameters
used for the PPO implemented using RLLib APIs. The model training is done in an Ubuntu
20.04 running machine with intel core-i7 CPU and RTX-3080 GPU from NVIDIA. The
hyperparameters are chosen based on observations from multiple trials that resulted in
better convergence. The discount factor γ is chosen as 0.99 with a learning rate of 0.001. The
degree of parallelism of the training process is determined by the parameter num_workers,
set to 20. The num_sgd_iter parameter is set to 16, which decides the number of times the
Steepest Gradient Descend (SGD) has to be done per batch and to enable the experience
reply. The parameters clip_param (ε) is associated with the surrogate loss function of PPO
(Equation (7)). The learning_starts is an initialization parameter that decides the number of
steps the model has to sample before starting the learning process. The termination criteria
for each episode is either to gather a maximum reward of 10. The maximum step size
per episode is kept as 35. The training is done on environment-1 to environment-4. The
Figure 8 summarizes the learning curve for training on environment-1 to 4. Environment-1
(Figure 8a), took 80,000 epochs to reach the maximum mean average reward of 5. Similarly,
environment-2 (Figure 8b), took 80,000 epochs to converge to a mean average reward of 5.
In order to reach the same mean average reward of 5 Environment-3 and Environment-4,
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took 10,000 episodes of training each. After the training phase, the model is rolled out for
real-time testing and policy evaluation. The Algorithm 2 describes the procedures involved
for testing the trained model in a robot. The Algorithm 2 repeatedly computes the actions
for the robot by taking in the observations from the environment as input. The MoveRobot
routine in the algorithm communicates to the navigation framework of the robot. The
action trajectory from the trained model provides the next waypoint for the robot to clear.

(a) (b)

(c) (d)

Figure 8. Mean reward vs. number of epochs for (a) environment 1, (b) environment 2,
(c) environment 3, and (d) environment 4.

Table 2. The list of hyperparameters used for training PPO.

PPO-Hyperparameters Value

discount factor γ 0.99
learning rate lr 0.001
mini batch size 128
num_workers 20
num_sgd_iter 16

clip_param 0.2
learning_starts 104

buffer_size 5× 104

train_batch_size 32

The Algorithm 2 shows the pseudo-code implementation for the rollout framework of
the robot. The Algorithm 2 is dependent on both the Ray and Gym libraries. The robot is
configured with navigation algorithms running on ROS [50] noetic version. The robot is
localized using Adaptive Monte Carlo Localization(AMCL) method. The model is loaded
with trained weights. The current observations made on the environment and reduced
environment representations are loaded into the Gym APIs. The output of the rollout
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algorithm is fed into the navigation stack of the BELUGA robot. The robot uses A* global
planner [51] and DWA local planner [52] for navigating from one point to another.

Algorithm 2 Pseudo code for PPO rollout

1: procedure ROLLOUT
2: Load model weights on agent
3: obs← Current observation of the environment
4: env← Environment simulation
5: while done = True do
6: action_array← ComputeAction(obs)
7: a← max(action_array)
8: state← env.step(a)
9: reward← state[“reward”]

10: obs← state[“obs”]
11: done← state[“done”]
12: MoveRobot(a)

6. Results and Discussion

The proposed strategy for dirt sampling has been evaluated by performing multiple
experiment trials. We have chosen four sets of evaluation trials. Among the four sets
of trials, the first pair (trial-1 and trial-2) are done in a simulated environment, and the
other two are done in a physical environment. For the simulations, we used Gazebo-ROS
framework for setting up the environment and robot. The simulation environment for
trial-1 and trial-2 comprised of 10 m × 10 m indoor settings with walls and obstacles. The
dirt distribution is simulated by defining the dirt locations alike to the training environment
in the map. We modeled a differential drive robot with wheel radius, wheel separation,
and footprint size similar to the physical BELUGA audit robot in the Gazebo platform.
The effectiveness of the auditing strategy can be evaluated based on the robot’s ability to
choose a waypoint where the dirt is accumulated and perform sampling. The locations that
the robot visited, and locations sampled by the robot are recorded during the trials. If the
robot decides to perform sampling, the success of the decision is determined, if the chosen
location already has dirt accumulation. A sampling action is regarded as false-positive
sampling if the location selected for sampling doesn’t have dirt accumulation. The result
of visiting a location by the robot is classified to three:

1. Success: Robot initiate a sampling action and the location truly have dirt accumulation,
or the robot didn’t do a sampling action, and the location have no dirt accumulation

2. Type-I error: Robot initiate a sampling action, and the location have no dirt accumulation
3. Type-II error: Robot didn’t do a sampling action, and the location have dirt accumulation

The accuracy of decision of the robot is determined using equation:

Accuracy o f decision =
Total number o f success

Total number o f locations visited
× 100 (9)

The initial location of the robot is chosen in one corner of the map, and the rollout
algorithm (Algorithm 2) decides the waypoints for the robot to visit and perform sampling.
The notation of Wi,j represents, the jth location in the ith trial.

The Tables 3 and 4 tabularizes the observations made from trial-1 and trial-2. In
trial-1, the robot cleared 15 waypoint points. Among the cleared waypoints, 11 successes
have been registered with a decision accuracy of 73.3%. A total of 9 locations has been
sampled for auditing; five have been left unsampled. In the case of trial-2, the robot cleared
19 waypoint points. Eighteen successes have been registered with a decision accuracy of
94.7%. The robot has sampled 13 locations. In trial-1, four type-II errors have been observed.
In trial-2, one type-I and zero type-II error have been observed. This is because of the
irregularities in dirt distribution patterns in the simulated environment compared to the
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training environment. The total number of errors reported in the simulated environment is
5 out of 34 locations. However, this shortcoming can be bridged by adding more training
data, representing multiple dirt distribution patterns. For trial-1, the robot took a shorter
path length to cover than in environment-2. The trial-1 and trial-2 results are satisfactory
in terms of the robot’s ability to determine the locations to visit and perform sampling.
Figure 9 shows the robot’s exploration path and locations visited in trial-1 and trial-2.

Table 3. The list of locations visited by the robot in trial-1 and sampling decision taken.

Waypoint Location on Map Decision Result

W1,0 (1.33317, 5.57795) Sample Success
W1,1 (1.33591, 4.84829) Sample Success
W1,2 (1.33509, 4.11675) Sample Success
W1,3 (1.33080, 3.38704) Not Sample Type-II error
W1,4 (1.33087, 2.66572) Sample Success
W1,5 (1.32982, 1.93444) Sample Success
W1,6 (1.33186, 1.21004) Sample Success
W1,7 (2.10888, 1.204991) Not sample Type-II error
W1,8 (2.87477, 1.20187) Not sample Success
W1,9 (3.64719, 1.20291) Not sample Success
W1,10 (4.41937, 1.20692) Not sample Type-II error
W1,11 (5.18784, 1.20249) Sample Success
W1,12 (5.19334, 1.93656) Sample Success
W1,13 (5.18933, 2.66006) Not sample Type-II error
W1,14 (5.96312, 2.66641) Sample Success

Total path length 10.45537 m
Total time taken 86 s

Accuracy of decision 73.3%

Table 4. The list of locations visited by the robot in trial-2 and sampling decision taken.

Waypoint Location on Map Decision Result

W2,0 (1.42324, 5.09438) Sample Success
W2,1 (1.42660, 4.36318) Sample Success
W2,2 (1.43137, 3.6314) Sample Success
W2,3 (1.43219, 2.9083) Sample Success
W2,4 (1.42612, 2.1773) Sample Success
W2,5 (1.42348, 1.4509) Sample Success
W2,6 (1.43123, 0.723682) Sample Success
W2,7 (2.19640, 0.725312) Sample Success
W2,8 (2.96881, 0.718802) Sample Success
W2,9 (3.74668, 0.719092) Sample Type-I error
W2,10 (3.73843, 1.44793) Not sample Success
W2,11 (3.74293, 2.17497) Not sample Success
W2,12 (3.74063, 2.90702) Not sample Success
W2,13 (4.51069, 2.90921) Not sample Success
W2,14 (5.28431, 2.90556) Not sample Success
W2,15 (5.28709, 2.17860) Not sample Success
W2,16 (6.05995, 2.18154) Sample Success
W2,17 (6.05311, 1.45565) Sample Success
W2,18 (5.28317, 1.45127) Sample Success

Total path length 13.41366 m
Total time taken 93 s

Accuracy of decision 94.7%

Beyond the simulation environments, the model’s effectiveness is evaluated in the
real world by integrating the model to the physical BELUGA robot. Unlike the simulation
environments with artificially modeled dirt distribution, choosing a real-time environment



Sensors 2021, 21, 8331 14 of 19

assess the robot’s ability to select naturally formed dirty locations with the help of a
sampling audit sensor. Besides, real-time testing of the rollout algorithm evaluates the
shortcomings in the practical implementation of the proposed system. Since the dirt
distribution is not known prior, the success and error of a sampling action is determined
based on the data from the sample auditing sensor. A pair of evaluation trials (trial-3
and trial-4) are conducted in a real-world environment with BELUGA robot, where a
5.1 m × 5 m section of a broad passage is taken as the region of operation of the robot.
However, the mode of operation of the robot remains the same as trail-1 and trial-2. The
maximum speed of the robot is capped at 0.25 ms−1. The goal tolerance of the robot is fixed
as 0.4 m in x and y positions and 0.2 rad in orientation. The navigation parameter selection
is made based on observation of the robot’s accuracy in localization. A 5.1 m × 5 m section
of the passage is enclosed with obstacles to create a closed map and localization of the robot
is done (Figures 10a and 11a). The passage had dirt in various scales due to the natural dirt
accumulation. Hence, during trial-3 and trial-4, we haven’t introduced any artificial dirt
distribution. We have used a trash can, wooden stool, and metal box as obstacles in both
experiment trials. Comparing trial-3 and trial-4, we have introduced more obstacles than
trial-3 to test the robot’s behavior in the dense and less-dense conditions of static obstacles
in the environment. The robot mapped both environments separately, and localized before
executing the RL-rollout algorithm to initiate the dirt exploration. The Tables 5 and 6
summarizes the observations made from the trial-3 and trial-4. Since the ground truth of
dirt distribution in a real environment is unknown, the data from the sample audit sensor
on the robot is used to determine sampling success. A reading above 0.25 by the sensor is
regarded as a dirt location and less than 0.25 as a clean location. In trial-3, the robot cleared
19 waypoint points. Among the 19 cleared waypoints, 14 successes have been registered
with a decision accuracy of 73.68%. A total of 11 locations have been sampled for auditing;
eight have been left unsampled. In the case of trial-4, the robot cleared 15 waypoint points,
and Twelve successes have been registered with an exploration accuracy of 80.0%. The
robot has sampled 11 locations, and 4 locations left unsampled. In trial-3, two type-II errors
and three type-I error have been observed. In trial-4, one type-I and two type-II errors have
been observed. Figures 10b and 11b illustrates the approximate path traversed by the robot
during the dirt exploration and waypoints.

Dirt Locations

Dirt Location

(a) (b)

Trial - 1 Trial - 2

Figure 9. The explored locations by the robot in simulated environments of Trial-1 (a) and Trial-2
(b) and the path recorded.
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(a) (b)

W3,0 W3,1 W3,2 W3,3 W3,4 W3,5 W3,6

W3,7

W3,8

W3,9
W3,10W3,11

W3,12

W3,13

W3,14

W3,15

W3,16 W3,17

W3,18

Figure 10. The environment setup for trial-3 (a), and the approximate path traversed and locations
visited by the robot (b).

(a)

Obstacle #3

(b)

W4,0 W4,1 W4,2 W4,3 W4,4 W4,5
W4,6

W4,7

W4,8

W4,9

W4,10

W4,11

W4,12W4,13W4,14

Figure 11. The environment setup for Trial-4 (a), and the approximate path traversed and locations
visited by the robot (b).

The Figure 12 shows the approximated dirt-density hot-spots in trial-1 to trial-4 using
kernel density estimation. We can observe from the experiment trials that the trained
model could guide the robot towards the region with dirt accumulations. However, in
experiment trials, we observed false positives in both simulated environments and real-
world environments. Besides, there are locations where the robot explored but skipped
the sampling. This is because of the difference in dirt accumulation patterns in training
and testing environments. However, this can be bridged by introducing more variations
in dirt accumulation patterns during the training phase. Currently, the training phase
only considers fixed and continuous dirt accumulation patterns. However, stochastic
modeling of dirt patterns in the training phase would make the system more accountable
for randomness in real-world dirt patterns.

One of the shortcomings observed is robot failed to explore all the dirt locations pre-
vailing in the environment. This is because of two reasons; one is robot reaches maximum
reward before it explores the all dirt region, and the other is the dissimilarities in training
and validation environments.

One of the classic dirt exploration strategies for cleaning auditing is our previous
work [22], where the frontier exploration algorithm is modified for dirt exploration. The
observed shortcoming of the approach mentioned above was the high chances of false
positives. This is because the probable dirt region detected by the robot was dependent
on the changes in ambient lighting and floor pattern. However, the proposed method has
an upper edge over the method mentioned above since the algorithm’s effectiveness can
always be enhanced by introducing more training sequences. Hence, the limitation of
sensor accuracy is less affected in the proposed system than the previously reported dirt
exploration strategy for cleaning auditing robots. For a cleaning auditing robot, the decision
for sampling is as critical as visiting a dirt accumulated region. The proposed system yields
the decision to perform sampling after visiting a waypoint that brings completeness to dirt
exploration compared to the classical dirt exploration strategy for an audit robot.
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(a) (b)

(c) (d)
Figure 12. The explored path and estimated dirt density hot-spots in trial-1 (a), trial-2 (b), trial-3
(c) and trial-4 (d).

Table 5. The list of locations visited by the robot in trial-3 and sampling decision taken.

Waypoint Location on Map Decision Result

W3,0 (0.22162, 4.77094) Sample Success
W3,1 (0.21404, 3.88575) Sample Success
W3,2 (0.21513, 3.15650) Not Sample Success
W3,3 (0.22232, 2.43131) Sample Success
W3,4 (0.21724, 1.69945) Sample Success
W3,5 (0.21509, 0.97136) Sample Success
W3,6 (0.21959, 0.24172) Sample Success
W3,7 (0.98596, 0.24564) Sample Type-I error
W3,8 (1.76468, 0.24177) Sample Type-I error
W3,9 (2.53047, 0.24148) sample Success
W3,10 (2.53720, 0.970674) Not Sample Success
W3,11 (2.53619, 1.70709) Not Sample Type-II error
W3,12 (2.53145, 2.42771) Not Sample Success
W3,13 (3.30528, 2.43128) Sample Type-I error
W3,14 (3.30776, 1.70053) Not Sample Success
W3,15 (4.07132, 1.70240) Sample Success
W3,16 (4.76464, 1.71080) Sample Success
W3,17 (4.75160, 0.978684) Sample Success
W3,18 (4.07316, 0.97440) Not Sample Type-II error

Total path length 17.76424 m
Total time taken 321 s

Accuracy of exploration 73.68%
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Table 6. The list of locations visited by the robot in trial-4 and sampling decision taken.

Waypoint Location on Map Decision Result

W4,0 (0.20626, 3.84880) Sample Success
W4,1 (0.20332, 3.11855) Sample Success
W4,2 (0.20837, 2.39423) Not Sample Success
W4,3 (0.20265, 1.65911) Sample Success
W4,4 (0.20471, 0.93416) Sample Success
W4,5 (0.20817, 0.209653) Sample Success
W4,6 (0.93839, 0.208683) Sample type-I error
W4,7 (1.66028, 0.202513) Sample Success
W4,8 (2.38826, 0.204983) Sample Success
W4,9 (3.12414, 0.209353) Not Sample Success
W4,10 (3.84809, 0.208553) Not Sample type-II error
W4,11 (4.57688, 0.205633) Sample Success
W4,12 (5.30855, 0.205713) Sample Success
W4,13 (5.30929, 0.932024) Not Sample type-II error
W4,14 (5.30382, 1.659145) Sample Success

Total path length 10.19308 m
Total time taken 137 s

Accuracy of exploration 80.0%

7. Conclusions and Futureworks

This paper proposed a reinforcement learning-based dirt exploration strategy for a
cleaning-auditing robot in an autonomous fashion. The robot-based cleaning-auditing is
done with the help of a sample-audit sensor, which is the key-payload of the robot. The
proposed exploration strategy provides waypoints closer to the probable dirt accumulated
area based on the robot’s learned experience. The audit robot is treated as a reinforcement
learning agent, and the exploration problem is modeled as a discreet Markov decision
process (MDP). The Proximal Policy Optimization (PPO) on-policy algorithm is used
to train the reinforcement learning agent. The model is trained in different simulated
environments with dirt distribution, and the trained model is clearly evaluated. The
proposed method is validated by conducting experiments in both virtual and real-world
environments by using an in-house developed BELUGA audit robot. The future work of
this research will be focusing on:

1. Establishing an exhaustive open-source dirt distribution dataset to enhance the train-
ing and improvements of the current method

2. Chemical and microbial analysis in sample auditing
3. A comprehensive comparative study on different on-policy algorithms in context of

cleaning auditing
4. Multi-agent reinforcement learning for dirt-exploration strategy
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