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Abstract

Background: It is not yet clear whether hemofiltration can reduce blood cytokine
levels sufficiently to benefit patients who suffer prolonged cardiac arrest (CA) treated
with cardiopulmonary bypass (CPB). We sought to assess effects of high-volume and
standard volume continuous veno-venous hemofiltration (CVVH) on blood cytokine
levels and survival in a rat model of prolonged CA treated with CPB.

Methods: Sprague-Dawley male rats were subjected to 12 min of asphyxia to
induce CA. CPB was initiated for resuscitation of animals and maintained for 30 min.
Twenty-four rats were randomly assigned into three groups: without CVVH treatment
(sham); standard volume CVVH at a filtration rate of 35–45 mL/kg/h; and high-volume
hemofiltration (HVHF, 105–135 mL/kg/h). Hemofiltration was started simultaneously
with CPB and maintained for 6 h. Plasma TNFα and IL-6 levels were measured at
baseline, 0.5, 1, 2, 3, and 6 h after reperfusion. Survival time, neurological deficit score,
and hemodynamic status were assessed.

Results: All animals survived over 6 h and died within 24 h. There were no significant
differences in survival time (log-rank test, sham vs. CVVH; p = 0.49, sham vs. HVHF;
p = 0.33) or neurological deficit scores (ANOVA, p = 0.14) between the groups. There
were no significant differences in blood cytokine levels between the groups. Mean
blood pressure in sham group animals increased to 1.5-fold higher than baseline
levels at 30 min. HVHF significantly reduced blood pressure to 0.7-fold of sham
group (p < 0.01).

Conclusions: There was no improvement in mortality, neurological dysfunction,
TNFα, or IL-6 levels in rats after prolonged CA with CPB on either hemofiltration
group when compared to the sham group.

Keywords: Renal replacement therapy, High-volume hemofiltration, Cardiac arrest,
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Background
Cardiopulmonary bypass (CPB) has been shown to rescue victims from refractory car-

diac arrest (CA) [1, 2], in which a patient suffers a prolonged time of whole-body ische-

mia. CPB produces more blood flow than conventional cardiopulmonary resuscitation

(CPR) allowing the return of spontaneous circulation (ROSC) even after a prolonged

period of CA [2, 3]. CPB is, therefore, considered indispensable for refractory CA

patients [3].

Whole-body ischemia/reperfusion injury is thought to activate the inflammatory re-

sponse, which increases the risk of death in patients after CA [4, 5]. Therefore, a

method to regulate the highly activated systematic inflammatory response that occurs

after refractory CA with CPB is of growing interest in post-cardiac arrest syndrome

(PCAS) [4, 6–8].

Inflammatory cytokines, such as TNFα and interleukin-6 (IL-6), are key mediators

not only of sepsis [9–11] but also of PCAS [4]. Several extracorporeal filtering tech-

niques have been used to remove these cytokines [12, 13]. Continuous veno-venous

hemofiltration (CVVH) is one of the emerging techniques that has been studied for this

purpose [14–17]. Therefore, CVVH is a possible adjunct therapy for refractory CA

treated with CPB [2]. However, it is not yet clear whether CVVH is effective in treating

patients with hypercytokinemia who undergo CPB after refractory CA. Therefore, the

clinical application of CVVH to critically injured patients with ischemia/reperfusion is

still controversial [18, 19].

There have been relatively few reports that study CVVH on CA with CPB.

Nagashima et al. [20] reported the effect of super high-volume hemofiltration (fil-

tration rates; 300 mL/kg/h) on the improvement of vascular permeability and the

regulation of the inflammatory response in the lung using experimental animals

with CA and CPB. However, hemofiltration volumes greater than 200 mL/kg/h are

logistically difficult to perform in clinical settings, because it requires special equip-

ment to supply the large amount of replacement fluid [21]. Combes et al. [18]

recently reported that early high-volume hemofiltration (filtration rates: 80 mL/kg/

h) did not impact any clinical outcomes of the patients who were in shock after

cardiac surgery with CPB. These conflicting results on clinical benefits raise an im-

portant question whether hemofiltration at a clinically acceptable range of filtration

volume (less than 120 mL/kg/h) effectively reduces the blood levels of cytokines in

refractory CA patients treated with CPB.

Therefore, we tested whether it is beneficial to use CVVH at high (105–135 mL/kg/h)

or standard (35–45 mL/kg/h) hemofiltration volumes in a rodent model with prolonged

CA and CPB. Furthermore, we investigated the effect of two differing hemofiltration set-

tings on blood TNFα and IL-6 levels after CA.

Methods
The study protocol was approved by the Institutional Animal Care and Use Committee

of the University of Pennsylvania. All the instrumentation was performed according to

the previously described protocol [22–24]. In brief, 24 adult male Sprague-Dawley rats

(450–550 g, Charles River Laboratories, Wilmington, MA) were anesthetized with 4 %

isoflurane (Isosthesia, Butler-Schein AHS, Dublin, OH, USA) and intubated with a 14-

gauge plastic catheter (Surflo, Terumo Medical Corporation, Somerset, NJ, USA).
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Anesthesia was maintained with 30 % oxygen and 2 % isoflurane to sustain a surgical

depth of anesthesia. Animals were mechanically ventilated (Ventilator Model 683,

Harvard Apparatus, Holliston, MA, USA) at a tidal volume (TV) of 8 mL/kg and a

respiratory rate of 40 to 45 breaths/min, which was adjusted to maintain an EtCO2

between 35 and 45 mmHg (Micro-Capnometer, Columbus Instruments, Columbus,

OH, USA). One hundred percent oxygen was supplied to the animals during CPB. We

returned the oxygen supply to baseline levels (30 %) 90 min after CPB.

The core temperature was maintained at 37° centigrade +/−0.5° using an esophageal

temperature probe for continuous temperature monitoring. During the CPB session, the

temperature was controlled using the CPB warmer circuit attached to an oxygenator. For

the period of surgical preparation and the CVVH operation, a warming blanket and a

heating lamp were used to control the temperature as the CPB circuit was not available.

The left femoral artery was cannulated (sterile polyethylene-50 catheter inserted for 2 cm)

for continuous arterial pressure monitoring (MLT844, ADInstruments; Bridge Amplifier

ML221, ADInstruments, Colorado Springs, CO, USA). The left femoral vein was cannu-

lated with a 20-gauge catheter cannula (Insyte-W, BD, Franklin Lakes, NJ, USA) for the

blood inflow of CVVH. The right femoral artery was cannulated with a 20-gauge catheter

cannula for the blood inflow of CPB. The right internal jugular vein was cannulated for

the venous outflow of CPB and CVVH with a modified 4-hole 14-gauge catheter (Surflo,

Terumo Medical Corporation, Somerset, NJ, USA), which was advanced into the vena

cava. After the animals were disconnected from the mechanical ventilator, buprenorphine

was administered via subcutaneous injection of 0.05 mg/kg buprenex (Buprenex, Reckitt

Benckiser Pharmaceuticals, Inc., VA, USA).

Cardiac arrest and reperfusion using cardiopulmonary bypass

After instrumentation, neuromuscular blockade was achieved by slow intravenous ad-

ministration of 2 mg/kg of vecuronium bromide (Vecuronium Bromide, Hospira, Lake

Forest, IL, USA). CA was induced via asphyxiation by switching off the ventilator. CA

was defined as a mean arterial pressure (MAP) of less than 20 mmHg. After 12 min of

asphyxia, mechanical ventilation was restarted and CPB was started. Activated coagula-

tion time (ACT) was kept above 250 s by administering heparin (Heparin, SAGENT

Pharmaceuticals, Schaumburg, IL, USA). The CPB circuit was primed using a total vol-

ume of 21.1 mL priming solution composed of 10 mL of Plasma-Lyte A (Baxter, Deer-

field, IL, USA), 10 mL of 6 % Hetastarch (Hospira, Lake Forest, IL, USA), 0.8 mL of

0.406 mEq/mL magnesium sulfate (Magnesium Sulfate, APP Pharmaceuticals, Schaum-

burg, IL, USA), and 0.3 mL of 3.3 mmol/mL THAM Solution (XVIVO Perfusion AB,

Göteborg, Sweden). The hemofiltration circuit was primed with the same solution

using a priming volume of 6.9 mL. CPB was manipulated for a total of 30 min in

all animals. Vasopressors or inotropic agents were not injected. At the end of CPB

operation, the remaining blood in the circuit was collected and slowly reinfused

into the animal.

Experimental protocol and continuous veno-venous hemofiltration settings

Animals were randomized into three groups: (a) treated with a standard filtration rate

of CVVH (n = 8); (b) treated with a high filtration rate of HVHF (n = 8); and (c) sham
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(without CVVH or HVHF but with surgery, CA, and CPB; n = 8). CVVH was started

simultaneously with CPB (Additional file 1: Figure E1). The blood flow for veno-venous

hemofiltration was controlled at a rate of 3 mL/min (5.5 to 6.5 mL/min/kg) (Additional

file 2: Figure E2a and b) in animals treated with either CVVH or HVHF. At the end of

30-min CPB, the CPB circuit was removed and hemofiltration was restarted at a blood

flow rate of 3 mL/min (5.5 to 6.5 mL/min/kg), which was maintained for 5.5 h. The

filtration rates were controlled at two settings, 20 mL/h (35 to 45 mL/h/kg) in the

CVVH group and 60 mL/h (105 to 135 mL/h/kg) in the HVHF group. The effluent was

drawn from a side hole of the hemofilter using a drawing pump (Genie Touch Syringe

Pump, Kent Scientific, Torrington, CT, USA). Replacement fluid, added at the same

rate of effluent, was infused through the catheter inserted into the left femoral vein

(Additional file 2: Figure 2a and b, post-dilution, zero-balanced filtration). The investi-

gated hollow-fiber hemofilter was AN69ST with an in vivo cut-off value of 35–40 kD

(GAMBRO Industries, Meyzieu, France). PrismaSATE BGK 4/2.5 (Gambro Renal

Products, Daytona Beach, FL, USA) was used as the replacement fluid. All surviving

rats were extubated at 7 h of operation (Additional file 1: Figure E1), and then, animals

were observed for another 5 h.

Measurements and calculations

The neurologic deficit score (NDS, 0–100 %; 0 %, normal; 100 %, brain-dead) that has

been described previously [23–25] was assessed in all rats after extubation before

buprenorphine was injected. The assessment was performed by the investigators, and it

was not blinded from the procedures. Blood samples of 0.5 mL were obtained from the

left femoral catheter at baseline before CA, at 30 min, 1, 2, 3, and 6 h after resuscita-

tion. Effluent samples of 1.0 mL were obtained at 1, 2, 3, and 6 h after resuscitation,

which contained the cumulative amount of the effluent samples during 0–1, 1–2, 2–3,

and 3–6 h. MAP was monitored continuously through 6 h after resuscitation. Blood

gas analysis (pH, pO2, pCO2; i-STAT, Heska, East Windsor, NJ, USA), (Additional file

3: Figure E4), laboratory data (ACT, sodium, potassium, blood urea nitrogen (BUN),

glucose, lactate; i-STAT, Heska, East Windsor, NJ, USA), and a hematocrit (Stat Spin

MP, Iris Sample Processing, Westwood, MA, USA) were measured immediately after

blood sampling. The remaining blood was centrifuged at 1000 g for 10 min, and the

isolated plasma was stored at −80 °C until thawed for cytokine assays. Concentrations

of TNFα and IL-6 in plasma and effluent samples were measured using an enzyme-

linked immunosorbent assay kit specific for rats according to manufacture instructions

(R&D Systems, Inc. Minneapolis, MN, USA). The density was determined using a mi-

croplate multimode reader (Turner Biosystems, Sunnyvale, CA, USA) set at 450 nm.

The cumulative amount of removed cytokines was calculated from the effluent concen-

tration of both cytokines multiplied by filtrated volume.

Statistical analysis

Continuous data that were normally distributed were reported as mean and standard

deviation. Data that were not normally distributed were shown as median and inter-

quartile range. Group comparisons were first made using one-way analysis of variance

followed by Scheffe’s test as a post hoc test. TNFα and IL-6 data were not normally
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distributed; therefore, we compared the data after logarithmic transformation. Mean

+/− standard deviation of the logarithmic transformed data is reported in figures. The

Kaplan-Meier method was used to establish the 12-h survival plot, and probability

values for survival comparisons were calculated using the log-rank statistic. A two-

tailed p value of <0.05 was considered statistically significant. All calculations were per-

formed with SPSS Statistics Ver. 22 for Mac (IBM Corp., Armonk, NY).

Results
In total, 24 animals were subjected to CA and resuscitated using CPB. Those animals

were randomized into the sham (n = 8), the CVVH (n = 8), and the HVHF (n = 8) groups.

Basal characteristics and resuscitation data are shown in Additional file 4: Table E1. There

were no significant differences between groups. All animals were successfully resuscitated

by CPB and survived more than 6 h after resuscitation. Therefore, hemofiltration was suc-

cessfully performed for 6 h in animals that were assigned to the CVVH or HVHF group.

It is difficult to determine the cause of death in animals. Arterial pressure and ECG

were recorded from 20 animals (83 %) until animals died. The data indicated that some

animals had seizures in advance of the death whereas all animals had hemodynamic

collapse before they died. Relations between the seizures and the hemodynamic collapse

were not clear. No lethal arrhythmias of VF rhythms were found. Before and after hemo-

filtration, there was no evidence of surgical complications, such as major bleeding.

Effect of continuous veno-venous hemofiltration on survival and neurological outcomes

Two animals in the CVVH group and one animal in the HVHF group died before extu-

bation. All the other animals died after extubation. Figure 1 contains a survival curve

for all animals. There were no significant differences in short-term survival outcomes

between the experimental groups (log rank; sham vs. CVVH, p = 0.49; sham vs. HVHF,

p = 0.33). Neurological deficit scores 7 h after resuscitation are displayed in Fig. 2.

There were no significant differences between the groups (ANOVA; p = 0.135).

Effect of continuous veno-venous hemofiltration on plasma cytokine levels

Plasma TNFα and IL-6 levels were under detection limit in any baseline samples.

Median plasma levels of TNFα increased to 60 (43–91) pg/mL (sham), 61 (52–88) pg/mL

(CVVH), and 84 (48–130) pg/mL (HVHF) at 1 h, respectively, and then dropped to un-

detectable levels at 6 h. Median plasma levels of IL-6 increased to 967 (151–4336), 2308

(919–10,396), and 4765 (1725–10,557) pg/mL at 2 h, respectively, and high levels of IL-6

continued through 6 h. There were no significant differences in plasma levels of TNFα or

IL-6 between three groups at any time (Fig. 3a, b). A cumulative amount of IL-6 in efflu-

ent samples obtained by two differing settings of CVVH is shown in Fig. 4. IL-6 was re-

moved by both settings of CVVH. TNFα was not detected in most of the effluent samples

(data not reported in detail).

Effect of continuous veno-venous hemofiltration on arterial blood pressure

MAP during the first hour of post-CA is shown in Fig. 5. MAP measurement takes at

30-min mark for all three groups. In the sham group, MAP elevated 1.53-fold higher

than the baseline (133 ± 26 mmHg). In the second group, CVVH, MAP increased
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1.44-fold higher than the baseline (118 ± 22 mmHg). In the third group, HVHF, MAP

increased 1.27-fold higher than the baseline (98 ± 25 mmHg). The peak MAP during

1-h period of post-CA was significantly reduced in the HVHF group compared to

that of the sham group (p < 0.01). These results indicate that HVHF sufficiently re-

duced increased MAP in early post-CA. There were no significant differences in

MAP between the three groups following this time.

Discussion
In order to understand the effect of hemofiltration rates on blood cytokine levels and out-

comes of refractory CA victims, we evaluated the efficacy of high (105–135 mL/kg/h) or

standard (35–45 mL/kg/h) filtration rates of CVVH on blood cytokine levels and survival

in rats after prolonged CA treated with CPB. To our knowledge, this is the first study

evaluating the effect of two filtration rates of CVVH using this model. In this study, we

(hrs)

Fig. 1 Short-term survival after resuscitation compared between the three experimental groups. Continuous
veno-venous hemofiltration therapy did not improve survival in both settings of hemofiltration (analyzed by
log rank; sham vs. CVVH, p = 0.49; sham vs. HVHF, p = 0.33). CVVH indicates standard volume continuous veno-
venouse hemofiltration; HVHF high-volume hemofiltration
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Fig. 2 Neurological deficit scores at 7 h after resuscitation compared between the three experimental groups.
Continuous veno-venous hemofiltration therapy did not improve neurological function at 7 h after resuscitation
in both settings of hemofiltration (analyzed by ANOVA p = 0.135). Neurological deficit score is ranged between
0 and 100 %: 0 %, normal, and 100 %, brain-dead. CVVH indicates standard volume continuous veno-venouse
hemofiltration; HVHF high-volume hemofiltration
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did not find significant differences in survival outcomes or peripheral blood levels of

TNFα and IL-6 between the experimental three groups.

TNFα, one of the pivotal ligands in death receptor pathway of apoptosis [26], is an in-

flammatory cytokine that can induce IL-6 expression [27, 28]. It is thought that these

cytokines are associated with outcomes in sepsis [28, 29]. The molecular weight of

monomeric TNFα is 17 kD and that of IL-6 is 25 kD [30]. Our experimental hemofilter,

with which internal diameter of the fiber is 240 μm, is reported to have an in vivo cut-

off value of 35–40 kD [31]. CVVH using this filter is likely to contribute for removing

TNFα and IL-6 from the circulating blood. Callaway et al. [7], using a rat model, found

that 8 min of asphyxia triggered the release of inflammatory cytokines to the peripheral

blood. It was also reported that therapeutic hypothermia did not alter the inflammatory

response in cytokine levels. The possible explanation for the lack of effect of

hypothermia was that 8 min of asphyxia was not long enough to demonstrate deleteri-

ous effects of systematic cytokine release. For this reason, 12 min of asphyxia time was

applied in our study. As expected, a considerable amount of both cytokines, TNFα and

IL-6, were detected in the circulating blood in our animal model.
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Fig. 3 a Blood TNFα levels as a function of time compared between the three experimental groups. Continuous
veno-venous hemofiltration therapy did not affect blood levels of TNFα during 6 h after resuscitation (analyzed by
ANOVA p = 0.302, 0.709, 0.061, 0.804, and 0.351 at 30, 60, 120, 180, and 360 min after resuscitation, respectively).
CVVH indicates standard volume continuous veno-venouse hemofiltration; HVHF high-volume hemofiltration.
b Blood IL-6 levels as a function of time compared between the three experimental groups. Continuous veno-
venous hemofiltration therapy did not affect blood levels of IL-6 during 6 h after resuscitation (analyzed by
ANOVA p = 0.385, 0.444, 0.069, 0.188, and 0.228 at 30, 60, 120, 180, and 360 min after resuscitation, respectively).
CVVH indicates standard volume continuous veno-venouse hemofiltration; HVHF high-volume hemofiltration
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However, we did not find any differences in blood levels of TNFα or IL-6 compared

between the experimental three groups (Fig. 3). Data from our study raised two ques-

tions: (a) was CVVH able to remove these molecules from the blood? and (b) were the

filtration rates sufficient enough to show its efficacy?

To determine if CVVH could remove cytokines from the blood, we investigated the siev-

ing coefficient (SC) of the investigational hemofilter, AN69ST, on IL-6 (Additional file 4:

Table E2). This result supports that CVVH operation can successfully remove IL-6 for a

period of 6 h, keeping the SC to approximately 0.3.

To determine if the filtration rates were sufficient, we made a model for a prediction

of blood IL-6 levels (Additional file 5: Figure E3). On the basis of this estimate, assum-

ing no extra-IL-6 generation relating to the CVVH operation, blood IL-6 levels were

expected to slightly decrease. In addition, because the investigational hemofilter of

AN69ST is highly biocompatible, this filter is thought to have some adsorptive abilities

to increase the cytokine removal [21, 30, 32].
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Fig. 4 Cumulative amount of IL-6 in effluent removed from the circulating blood. CVVH indicates standard
volume continuous veno-venouse hemofiltration; HVHF high-volume hemofiltration
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Fig. 5 Mean arterial pressure during the first 1 h after resuscitation compared between the three experimental
groups. MAP of three groups increased above baseline levels shortly after the return of spontaneous circulation.
MAP of the HVHF group at 24, 27, and 30 min after resuscitation was significantly lower than the sham group
(p< 0.05, p< 0.01, p< 0.05, respectively). CVVH indicates standard volume continuous veno-venouse hemofiltration;
HVHF high-volume hemofiltration

Shinozaki et al. Intensive Care Medicine Experimental  (2016) 4:25 Page 8 of 13



Other researchers have previously examined the effect of CVVH using several hemo-

filtration settings in animal models or human clinical study [19–21, 33–35]. All of these

studies succeeded in showing the beneficial effects of CVVH. Figure 6 shows clearance

(K) × time of IL-6 removal for all these studies including our present work. According

to the figure, the study on resuscitated CA patients [19] and ischemia animals followed

by reperfusion with CPB [20] used a greater setting of Kt than our study. The difference

in Kt values could explain the confliction of results in our study with others. Consistently,

Combes et al. [18] recently reported no beneficial impacts of early high-volume hemofil-

tration at a relatively low filtration rate of 80 mL/kg/h on clinical outcomes of shock

patients after cardiac surgery with CPB. The results might be explained by insufficient

rates of filtration volume. Therefore, it could be inferred that a large Kt, greater filtration

volume, and/or longer operation time might be needed to treat hypercytokinemia after

global ischemia/reperfusion injury with CPB, which may benefit patient survival.

Kellum et al. [34] reported blood IL-6 levels during the hemofiltration in sepsis. They

showed significantly lower blood IL-6 levels (17 pg/mL) in hemofiltration-treated ani-

mals than non-treated animals (62 pg/mL) using the cecal ligation and puncture model
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Fig. 6 Final blood concentration of targeted molecules by clearance and operating time of hemofiltration.
Assuming no generation of targeted molecules, the figure estimates the blood concentration at the end of
hemofiltration expressed as a percentage of the initial concentration. These numbers are calculated by
clearance (mL/kg/min) and operating time (h) of hemofiltration. The calculation was derived from the following
general equation including clearance, operation time of hemofiltration, and the blood concentration of

molecules [40]: C ¼ C0⋅e−
K⋅t
V , where C is the blood concentration at the end of hemofiltration and C0 (at the

beginning) is set at 1. V (mL/kg) is the total body water assumed that the body was 60 % water by weight
(600 mL/kg), t is operational time (min) of hemofiltration, and K (mL/kg/min) is the clearance of investigated
filters that can be replaced with SC (sieving coefficient) × Qf (filtration rates, mL/kg/min) [41] in the filtration
technique. A period of time was given as a range of 0–2, 2–4, 4–6, 6–10, and 10–infinity hours in this figure
(expressed as gray color gradation). Marks numbering from 1 to 8 displayed referenced reports on IL-6 removal;
1 and 2 are referring to two differing settings of our study (1 is for standard volume hemofiltration and 2 is for
high-volume hemofiltration); 3, Laurent et al. [19] and 4, Nagashima et al. [20], studies on whole-body ischemia/
reperfusion injury; 5, Kellum et al. [34], 6, Bellomo et al. [21], 7, Lu et al. [35], and 8, Rogiers et al. [33], studies on
a sepsis animal model. The studies, 1, 2, and 5–8, used the same filter of AN69; therefore, SC was set at 0.3
according to our pilot data. For the other studies, 3 and 4, SC was arbitrarily set at 0.3–1.0 because of the larger
porosity of their investigated filters, which are made from high-flux hollow-fibers
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of rats. Blood IL-6 levels of their study are much lower than those of our study. Therefore,

it appears that the reported sepsis models, where hemofiltration was effective, may have

resulted in lower cytokine levels when compared to our injury model.

We found that increased MAP was significantly reduced in the HVHF group during

the first 60 min after CPB. The finding, elevation of MAP with ischemia/reperfusion,

was consistent with previous reports. Grootendorst et al. [36] reported that MAP in-

creased during superior mesenteric artery clamping, and it was improved by hemofil-

tration. Also, Lu et al. [35] found that hemofiltration attenuated the increased plasma

levels of dopamine and endothelin-1 in a septic shock animal model. Therefore, it is in-

ferred in our study that HVHF might remove excess vaso-constrictive mediators from

the circulating blood, and increased MAP was improved as a result. However, our study

was not designed to study the hemodynamic effect of CVVH. Therefore, further studies

will be necessary to validate an effectiveness of HVHF on humoral mediators of the

cardiovascular system in whole-body ischemia/reperfusion injury.

There are several important limitations in our study. First, our model is different

than the typical clinical case of CA treated with conventional CPR. In clinical situ-

ations, conventional CPR is immediately initiated when the patient has a CA. After

a certain period of CPR, CPB might be implemented if required/possible [3]. How-

ever, to avoid possible confounders in animal models associated with CPR, such as

inconsistent blood circulation during CPR, case-by-case pattern of ROSC achieve-

ment, and inconsistency of ROSC rates, we did not include CPR in our model.

Although our model did not exactly mimic clinical practice, our model provides

sufficient platform to test the potential therapeutic effects of CVVH on patients after

refractory CA treated with CPB.

Secondly, CPB itself might activate inflammatory responses [37]. Therefore, our small

rodent injury model might have greater inflammatory responses as compared to a typ-

ical CA plus CPR model in rodents [38, 39]. It is difficult to distinguish whether CA,

CPB, or both are responsible for the inflammatory response after CA in our model.

Therefore, this can be the potential reason that the treatment groups did not show ben-

efits on outcomes. Future studies may wish to consider effects of CVVH or HVHF

using a CA model with conventional CPR.

The sample size of this study is not adequate to detect the statistical significance

of differences in survival outcomes between the groups. The outcome assessment

was not blinded from the procedures, and it might include potential bias of this

study. And also, technical difficulties of HVHF, such as increased friction fraction

rates due to limited blood flow from small animals, might lessen the benefit of

hemofiltration.

Lastly, as compared to clinical practice, we used a shorter period of CVVH oper-

ation and post-CA treatment, such as the intubation and mechanical ventilation

support. Therefore, according to Kt/V theory, it might be possible that a longer

period of CVVH could affect outcomes if the adequate time of post-CA treatment

is combined. All animals developed anemia after CPB reperfusion. However, as we

previously mentioned [23], the anemia was not an intentional part of the model in

this trial. In addition, although a CVVH circuit potentially aggravated the anemia,

we did not find any differences in hematocrit values between the groups at any

time (data were not shown).
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Conclusions
Neither standard volume continuous veno-venous hemofiltration nor high-volume

hemofiltration had any effect on blood TNFα or IL-6 levels in a rodent model of

prolonged CA treated with CPB. In this study, we did not find beneficial effects of

hemofiltration on neurological or survival outcomes of the animals.
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Additional file 1: Figure E1. Experimental Protocol. Flow rates shown in this figure were typical of our
experiments. ICU indicates intensive care unit; CPB, cardiopulmonary bypass; CVVH, continuous veno-venous
hemofiltration. (PPTX 68 kb)

Additional file 2: Figure E2a. Schematic of the rodent continuous veno-venous hemofiltration circuit combined
with emergency cardiopulmonary bypass circuit. The letters indicate the location of monitoring and circuit
components; A, out flow tube for two extra corporeal circuits; B, venous reservoir; C, roller pump; D, oxygenator of
cardiopulmonary bypass; E, inflow tube for cardiopulmonary bypass; F, outflow for continuous venovenous hemofil-
tration; G, flow sensor; H, pressure sensor at pre-filter; I, pressure sensor at side hole; J, filtration (effluent) pump;
K, screw clamp; L, inflow tube for continuous venovenous hemofiltration; M, replacement infusion pump. Figure E2b.
Schematic of the rodent continuous veno-venous hemofiltration circuit. The letters indicate the location of monitoring
and circuit components; A, roller pump; B, outflow for continuous venovenous hemofiltration; C, pressure sensor at
pre-filter; D, pressure sensor at side hole; E, filtration (effluent) pump; F, screw clamp; G, inflow tube for continuous
venovenous hemofiltration; H, replacement infusion pump.Flow rates demonstrated in schematic were the typical
settings of two extra corporeal circuits. Filtration and replacement fluid rates in the CVVH group were 20 mL/h and
those in the HVHF group were 60 mL/h. (PPTX 563 kb)

Additional file 3: Figure E4 a and b. Blood gas analysis (PaO2 and PaCO2) as a function of time compared
between the three experimental groups. There were no differences between the three groups. (PPTX 131 kb)

Additional file 4: Additional manuscript. The contents include methods and results of "Estimated Blood Levels of
IL-6 during CVVH Operation", "Blood Gas Analysis", "Table E1. Basal characteristics and resuscitation data of
randomized animals" and "Table E2. Efficacy of hemofilter on IL-6 removal from circulating blood". (DOCX 305 kb)

Additional file 5: Figure E3. Predicted blood levels of IL-6 compared between differing settings of
hemofiltration. This estimate was based on mean blood levels of sham animals in this study. The sigmoid trend
curve was generated by fitting the two-parameter logistic curve to our data. Sieving coefficient of our investigated
hemofilter was set at 0.3. We assumed that a total volume of 600 mL was purified using CVVH in our model.
This number was made by a calculation of 1000 g × 60 %, where 1000 g was an unit weight (kg) and 60 % was
a rate of body water contained in the animal body. (PPTX 93.4 kb)
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