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Abstract: Epilepsy is a common neurological disorder; 1% of people worldwide have epilepsy.
Differentiating epileptic seizures from other acute neurological disorders in a clinical setting can
be challenging. Approximately one-third of patients have drug-resistant epilepsy that is not well
controlled by current antiepileptic drug therapy. Surgical treatment is potentially curative if the
epileptogenic focus is accurately localized. Diffusion-weighted imaging (DWI) is an advanced
magnetic resonance imaging technique that is sensitive to the diffusion of water molecules and
provides additional information on the microstructure of tissue. Qualitative and quantitative analysis
of peri-ictal, postictal, and interictal diffusion images can aid the differential diagnosis of seizures
and seizure foci localization. This review focused on the fundamentals of DWI and its associated
techniques, such as apparent diffusion coefficient, diffusion tensor imaging, and tractography, as
well as their impact on epilepsy in terms of differential diagnosis, epileptic foci determination, and
prognosis prediction.

Keywords: diffusion-weighted imaging; epilepsy; seizure; ictal; magnetic resonance imaging;
tractography

1. Introduction

Epilepsy is a chronic disease of the brain, which not only increases morbidity and
mortality but also profoundly affects patients’ quality of life, education, and career. The
prevalence of epilepsy [1] was estimated to be 6.38 per 1000 persons, affecting approximately
70 million people worldwide, with a lifetime prevalence of 7.60 per 1000 persons. Although
60–70% of patients with epilepsy can achieve satisfactory control through antiepileptic
drug (AED) therapy alone, 13.6–25% have drug-resistant epilepsy (DRE), necessitating
additional nonpharmacological therapies such as epilepsy surgery, ketogenic diet, vagus
nerve stimulation, and cortical stimulation [2,3].

Brain imaging plays a vital role in the diagnosis and treatment of epilepsy, espe-
cially when epilepsy surgery is being considered for a patient with DRE. Advancements
in magnetic resonance imaging (MRI) technology, acquisition protocols, and image pro-
cessing methods have led to many improvements in brain imaging of epileptic areas in
terms of the identification of seizure origin and etiology and preoperative evaluation.
Diffusion-weighted imaging (DWI) is highly sensitive to early neuronal damage in stroke
and seizures. DWI-associated technologies include apparent diffusion coefficient (ADC),
diffusion tensor imaging (DTI), and fiber tractography, all of which play vital roles in the
aforementioned tasks.

In this review, we focused on the development of DWI and its associated techniques,
such as DTI, ADC, and tractography, as well as their impact on the diagnosis and treatment
of epilepsy, including epilepsy surgery. We begin with the history of the development of
DWI and the concept of this technique. We then review the current studies on transient
DWI changes in epilepsy in clinical practice, which is followed by a summary of DWI
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and related techniques in epilepsy surgery. Finally, we discuss some images of cases of
epilepsy with DWI changes in different conditions from our hospital, National Cheng Kung
University Hospital, in Tainan, Taiwan.

2. Scope of Review

We searched PubMed, MEDLINE, and LANCET databases for English-language, peer-
reviewed journal articles, including original articles, case reports, clinical trials, reviews,
meta-analyses, and systematic reviews, published between 1995 and 31 July 2022. We
excluded letters because of the insufficient amount of information. The main search terms
were “diffusion-weighted imaging OR Magnetic Resonance Imaging” AND “seizure OR
epilepsy”. Additional key search terms included “peri-ictal”, “postictal”, “interictal”,
“stroke mimics”, “epilepsy surgery”, “prognosis”, “epileptogenic foci”, “TGA”, “limbic
encephalitis”, “CJD”, “PRES”. After duplicates were removed from the search results, the
titles and abstracts of the remaining studies were screened for potential eligibility. Next,
full texts of the articles considered for inclusion were screened, and their references were
checked for additional studies, if necessary. Articles that did not address information
between DWI and seizure and epilepsy were excluded. A total of 72 articles were included
in the review (Figure 1).
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Figure 1. Database search flowchart. DWI, Diffusion-weighted Imaging; CJD, Creutzfeldt–Jakob
disease; PRES, Posterior reversible encephalopathy syndrome; ADC, Apparent diffusion coefficient;
TGA, transient global amnesia; MRI, magnetic resonance imaging.

3. DWI: Basic Concept

DWI is an advanced magnetic resonance technique that has revolutionized diagnostic
imaging. The origin of DWI can be traced back to concepts proposed by Carr and Purcell,
who observed nuclear magnetic resonance effects on molecular diffusion in 1954 [4]. In
1965 [5], Stejskal and Tanner established the basis of image acquisition methods used in
modern clinical DWI MR by applying short-duration gradient pulses to obtain diffusion
sensitization. However, the requirement for hardware and software delayed its introduction
into routine clinical practice until the mid-1980s [6]. In 1986, Wesbey reported the early
medical imaging of healthy and diseased brains by using DWI, thus establishing its utility
in neuroradiology [7].

DWI measures the diffusion restriction of water molecules. In a perfectly homogenous
environment without barriers, the diffusion of water has equal probability in all directions,
which is known as Brownian motion and refers to the random motion of molecules [8].
In a complex environment of the human body, such as the brain, the normal free diffu-
sion of water molecules is confined owing to the presence of cell membranes or myelin,
macromolecules that interrupt the diffusion of smaller molecules, and microcirculatory
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effects [9,10]. Mapping the degree of water diffusion restriction enables us to establish the
microstructure at the cellular level and therefore characterize cells in pathological processes
with altering biophysical properties [11].

DWI presents a quantitative, two-dimensional map that displays the spatial distri-
bution of the diffusion rate of water within the brain. Unlike the mechanisms in T1 and
T2 relaxation, every pixel value in DWI presents diffusivity in these voxels (volume pixel).
These voxels appear hypointense with high diffusion (e.g., cerebrospinal fluid) and hyper-
intense with low diffusion (e.g., acute ischemic stroke) [12].

The ADC is quantified and indicated as the rate of diffusion in living systems, inde-
pendent of T1 and T2 relaxation. The term “apparent” relates to the fact that this motion of
molecules is also influenced by other physiological processes, such as heartbeat, breathing,
or CSF pulsation. A high ADC value and hyperintensity on ADC maps indicate areas
with a high rate of diffusion (e.g., CSF), whereas areas with restricted diffusion display
ADC hypointensity (e.g., gray and white matter). ADC maps have the advantage of avoid-
ing T2 effects that may mimic or obscure lesions on DWI. The ADC value is an absolute
quantitative measurement of water motion that can be compared between series [13].

The signal intensity in DWI (SDWI) is influenced by proton density (Pd), echo time
(TE), transverse relaxation time (T2), b-value (b), and ADC in the equation [14]:

SDWI = k × (Pd) × (e−TE/T2e−b×ADC)

where k is a constant and “b-value” denotes the sensitivity of the MR pulse sequence
to diffusion effects. According to the equation, hyperintensity on T2-weighted images
(that is, long T2) results in hyperintensity on DWI, whereas increased ADC results in
hypointensity in DWI. The interpretation of clinical studies requires an understanding of
these relationships. For example, hyperintensity in DWI may arise from the decreased
ADC of an acute infarct and the increased T2 of a tumor [14].

Notably, because the diffusion gradients are added to a T2-weighted sequence during
DWI, DWI is susceptible to various artifacts, such as T2 shine-through, T2 blackout, and
T2 washout effects [14]. The T2 shine-through effect indicates that a high signal in DWI is
not due to restricted diffusion but rather to a high T2 signal that shines through in DWI.
DWI images should be compared to ADC values to confirm true restricted diffusion. In
cases of true restricted diffusion, the region of increased DWI signal demonstrates a low
signal on ADC. On the other hand, T2 blackout is the opposite of the T2 shine-through
phenomenon. In T2 blackout, lesions with very short T2 valued reduce the signal intensity
in the DW images, potentially masking the diffusion sensitivity. The third phenomenon,
called T2 washout, would appear with isointensity on DWI in combination of hyperintensity
in T2WI and high ADC values. The T2 washout phenomenon could be seen in vasogenic
edema in posterior reversible encephalopathy syndrome (PRES) or in the subacute phase
of ischemic stroke.

Two main voxel parameters can also be extracted from DWI data: fractional anisotropy
(meaning a preferred directionality of diffusion) and mean diffusivity (meaning the overall
magnitude of diffusion). By combining the directional information and magnitude of
anisotropic diffusion of each voxel, algorithms can visualize white matter tracts in the brain
by following the pathways of unhindered water diffusion. This depends on the assumption
that voxels with a similar direction of primary anisotropic diffusion are likely to be the same
white matter tract. This is called tractography [10]. In tractography, major white matter
tracts, such as corticospinal tracts, optic radiation, and arcuate fasciculus, are localized;
tractography can thus help reduce damage during epilepsy surgery.

In summary, DWI has been widely used for detecting early ischemic infarction because
of its higher sensitivity to early-onset pathophysiologic changes than that of T2-weighted
images, even minutes after ischemic attacks [15]. It remains hyperintense within the first
weeks after stroke [16,17]. In addition to ischemic lesions, DWI helps identify acute signal
changes in other neurological diseases. Tractography provides useful information regarding



Diagnostics 2022, 12, 2602 4 of 14

the complex normal and abnormal neural networks and can guide the planning of brain
tumor resection and postoperative neurological recovery.

4. DWI and Epilepsy
4.1. Cytotoxic, Ionic, and Vasogenic Edema

Cytotoxic edema is intracellular fluid accumulation without disrupting the blood–
brain barrier [18]. It can occur through several mechanisms, such as the uptake of glutamate
by a Na+-dependent mechanism and glutamate-induced AMPA receptor activation, result-
ing in Na+ entry [19]. The increased number of ions and neurotransmitters in cells creates
osmotic gradients that lead to an influx of water through aquaporins and cell swelling. This
causes hyperintensity in DWI and hypointensity in ADC (Table 1).

Table 1. Three types of MRI abnormalities in DWI, ADC, and T2WI sequences.

DWI ADC T2WI Mechanism

Cytotoxic edema (acute phase ischemic infarction),
abscess, demyelination ↑ ↓ ? Diffusion restriction

CSF, chronic phase ischemic infarction ↓ ↑↑ ↑ Increased water diffusion

Vasogenic edema ↑ ↑ ↑ T2 shine through

CSF, cerebrospinal fluid; DWI, diffusion-weighted Imaging; T2 FLAIR, T2-weighted fluid attenuated inversion
recovery; ADC, apparent diffusion coefficient. ↑ indicates hyperintensity, down arrow; ↓ indicates hypointensity;
? indicates variable level of cellular death in diseases process.

Vasogenic edema, which occurs because of blood–brain barrier disruption, leads to
the diffusion of plasma from the vessel to interstitial space and causes fluid accumulation
in the extracellular space [20]. Because of the increased diffusion rate of water in the
interstitial space, the signals become hyperintense on the ADC. However, the signals
become hyperintense in DWI as well because of the T2 shine-through effect from T2WI.

Notably, cytotoxic and vasogenic edema are not discrete events but a continuum of
conditions. The third form of edema is ionic edema, which represents an intermediate
transformation between cytotoxic and vasogenic edema.

Neuroimaging changes in brain edema in T2WI, DWI, and ADC indicate distinct
spatiotemporal evolution and a mixture of cytotoxic, ionic, and vasogenic edema in the
process of infarction, seizure, infection, or tumors (Figure 2).
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4.2. Peri-ictal or Postictal MRI Changes

At the cellular level, interictal epileptiform discharge represents synchronous depo-
larization in a small neuronal pool. It then turns into highly repetitive discharges during
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seizure episodes and usually has sparse epileptiform discharge postictally. The ictal depo-
larizations may lead to a massive Na+ and Ca2+ influx, followed by water influx and K+

efflux, which may temporarily break down the Na+ /K+ adenosine triphosphatase pump.
This causes a net translocation of water from the extracellular to intracellular space [20,21].
This is now the commonly accepted theory of reduced water diffusion which leads to high
signals in DWI and a reduction in ADC.

Other findings have been observed in magnetic resonance spectroscopy (MRS). During
seizures, the regional metabolic rate surges and results in higher blood flow to maintain
the demand, but the oxygen supply remains insufficient, leading to lactate accumulation
and worsening cytotoxic edema. Studies have observed increased DWI signals, decreased
ADC, the appearance of lactate, and decreases in N-acetyl aspartate in MRS [22].

In 1997, Wieshmann et al. reported a case of a patient with status epilepticus and the
associated changes in DWI and ADC [23]. DWI of this patient revealed common changes
during focal status epilepticus—decreased diffusion in the cortex and increased diffusion
in the associated subcortical white matter—and during transient paresis; these changes
indicated resolution preceding functional recovery.

Most studies on single seizure or status epilepticus since have also revealed that the
restriction of diffusion becomes normal after seizure cessation. This phenomenon is called
seizure-induced reversible MRI abnormalities (SRMA).

4.3. SRMA
4.3.1. Duration

The duration of normalization in DWI after seizure activities was explored in a prospec-
tive study in 2006 [24]. The researchers reported that the diffusion abnormality returned
to the interictal levels in a median of 46 min after the initial postictal scan. Notably, their
results also suggest that the diffusion abnormality in single seizures occurs more rapidly
and more transiently than in status epilepticus (SE).

In 2018, a German retrospective study on MRI performed within 24 h after seizure
occurrence observed DWI restrictions in 19% of patients with SE or a series of seizures, in
3% after single focal seizures, and in 2.5% after single generalized seizures [25]. Although
the signal changes appeared during the SE in some patients, the median time to SRMA
appearance and resolution was 24 h and 96.5 days, respectively [26,27]. In patients with
a single seizure, SRMA was observed as early as six hours from the seizure onset and
resolved completely in as early as five days [28,29].

4.3.2. Frequency

The frequency of detected MRI abnormalities varied considerably, between 0.007%
after a single seizure or seizure clustering [24,30] and 29.4% after SE [24,31,32], possi-
bly because of the data heterogeneity, retrospective design, and limited sample size of
these studies.

4.3.3. Location

A 2021 systematic review [27] of cases with SE and MRI findings from 1987 to 2018
revealed five stereotypical features of SRMA involving the cortex, subcortical region,
hippocampus, claustrum, and splenium. MRI abnormalities were mainly reported on
T2-weighted sequences, followed by diffusion-weighted images. However, these locations
can vary depending on etiologies and epileptogenic foci.

Studies have reported that the medial pulvinar is highly involved in temporal lobe
SE, with approximately 54.5% of patients exhibiting DWI restriction, possibly through the
cortico-thalamic network [33]. DWI abnormalities were observed more in the left temporal
SE than in the right temporal SE.

When associated with electroencephalography (EEG), these peri-ictal DWI changes
are often associated with ipsilateral EEG abnormalities in SE [34,35] or with ipsilateral
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lateralized periodic discharges (LPD) [36], although interpreting LPD as an interictal or
peri-ictal pattern remains difficult [37].

4.3.4. Localization

Focal cortical dysplasia, hippocampal sclerosis, polymicrogyria, and ganglioglioma are
typical structural lesions in patients with drug-resistant focal epilepsy. Their detection and
precise mapping before surgery are critical to determining whether these lesions are part
of the epileptic zone; otherwise, their incomplete removal can result in seizure recurrence.
This, however, is challenging in patients with focal epilepsy without visible lesions on MRI.
Generally, in patients with newly diagnosed focal epilepsy, 18.7% have MR abnormalities
that are considered epilepsy related [38].

One study indicated that DWI changes, if scanned within 150 min of EEG-documented
seizures, could have localization value in temporal lobe epilepsy [37]. Nevertheless, as the
change in DWI is less likely to be persistent, its clinical value is uncertain.

4.3.5. SE

SE is easier to diagnose in emergency departments, but differentiating patients with
first-time seizures and those in the postictal state from those with infarction may be difficult.
Brain MR images may help in the differential diagnosis.

A retrospective review of 431 patients in 2017 provided a general view of MRI ab-
normalities in patients arriving at the ER with seizures [30]. They observed that 11 of
69 patients (15.9%) with first-time seizures in the emergency room had transient changes in
the MRI. Of these, seven (63.6%) were diagnosed as having SE. The topography of these
signal changes tends to involve the hippocampus, thalamus, and cortex, especially the ipsi-
lateral side. This implies high network connectivity between these structures, making them
all simultaneously vulnerable during the ictal phase. However, the cortex involved can
extend beyond the vascular territory. Finally, these regions tend to exhibit hyperperfusion.

Another similar German study yielded the same conclusion. They reported DWI
alterations in 3% of patients with single focal seizure, 19% in all patients with SE, and up to
56% in patients with focal SE. They implied that the restrictions observed in DWI after a
single seizure tend not to present as a classical garland-like pattern in the cortex, and they
were also much smaller and challenging to detect [25].

Excitotoxicity and edema can sometimes lead to permanent cellular damage and
irreversible change [36,39]. As a result, more variable DWI findings are observed in
patients with SE than in those with a single seizure [40], as a mixture of cytotoxic and
vasogenic, reversible, and irreversible changes are present.

4.3.6. Is DWI Necessary in Routine MRI in Epilepsy?

Structural MRI is fundamental for diagnosing and treating generalized and focal
epilepsy. To broadly identify etiologies in DRE, the Neuroimaging Task Force recommends
the use of the Harmonized Neuroimaging of Epilepsy Structural Sequences (HARNESS-
MRI) protocol, as these sequences are available on most MRI machines regardless of the
clinical setting and country. This protocol suggests using isotropic, millimetric 3D T1 and
FLAIR images and high-resolution 2D sub-millimetric T2 images to obtain enough information.

DWI is not necessary for all patients with epilepsy undergoing epilepsy presurgi-
cal evaluation, but DWI-derived parameters can provide further information for certain
pathologies such as hippocampal sclerosis. The purposes of DWI used in epilepsy nowa-
days mainly focus on two things: (A) distinguishing epilepsy from other etiologies or
(B) white matter network evaluation before and after surgery.

5. DWI and Epilepsy Surgery

The goal of epilepsy surgery is to obtain permanent seizure freedom while causing no
or minimal deficit of functions. This requires a detailed and comprehensive survey of the
associated cortex, white matter tracts, and networks involved in the surgery. During the
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preoperative evaluation, the delineation of language, motor, and visual cortexes and their
white matter tracts is essential if these structural lesions are close. Now, accumulative data
indicate the high reliability of functional MRI and DTI techniques in achieving this goal.

Unlike fMRI, used for identifying the eloquent cortex, DTI is a technique to measure
the diffusivity of water molecules and thus enables visualization and evaluation of the
integrity of the tract. The value of DTI depends on the mean diffusivity (MD) and fractional
anisotropy (FA). MD provides the overall magnitude of water diffusivity, and FA represents
the dominant direction of water motion. DTI tractography connects a nearby voxel with a
similar direction of water diffusion and then generates the tracts within the white matter.
At least 90% of voxels in the brain contain more than one fiber direction [41,42]; therefore,
researchers are studying more complex analytical models that do not fit the simplified
assumption that only one major fiber direction exists in one voxel.

5.1. Motor Function Evaluation

Tractography, along with fMRI, is implemented in the preoperative evaluation of the
corticospinal tract (CST) [43]. Previously, CST was believed to originate mainly from the
precentral gyrus, the primary motor cortex, whereas, in 2009, a study [44] indicated that the
origin of CST is located in both pre- and post-central gyri in 71% of healthy children rather
than confined to the precentral gyrus. In addition, the CST is modified either in origin or
track if early structural abnormalities occur. The identification of CST with tractography
can be beneficial in frontal lobe surgery, especially for children for whom undergoing fMRI
would be challenging. One study [45] revealed similar localization and risk-predictive
values in tractography and invasive electrical stimulation mapping.

5.2. Visual Field Evaluation

Temporal lobe epilepsy is a seizure originating in the temporal lobe, and anterior
temporal lobe resection combined with amygdalohippocampectomy remains one of the
most effective treatments. Nevertheless, more than half of patients undergoing these
operations develop visual field deficits [46].

Many clinical studies have focused on optic radiation damage, especially Meyer’s loop
during anterior temporal lobe resection, which can cause profound visual field deficit [47].
The display of tractography during surgery and the use of intraoperative MRI can reduce
the risk of visual field deficit.

5.3. Language Evaluation

The major structure of interest in the language network is the arcuate fasciculus, which
connects Wernicke’s and Broca’s areas. It is easily damaged during frontotemporal resection
surgery. However, the arcuate fasciculus is not the only structure in the network. The
condition becomes more complicated because the complex language pathway involves the
premotor cortex and inferior parietal regions [48–50]. These pathways can be more atypical
and harder to recognize because of early brain injury, malformation, or chronic epilepsy,
leading to reorganization [51].

In addition to the current gold-standard method of using electrical stimulation map-
ping, some alternatively noninvasive and approachable methods, such as the DWI-MAP
classifier, have been established, which exhibits 77% accuracy in normal children and 82%
accuracy in children with focal epilepsy for predicting language activation areas [52].

5.4. Presurgical Differential Diagnosis

Differential diagnosis before surgery is critical to guiding treatment strategy. In chil-
dren, focal cortical dysplasia, dysembryoplastic neuroepithelial tumors, and gangliogliomas
share similar clinical features and cannot be easily distinguished using conventional MRI
alone. Combining conventional MRI, ADC, and MRS facilitates separation [53].
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6. Clinical Aspects of DWI in Epilepsy
6.1. Differential Diagnosis
6.1.1. Acute Ischemic Stroke

In the emergency room, epileptic seizures are a leading cause of stroke mimics. Since
the 19th century, seizures have been recognized as a cause of focal paresis, and Todd’s
paresis can be short, mimicking transient ischemic attack [54]. Postictal aphasia has been
documented after a dominant hemisphere seizure [55]. These deficits can last for days in
the case of generalized seizures. Hence, if seizure episodes (especially the ictal phase) are
not witnessed, these conditions can be mistakenly identified as vascular events.

A 2021 systematic review [54] included 61 studies with 62,664 patients with stroke
and stated that the stroke mimic rate was nearly 25%, with 13% of stroke mimics involving
epileptic seizures. Although some similarities exist in the initial clinical symptoms of stroke
and epileptic seizures, the underlying mechanisms and physiological changes differ, as do
the MRI changes.

DWI hyperintensity and ADC hypointensity can be observed within one hour of mid-
dle cerebral artery occlusion, followed by T2WI hyperintensity appearing 2–3 h later, which
indicates irreversible changes due to cell death. Differentiating an epileptic seizure from
early cortical ischemic stroke through MRI alone is challenging. However, some changes,
such as nonvascular distribution, absent vascular occlusion, and normal or increased
perfusion, suggest epileptic origin (Table 2 and Figure 3).
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Figure 3. (A) Status epilepticus presents a left frontal cortical hyperintensity in DWI; (B) acute
ischemic infarction in right ACA territory with DWI hyperintensity; (C) autoimmune encephalitis
presents with bilateral hyperintensity in DWI and T2 FLAIR; (D) dot-like hyperintensity of DWI in
TGA; (E) diffuse gyriform hyperintensity of DWI in cerebral cortex in sCJD; (F) bilateral hyperintensity
of T2 FLAIR in white matter regions without abnormalities in DWI in PRES.

DWI reversal can also be observed after early treatment with tPA or endovascular
therapy because of reperfusion of the ischemic tissue [56,57]. This may be more common in
patients with epilepsy; however, DWI reversal in ischemia tends to occur in the penumbra
area, whereas in epilepsy, it tends to occur in the cortex and associated network structures.
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Notably, seizures accompany ischemic stroke, especially when cortical regions are
involved in embolic stroke. Approximately 3.8% of all patients with stroke had an early
seizure (within 7–14 days of stroke), whereas only 1.5% had a seizure upon stroke onset [58].
In this case, DWI changes are more likely due to ischemia than to seizure itself.

6.1.2. Transient Epileptic Amnesia and Transient Global Amnesia

Transient global amnesia is a distinct clinical syndrome with sudden onset and dra-
matic anterograde amnesia lasting mostly less than 24 h. The underlying mechanism
remains unknown, but it was believed to be a transient disturbance to specific hippocampal
circuits in memory processing [59,60]. However, transient epileptic amnesia (TEA) syn-
drome can be a much more underdiagnosed disease, especially when it presents only slight
or no typical epileptic manifestations. TEA is believed to be due to focal ictal discharges,
usually within the temporal lobe.

These two disorders present with similar symptoms initially and differentiating them
is challenging at first. A 2018 retrospective study in Italy revealed that patients with TEA
tend to have a recurrence of symptoms, confusion state, or language disturbance. No
significant difference in the symptom duration between TGA and TEA was observed, even
though symptoms are believed to last shorter in TEA. The 24 h EEG revealed great values
in TEA, especially during sleep. DWI in MR images indicated typical lateral hippocampus
dot-like hyperintensity in TGA and less in patients with TEA. A 2021 retrospective study
including 201 patients with TGA concluded that the detection rates were highest 2–4 days
after symptom onset by using DWI and 2D/3D T2 FLAIR [61].

6.1.3. Limbic Encephalitis

Limbic encephalitis means inflammation or infection that affects the limbic system,
which must be differentiated from vascular or neoplasm etiologies. MRI remains the
main neuroimaging technique for performing a more comprehensive brain analysis. In a
retrospective review of 251 suspected cases of encephalitis with temporal lobe abnormal-
ities in MRI [62], herpes simplex encephalitis comprised nearly 25% of cases. Unilateral
rather than bilateral temporal lobe changes, insular involvement, and the absence of basal
ganglia involvement suggest herpes simplex encephalitis rather than autoimmune limbic
encephalitis. The abnormalities are mostly observed in the T2WI sequence.

The use of DWI images also helps to further distinguish seizure occurrence from limbic
encephalitis [63]. In 2020, a study conducted by Mayo Clinic [64] identified two patterns of
DWI abnormalities specific to seizure activities (Table 2 and Figure 3): gyriform hippocam-
pal diffusion restriction (Pattern 1) and diffuse hippocampal diffusion restriction that spares
the most medial temporal lobe structures (Pattern 2). These findings can raise concern
regarding seizures, even in patients with limbic encephalitis, and highlight the need for
AEDs to prevent further neuronal damage because of repetitive seizures.

Table 2. Summary of common neurological disorders associated with DWI changes.

DWI Location DWI Change in Time T2 FLAIR Other Features

Epilepsy

- Commonly involves
(1) cortex, (2) subcortical
region, (3) hippocampus,
(4) claustrum,
(5) splenium (6) pulvinar
- Nonvascular distribution

Hyperintensity can occur
within hours and resolve
within days to weeks
depending on severity
and etiologies

Hyperintensities may
appear if structural lesions
exist or irreversible cell
death occurs

Absent vascular occlusion

Ischemic stroke Distributed within
vascular territories

Hyperintensities can occur
within minutes and reach
a peak after days before
gradually reducing

Hyperintensities persist in
the ischemia sites for years

DWI reversal may occur
after early reperfusion
with t-PA or endovas-
cular therapy
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Table 2. Cont.

DWI Location DWI Change in Time T2 FLAIR Other Features

limbic encephalitis May involve uncus,
amygdala, hippocampus

Nonspecific patterns
(requires further research)

Autoimmune: bilateral
mesial temporal lobe
Infectious: unilateral
temporal lobe, insular
involvement, absence of
basal ganglion.

Two patterns raise
concerns regarding
seizure: (A) gyriform
hippocampal restriction
and (B) diffuse
hippocampal diffusion
restriction that spares the
most medial temporal
lobe structures

Transient global amnesia

- Dot-like hyperintense
lesions 1–2 mm in diameter
- Commonly in the lateral
aspect of the hippocampus
(CA-1 region)

Hyperintensity appears
with a delay of 24–48 h
after onset

Hyperintensities highly
detected 2–4 days
after onset

CJD

- Mainly affects striatum
and cortex
- Gyriform hyperintensity
correlates to location of
periodic sharp-wave
complex on EEG

Hyperintensity appears
0.5–7 (mean: 1.6) months
after symptoms onset, is
progressive and persistent
over months, then
disappears in the
end phase

Isointensity to mild
hyperintensity
(DWI > T2 FLAIR)

Pulvinar sign
(symmetrical
hyperintensity in the
posterior thalamic nuclei
on DWI or T2WI) or
hockey stick sign
(affecting the dorsomedial
thalamic nuclei) specific in
vCJD, sometimes in sCJD

PRES Similar to T2WI Hypointense to isointense

- Hyperintensities appear
in the parieto-occipital,
posterior frontal cortex,
white matter
- Less commonly in the
brainstem, basal ganglia,
and cerebellum

DWI and ADC
hyperintensity indicate
vasogenic edema

DWI, Diffusion-Weighted Imaging; T2 FLAIR, T2-weighted-Fluid-Attenuated Inversion Recovery;
CJD, Creutzfeldt–Jakob disease; EEG, Electroencephalography; vCJD, variant Creutzfeldt–Jakob Dis-
ease; sCJD, sporadic Creutzfeldt–Jakob Disease; PRES, Posterior reversible encephalopathy syndrome;
ADC, Apparent diffusion coefficient.

6.1.4. Creutzfeldt–Jakob Disease

Prion diseases, previously known as transmissible spongiform encephalopathy, are fa-
tal neurodegenerative diseases that affect both human and nonhuman mammals. Creutzfeldt–
Jakob disease (CJD) is the most common human prion disease worldwide and can also
be classified as sporadic, acquired, or familial [65]. Typical sCJD cases involve a rapidly
progressive clinical course with psychiatric, visual, and memory disturbance in the early
phase, cognition dysfunction and myoclonus in the later phase, and akinetic mutism several
months after disease onset.

MRI is useful for the diagnosis of CJD. In the early phase, DWI hyperintensity appears
in the cerebral cortex and striatum. Often, the gyriform hyperintensity correlates to the
location of the periodic sharp-wave complex on EEG [66]. The average duration between
disease onset and the first observation of cerebral cortical hyperintensity on DWI was
1.6 ± 1.3 months. This DWI hyperintensity of gray matter indicates the pathology of the
spongiform change in CJD. These hyperintensity regions gradually diminish and finally
disappear in the end [67]. Compared with epilepsy, the DWI changes in CJD tend to last
longer, have broader involvement of the cortex, and disappear gradually in the late phase
(Figure 3).

6.1.5. Posterior Reversible Encephalopathy Syndrome

Posterior reversible encephalopathy syndrome (PRES) is another critical disorder
that must be identified in the early stage [68]. It is a (sub)acute condition character-
ized by various neurological symptoms, including headache, impaired visual acuity or
visual field deficits, impaired consciousness, confusion, seizures, and focal neurologi-
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cal deficits. Most patients present with elevated arterial blood pressure, in some cases
hypertensive emergencies.

The typical imaging findings of PRES include hyperintensity on T2 FLAIR in the areas
of the parieto-occipital, posterior frontal cortex, and white matter and, less commonly, in the
brainstem, basal ganglia, and cerebellum (Figure 3). It may be a form of intense vasogenic
edema, and it appears as hypo- to isointense signals on DWI and hyperintense signals
on ADC mapping [69]. The overall prognosis is favorable because clinical symptoms and
imaging lesions are reversible in most patients [70].

6.2. As a Prognostic Marker

Studies have evaluated whether MRI changes, such as those in DWI, can predict
seizure prognosis. In a retrospective single-center study involving patients with SE, the
restriction of DWI and signal abnormalities in T2WI were associated with poorer functional
conditions at discharge [71]. In patients with herpes simplex virus encephalitis, diffusion
restriction was also considered a marker of unfavorable outcomes [72].

7. Conclusions

DWI is an advanced technique in MRI. Several sequences based on DWI, such as
tractography and DTI, provide further information that helps determine epileptogenic
foci and networks for epilepsy surgery. Although the precise frequency and duration of
reversible DWI changes in patients with single seizure or status epilepticus are unclear
at this stage, studies have discovered that the etiologies, severity, and duration of seizure
are associated with distinct, more detectable, and sustained DWI changes. With the aid of
DWI changes in different disease entities, such as ischemic infarction, epilepsy, encephalitis,
TGA, CJD, and PRES, we can differentially diagnose these major neurological disorders
and understand the role of DWI in epilepsy. Studies combining sequences in MRI with
potential artificial deep learning algorithms may aid significantly in the identification of
epileptic focus in patients with epilepsy.
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