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BACKGROUND: Coronary artery disease (CAD) is accelerated in subjects with type 2 diabetes mellitus (T2D).

METHODS: To test whether this reflects differential genetic influences on CAD risk in subjects with T2D, we performed a 
systematic assessment of genetic overlap between CAD and T2D in 66 643 subjects (27 708 with CAD and 24 259 with 
T2D). Variants showing apparent association with CAD in stratified analyses or evidence of interaction were evaluated in a 
further 117 787 subjects (16 694 with CAD and 11 537 with T2D).

RESULTS: None of the previously characterized CAD loci was found to have specific effects on CAD in T2D individuals, 
and a genome-wide interaction analysis found no new variants for CAD that could be considered T2D specific. When we 
considered the overall genetic correlations between CAD and its risk factors, we found no substantial differences in these 
relationships by T2D background.

CONCLUSIONS: This study found no evidence that the genetic architecture of CAD differs in those with T2D compared with 
those without T2D.
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There is considerable variation in the presentation, 
severity, and pathology of coronary artery disease 
(CAD) between subjects with type 2 diabetes mel-

litus (T2D) and those with no history of diabetes mel-
litus. Subjects with T2D have more extensive and severe 
atherosclerosis, suffer more silent infarcts, and are more 
prone to thrombosis than subjects without diabetes 
mellitus.1–3 The mechanisms by which T2D accelerates 
CAD are poorly understood. In principle, the accelera-
tion of CAD in T2D may be attributed to features that 
jointly predispose subjects to T2D and CAD or to factors 
intrinsic to the T2D state that increase the risk of CAD, 
such as hyperglycemia, insulin resistance, and chronic 
inflammation.4

Predisposition to both CAD and T2D has a substan-
tial genetic component (with ≈163 CAD risk and ≈403 
for T2D association signals identified to date in subjects 
of European Ancestry)5,6 and Mendelian randomization 
studies support a causal role for T2D in the develop-
ment of CAD.7–9 A Mendelian randomization study found 
that the average CAD risk per T2D allele was lower than 
expected (for the 44 T2D associated variants assessed) 
compared with the increased risk of CAD attributed to 
T2D by epidemiological studies.7 This indicated that the 
T2D associated variants did not account for all the risk of 
CAD observed in subjects with T2D. Few variants have 
been associated with both CAD and T2D: a variant near 
IRS1 was associated with both diseases at genome-wide 
significance (P≤5×10-8) and 8 other loci at a lower sig-
nificance level.9 Given that there are few variants jointly 

associated with CAD and T2D, it is unsurprising that 
there is sparse evidence for overlapping pathways con-
tributing to both diseases.10

A recent study conducted in the UK Biobank found 
no evidence of differential effects of CAD risk variants 
by T2D status. However, in this study, the sample size 
was relatively small (3968 CAD cases and 11 698 con-
trols).11 Another study found that a genetic risk score 
constructed from known CAD loci was associated with 
CAD in subjects with T2D, indicating that variants identi-
fied in the general population were predictive of CAD 
in the context of T2D.12 What has not been systemati-
cally addressed in a large sample is whether there is a 
quantitative or qualitative difference in the pattern of loci 
influencing risk of CAD among subjects with T2D when 
compared with those without the condition.

We conducted a comprehensive investigation of 
genetic differences in the determinants of CAD between 
subjects with and without T2D in a large sample. The dis-
covery meta-analysis included 66 643 subjects (of whom 
27 708 had CAD and 24 259 had T2D), and we sought 
replication for a subset of variants in a further 117 787 
samples (16 694 with CAD; 11 537 subjects with T2D).

METHODS
An overview of the study design is illustrated in Figure 1 and the 
methods are provided in the Data Supplement. The summary 
statistics have been made available via figshare (10.6084/
m9.figshare.7811639). This study made use of data gener-
ated from individual studies for which the relevant institutional 
review board approval had been obtained and all participants 
consented to inclusion in individual studies.

RESULTS
Identification of CAD Cases, CAD Controls, and 
Subjects With Diabetes Mellitus
This study was performed using full summary statistics 
from CAD case-control analyses performed separately in 
subjects with T2D and subjects with no history of diabe-
tes mellitus. The discovery meta-analyses included 27 708 
CAD cases (of whom 10 014 had T2D) and 38 935 sub-
jects with no history of CAD (14 245 with T2D) from 23 
studies of European descent and one study of South Asian 
descent, assembled from the CARDIoGRAMplusC4D 
(Coronary Artery Disease Genome Wide Replication and 
Meta-Analysis (CARDIoGRAM) Plus the Coronary Artery 
Disease (C4D) Genetics), ENGAGE (European Network for 
Genetic and Genomic Epidemiology), and SUMMIT (Sur-
rogate Markers for Micro- and Macro-Vascular Hard End 
Points for Innovative Diabetes Tools) consortia (Figure 1 
and Tables I and II in the Data Supplement). Replication of 
selected signals was sought in an independent sample of 
16 694 CAD cases (3706 with T2D) and 101 093 controls 

Nonstandard Abbreviations and Acronyms

CAD  coronary artery disease
CARDIoGRAM 
plusC4D  Coronary Artery Disease 

Genome Wide Replication and 
Meta-Analysis (CARDIoGRAM) 
Plus the Coronary Artery Disease 
(C4D) Genetics

ENGAGE  European Network for Genetic 
and Genomic Epidemiology

HPFS  The Health Professionals Follow-
Up Study

LDL-C  Low-density lipoprotein 
cholesterol

METSIM  The Metabolic Syndrome in Men 
study

NHS Nurses’ Health Study
OR odds ratio
SUMMIT  Surrogate Markers for Micro- and 

Macro-Vascular Hard End Points 
for Innovative Diabetes Tools

T2D type 2 diabetes mellitus
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with no history of CAD (7831 with T2D) from 4 studies 
of European descent with existing genome-wide associa-
tion study from deCODE, the NHS (Nurses’ Health Study), 
the METSIM study (The Metabolic Syndrome in Men), and 
the HPFS (Health Professionals Follow-Up Study; Tables 
III and IV in the Data Supplement). None of the studies 
contained overlapping samples.

Main Effects of Variants on CAD
We first set out to identify variants that were associated 
with CAD in the complete sample set. We performed 
2 meta-analyses, the first compared CAD cases to 
controls without reference to T2D status, whereas the 
second repeated the analysis adjusted for T2D status. 
In both analyses, we confirmed many of the previously 
reported CAD associated loci at genome-wide signifi-
cance (P≤5×10-8), including SORT1/CELSR2, WDR12, 
PHACTR1, TCF21, 9p21.3, CXCL12, and ADAMTS7. 
We selected 142 variants that achieved P≤5×10-4 in 
either the unadjusted or the T2D- adjusted analyses for 
replication analyses.

We had access to full summary statistics for the dis-
covery analysis but not from the replication cohorts. We 
requested summary statistics for selected variants from 
replication cohorts. Thus, we performed a joint analy-
sis of the estimates from the discovery and replication 
analyses. In the joint analysis, we expanded the set of 
known CAD loci detected in this meta-analysis from 7 
to 13 reaching genome-wide significance in our dataset 
(Figure 2A and 2B and Table V in the Data Supplement). 
For published CAD variants, the risk allele identified in 
this meta-analysis was the same as the published risk 
allele for variants associated with CAD P≤1×10-3 (Figure 
II and Table V in the Data Supplement).5 This reflects, 
in part, an overlap of samples included in these various 
analyses (Figure II and Table V in the Data Supplement).

Stratified Analysis
The second approach we used to identify any loci at which 
CAD risk effects (P≤5×10-8) were influenced by the 
presence or absence of T2D, involved a T2D-stratified 
meta-analysis of CAD risk. In the discovery phase of this 
stratified analysis, 3 known CAD loci reached genome-
wide significance: ADAMTS7 in subjects with T2D and 
9p21.3 and PHACTR1 in the analysis of subjects without 
diabetes mellitus (Table V in the Data Supplement). The 
allelic effects and association signals at the previously 
reported CAD loci did not show any systematic differ-
ence according to T2D background (Figure I in the Data 
Supplement).

We selected 230 lead variants for replication from the 
T2D-only analysis and 175 lead variants from the analysis 
of subjects without diabetes mellitus for replication based 
on a stratum-specific CAD association of P≤1×10-4. In 

the joint analysis (discovery and replication), we found no 
novel CAD risk signals in either stratum (Figure 2C and 
2D and Table V in the Data Supplement). Three loci were 
associated with CAD in subjects with T2D, and these 
overlapped loci associated with CAD in subjects without 
diabetes mellitus (Figure 2). The different number of loci 
associated with CAD by T2D background reflects a dif-
ference in power (ie, sample size) to detect associations 
rather than a systematic difference by T2D background.

Interaction Analysis
In a complementary analysis to the stratified analysis, 
we performed a T2D interaction analysis (see Meth-
ods in the Data Supplement) to identify variants that 
interacted with T2D status to modify the risk of CAD. 
We calculated the interaction P values based on sum-
mary statistics from the T2D stratified analyses of CAD 
and not from a meta-analysis of interaction terms. We 
adopted this approach to maximize the number of sam-
ples used to estimate interactive effects (see Methods 
in the Data Supplement). The interaction analysis was 
performed by comparing the allelic effects (on the log-
odds scale) on CAD risk for each variant between T2D 
strata. The allelic effects and their associated stan-
dard errors for CAD risk estimated in T2D stratified 
meta-analyses were compared using GWAMA v2.1.13 
The smaller the Pinteraction the larger difference in allelic 
effects on CAD risk by T2D status.

The top interaction in the discovery analysis was rep-
resented by rs712755, near GRM7 (Pinteraction=4.6×10-7). 
This variant had opposing effects on CAD risk depen-
dent on T2D context (effect allele frequency, 0.71, odds 
ratio [OR]T2D, 0.82 [0.74–0.90], ORNodiabetesmellitus, 1.14 
[1.06–1.23]).

We sought replication for 175 loci, including GRM7, 
with at least modest evidence of interaction with T2D 
status (Pinteraction ≤1×10-4). We performed a joint interaction 
meta-analysis of the discovery and replication data and 
defined replication as a combined (discovery+replication) 
Pinteraction

<2.9×10-4 (0.05/175; that corrects for the num-
ber of loci selected for replication) and a joint Pinteraction

< 
discovery Pinteraction. The latter indicates directionally con-
sistent allelic effects by T2D stratum in the discovery and 
replication stages.

The interaction at GRM7, represented by rs712755, 
did not replicate (replication Pinteraction=0.36) and none of 
the other 174 loci met the criteria for replication. Overall, 
there was no evidence for loci that interacted with T2D 
status to modify the risk of CAD based on this interaction 
analysis.

We also examined the known CAD loci for evidence 
of interaction. Of the 163 known variants for CAD, 
161 were present in our data. We applied a Bonfer-
roni correction of Pinteraction≤3.1×10-4 (0.05/161; cor-
recting for the number of known CAD loci). None of 
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the established CAD loci interacted with T2D status to 
modify the risk of CAD (Table V in the Data Supplement). 
A variant located near GLUL (rs10911021) had been 
associated with CAD in subjects with T2D.14 In the 

current study, rs10911021 showed no association 
with CAD in subjects with T2D (P=0.54) and had no 
evidence of interaction with T2D status (Pinteraction=0.46; 
Figure III in the Data Supplement).

Figure 1. Study design.
In the discovery meta-analyses, we performed 4 different meta-analyses of coronary artery disease (CAD): in all individuals irrespective of Type 
2 diabetes mellitus (T2D) status; in all individuals corrected for T2D stats; and stratified by T2D status. We examined allelic effects within 
strata to identify stratum-specific CAD associated variants, and between strata to identify variants that may interact with T2D status to modify 
the risk of CAD. We selected variants that achieved P<1×10-4 for association with CAD in at least one of the following analyses: all individuals 
combined regardless of T2D status; subjects with T2D only; subjects without diabetes mellitus; or the interaction analysis. The replication 
analysis was performed in independent samples using the same study design as the discovery analysis. CARDIoGRAMplusC4D indicates 
Coronary Artery Disease Genome Wide Replication and Meta-Analysis (CARDIoGRAM) Plus the Coronary Artery Disease (C4D) Genetics; 
ENGAGE, European Network for Genetic and Genomic Epidemiology; HPFS, Health Professionals Follow-Up Study; METSIM, The Metabolic 
Syndrome in Men Study; NHS, Nurses’ Health Study; and SUMMIT, Surrogate Markers for Micro- and Macro-Vascular Hard End Points for 
Innovative Diabetes Tools.
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Figure 2. Five genetic association study meta-analyses were performed to investigate the genetic architecture of coronary 
artery disease (CAD) in the context of Type 2 diabetes mellitus (T2D). 
Manhattan and QQ plots from (A) a meta-analysis that combined allelic effects on CAD from subjects with T2D status and without diabetes mellitus 
and (B) corrected for T2D status to identify variants associated with CAD irrespective of T2D status; (C) a meta-analysis of allelic effects on CAD in 
subjects with T2D to identify loci that may influence the development of CAD in the context of T2D; (D) a meta-analysis of allelic effects on CAD in 
the absence of diabetes mellitus to identify loci that may influence the development of CAD in the absence of diabetes mellitus; and (E) an interaction 
analysis to identify loci that may interact with T2D to modify the risk of CAD. The effective sample size was based on the combined discovery and 
replication sample of 184 250 subjects.
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Power to Detect Interactions
A substantial challenge in detecting loci that interact 
with T2D to modify the risk of CAD is sufficient sample 
size. Even in this large discovery sample of 66 643 sub-
jects (27 708 with CAD), we had <80% power to detect 
interactions with at least a 20% difference in allelic odds 
between strata (ie, ORNodiabetesmellitus, 1.00 versus ORT2D, 
1.20) for risk allele frequency>10% at α=1×10-4 (the 
threshold for replication selection in the interaction anal-
ysis; see Methods in the Data Supplement). This was only 
for interactions where there were opposite allelic effects 
in strata or where there was a null allelic effect on CAD 
in one stratum (ie, ORNodiabetesmellitus, 1.00) and a large (ie, 
ORT2D, 1.20) allelic effect on CAD in the other stratum 
(Figure IIA and IIB in the Data Supplement). We had little 
power to detect interactions where allelic effects on CAD 
were in the same direction in both strata (see Methods 
and Figure IIC in the Data Supplement). In the replication 
sample of 117 787 samples (16 694 with CAD) at an 
α=0.05, we observed similar patterns of power to detect 
associations with opposing effects by stratum. Thus, we 
would be unlikely (in this sample size) be able to detect 
smaller interaction effects or those involving rare alleles.

Genetic Overlap With Risk Factors
We have comprehensively interrogated variants for 
association with CAD in the context of T2D but not risk 
factors of both T2D and CAD. There may be a differ-
ent effect of these risk factors on CAD by T2D context, 
which may explain some of the increased risk of CAD in 
subjects with T2D. First, we performed genetic correla-
tion analyses using LDHub (a centralised database of 
summary-level GWAS results and a web interface for LD 
score regression)  to estimate the overall genetic correla-
tion (based on all variants) between risk factors and CAD 
separately by T2D background. 15 Subsequently, a het-
erogeneity test was performed on the risk factor genetic 
correlation estimates with CAD by T2D background to 
identify risk factors that may have a variable correlation 
with CAD based on T2D background. Overall, we found 
no difference in the genetic correlation between 106 risk 
factors and CAD by T2D status (Figure IV and Table VI in 
the Data Supplement).

To investigate this further but only in a subset of vari-
ants associated with risk factors at genome-wide sig-
nificance (P≤5×10−8), we constructed weighted genetic 
risk scores for seventeen traits related to obesity,16–18 
hypertension,19 lipids,20 diabetes mellitus,6,21glycaemic 
traits, and insulin resistance.22–28 These genetic risk 
scores included between 10 and 403 single nucleotide 
polymorphisms for each phenotype. We tested these for 
CAD association in the T2D unadjusted (main) analysis, 
as well as in the T2D-stratified analyses, where we per-
formed a test for heterogeneity for different effects on 

CAD by T2D background (Methods in the Data Supple-
ment). We adopted a significance threshold of P≤2.9×10-

3 that accounted for the 17 genetic risk scores, but not 
for the multiple CAD associations performed. Genetic 
risk scores for LDL-C (low-density lipoprotein choles-
terol), body mass index, and systolic blood pressure were 
associated with CAD irrespective of T2D background 
(Figure V and Table VII in the Data Supplement). Col-
lectively, these analyses provide no evidence to support 
T2D-stratified differences in CAD risk as conveyed by 
variants influencing phenotypes known to contribute to 
CAD development.

DISCUSSION
There is a well-established causal role for T2D in 
increased risk of CAD. However, this increased risk could 
not be explained by differences in genetic architecture of 
CAD between individuals with and without diabetes mel-
litus. We found no difference in the effects of known CAD 
loci on the risk of CAD by T2D status. We also found no 
variants of large effect specifically associated with CAD 
in the context of T2D. We also found no differences in 
the effects of risk factors on CAD by T2D background 
based on analyses that used the genetic variation con-
tributing to these risk factors. Indicating that the genetic 
variants associated with these risk factors do not have a 
differential effect on CAD risk by T2D background.

There are many factors that will influence the power 
to detective genuine interactive effects. Identification 
of interactive effects requires a large sample size par-
ticularly when conducting a genome-wide interaction 
analysis.29 Even in this study that included 66 643 sub-
jects (considerably larger than previous efforts), we were 
underpowered to identify variants with small differences 
in effect on CAD risk by T2D status. If interaction effects 
do exist, these effects are likely to be modest and only 
detectable in a much larger sample size.

The accuracy of the phenotype definition will also 
affect the power to detect interactive effects. Diagno-
sis of T2D is often contemporaneous to CAD diagnosis 
and may not reflect the actual onset of diabetes mel-
litus. We are uncertain of the stage of T2D development 
when risk of CAD begins to increase. There is evidence 
of increased vascular risk before the onset of clinically 
diagnosed T2D.30 Taking this variability into account, we 
defined CAD cases with T2D as those that had a diagno-
sis of T2D up to 5 years after a CAD event with no mini-
mum duration of diabetes mellitus. This also allowed us 
to increase the sample size by including cross-sectional 
studies for which information on the duration of diabetes 
mellitus may not be available. We were unable to account 
for the attenuation of genetic effects due to the misclas-
sification of subjects who may develop CAD and or T2D 
outside of the study observation period.
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This study shows that difference in risk of CAD 
between subjects with and without T2D cannot be 
explained by variants of large effect or differences in the 
genetic variation contributing to known risk factors of 
either T2D or CAD. There are several other mechanisms, 
outside the scope of the current study, that could explain 
some of the increased risk of CAD in subjects with T2D. 
There could be epigenetic changes induced by some 
feature of the T2D state. For example, hyperglycemia 
has been shown to cause epigenetic changes altering 
gene expression in vascular cells leading to endothelial 
dysfunction, a hallmark of atherosclerosis.31 Although the 
evidence for overlapping pathways between CAD and 
T2D is sparse, treatment of one disease can increase 
the risk of the other. Statins known to reduce the risk 
of CAD have been shown to increase the risk of T2D, 
whereas some thialidazones, used to treat insulin resis-
tance in subjects with T2D, increase the risk of CAD.32 It 
is likely that the T2D state perturbs or exacerbates some 
common atherosclerotic processes rather than through 
T2D background specific genes/pathways to increase 
the risk of CAD in subjects with T2D.
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