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ABSTRACT A number of inhibitors of the essential Mycobacterium tuberculosis my-
colic acid transporter, MmpL3, are currently under development as potential novel
antituberculosis agents. Using the checkerboard method to study the interaction
profiles of various antituberculosis drugs or experimental compounds with two dif-
ferent chemotypes inhibiting this transporter (indolcarboxamides and adamantyl
ureas), we showed that MmpL3 inhibitors act synergistically with rifampin, bedaqui-
line, clofazimine, and �-lactams.
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Better-tolerated and more-efficacious antituberculosis (anti-TB) drug regimens that
meet the desired goals of decreasing treatment duration and killing multidrug-

resistant Mycobacterium tuberculosis isolates while being compatible with HIV treat-
ment are urgently needed. In recent years, the screening of compound libraries against
M. tuberculosis and nontuberculous mycobacteria in culture has identified a number of
novel chemical entities with potent mycobactericidal activity whose primary target
appears to be the essential mycolic acid transporter MmpL3 (1–4). Among these novel
chemical scaffolds, diamine- and indolamide-based compounds have emerged as
particularly promising on the basis of efficacy, tolerability, and pharmacological prop-
erties (2, 5–7). The potency of these compounds is owed at least in part to the exquisite
vulnerability of the MmpL3 transporter both in vitro and in vivo (1). Indeed, the
inhibition of MmpL3 results in the abolition of the export of mycolic acids to the outer
membrane and in the rapid killing of the bacilli (1, 8). Whether the important changes
in the cell envelope composition of M. tuberculosis that follow the chemical inhibition
of MmpL3 increase the efficacy of other drugs, either as a result of their increased
penetration inside the bacilli or otherwise, has not been thoroughly investigated.
Because of the importance of determining whether new drug candidates exhibit
potential synergistic, antagonistic, or additive interactions with other antituberculosis
drugs, we used the checkerboard assay (9) to investigate the in vitro interaction profiles
of two different series of MmpL3 inhibitors with a variety of first-line and second-line
anti-TB drugs and other experimental compounds, including rifampin (RIF; Sigma),
isoniazid (INH; Fluka), ethambutol (EMB; Sigma), ampicillin (AMP; Sigma), penicillin G
(PenG; Sigma), meropenem (MRP; Goldbio), ciprofloxacin (CIP; Fluka), bedaquiline
(BDQ), and clofazimine (CFZ). The four MmpL3 inhibitors tested in this study were the
indolamides NITD-304 and NITD-349, currently in preclinical development (6), and the
adamantyl ureas AU1235 and AU36 (8, 10). Two-drug combinations at various concen-
trations below their MICs were tested for growth inhibition of M. tuberculosis in
Middlebrook 7H9 broth using a two-dimensional array of 2-fold dilutions of each test
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compound in 96-well plates. The resazurin reduction microplate assay (REMA) was
initially used as a metabolic activity readout, and the fractional inhibitory index (�FIC)
of each drug combination was calculated as described previously (9, 11). �FIC values of
�0.5 indicate synergistic activity; values of �4 indicate antagonism; and values be-
tween those ranges correspond to additivity (no interaction) (9). Checkerboard exper-
iments were performed two to three times using independent culture batches, and the
results were consistent between the repeats. The results, which are summarized in
Table 1, revealed similar patterns of behavior among MmpL3 inhibitors regardless of
the nature of their pharmacophore. Overall, all four MmpL3 inhibitors increased the
susceptibility of M. tuberculosis to PenG, AMP, MRP, RIF, CFZ, and BDQ. Both indola-
mides displayed �FIC values of �0.5 with these six drugs, while the adamantyl ureas
displayed �FIC values of �0.5, indicative of synergistic interactions against M. tuber-
culosis, with BDQ, MRP, and RIF. In contrast, the interaction of MmpL3 inhibitors with
INH, CIP, and EMB was found to be purely additive. No antagonistic interaction was
observed between any of the four MmpL3 inhibitors and the compounds tested. As
expected, NITD-304 and NITD-349 showed no synergistic interaction (�FIC � 1). REMA
results determined with NITD-304 and NITD-349 were confirmed by plating CFU to
directly assess bacterial viability (Fig. 1), and the good correlation of the results of the
two methods was confirmed using the paired Student t test (P � 0.0001). Wells
containing NITD-304 or NITD-349 and AMP, RIF, BDQ, MRP, or CFZ at less than 4-fold
their respective MIC99 concentrations resulted in 85% (NITD-304 plus AMP) to 99%
(NITD-349 plus RIF) killing of M. tuberculosis.

Since indolamides and adamantyl ureas may have more than one target in M.
tuberculosis, we next assessed whether the observed synergistic interactions were
caused by the inhibition of MmpL3 by repeating the checkerboard REMA using an M.
tuberculosis H37Rv mc26206 strain harboring a missense mutation in MmpL3 (H37Rv
MmpL3L567P) that is resistant to both series of inhibitors (MICNITD-304 � 0.25 �g/ml;
MICNITD-349 � 0.5 �g/ml; MICAU1235 � �0.4 �g/ml; MICAU36 � �2 �g/ml). All previously
observed synergistic interactions against the wild-type M. tuberculosis parent strain
were lost in the mutant (Fig. 2), thereby indicating that the inhibition of MmpL3 is
required for drug synergism to occur. These findings are consistent with our recent
observations showing that Mycobacterium smegmatis mutants with reduced MmpL3
activity tend to be hypersusceptible to RIF, AMP, and MRP (12).

A recent study performed with indolamide inhibitors showed that these compounds
synergize with RIF both in vitro and in an acute mouse model of TB infection (2).

TABLE 1 Interaction of MmpL3 inhibitors with other antimycobacterial drugs and experimental compounds against M. tuberculosis H37Rv
mc26206 as determined by checkerboard REMAa

Compound MIC

Interaction with NITD-304 Interaction with NITD-349 Interaction with AU1235
Interaction with
AU36

�FIC Outcome �FIC Outcome �FIC Outcome �FIC Outcome

NITD-304 0.008
NITD-349 0.016
AU1235 0.2
AU36 1
CFZ 0.5 0.5 Synergistic 0.37–0.5 Synergistic 0.75 Additive 0.75 Additive
BDQ 0.5 0.5 Synergistic 0.37–0.5 (0.5) Synergistic 0.5 (0.37) Synergistic 0.5 Synergistic
AMP 256 0.5 Synergistic 0.5 Synergistic 0.75 Additive 0.5 Synergistic
PenG 256 0.5–0.75 Synergistic/additive 0.5 Synergistic 0.75 Additive 0.75 Additive
MRP 12.8 0.5 Synergistic 0.5 (0.5) Synergistic 0.5 (0.37) Synergistic 0.5 Synergistic
INH 0.04 1 Additive 1 Additive 1 Additive 1 Additive
EMB 6.4 1 Additive 0.75 Additive 0.75 Additive 0.75 Additive
RIF 0.1 0.5 Synergistic 0.5 (0.5) Synergistic 0.37 (0.37) Synergistic 0.37 Synergistic
CIP 0.4 1 Additive 1 Additive 1 Additive 1 Additive
aM. tuberculosis H37Rv mc26206 (an avirulent ΔpanCD ΔleuCD mutant of M. tuberculosis H37Rv) was grown for 10 days at 37°C in Middlebrook 7H9 broth
supplemented with 10% OADC (oleic acid-albumin-dextrose-catalase) (BD, Difco), 0.5% glycerol, 0.05% tyloxapol, 0.2% Casamino Acids, 48 �g/ml pantothenate, and
50 �g/ml L-leucine before the addition of resazurin. MIC values (in micrograms per milliliter) determined by REMA were read after an additional 2-night incubation at
37°C. Six key combinations with NITD-349 and AU1235 were tested against the virulent M. tuberculosis H37Rv strain ATCC 25618 with the same results (see italicized
�FIC values in parentheses alongside the values reported for the H37Rv mc26206 strain). Boldface data indicate synergistic or synergistic/additive interactions.
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Likewise, combination studies performed with SQ109, another compound under de-
velopment whose pleiotropic effects on actively replicating and nonreplicating M.
tuberculosis include the inhibition of MmpL3 (13, 14), pointed to synergistic interactions
with CFZ, BDQ, and RIF both in vitro and in a macrophage intracellular killing assay (5).
Furthermore, replacing EMB with SQ109 improved the efficacy of the standard treat-
ment regimens (INH, RIF, and EMB with and without pyrazinamide) in a mouse model
of chronic TB (5, 15). The findings reported here indicate that synergistic interactions,
not only with RIF but also with CFZ, BDQ, and �-lactams, are probably a hallmark of
MmpL3 inhibitors. Possible reasons for this synergism include the increased penetra-
tion of test compounds caused by alterations in the assembling of the outer mem-
brane, the increased stress imposed by the concomitant inhibition of two essential cell
envelope biosynthetic processes (mycolic acid export and peptidoglycan biosynthesis)

FIG 1 Effect of combination treatments on the viability of M. tuberculosis H37Rv mc26202 as determined by CFU counts. M. tuberculosis was grown in the
presence of the indicated concentrations (in micrograms per milliliter) of compounds. After 10 days of incubation at 37°C, serial dilutions of the cultures were
plated on 7H11 agar to determine CFU counts. Control cultures that received no drug treatment (NT) were plated on day 0 and on day 10. The averages and
standard deviations of results of triplicate CFU plating from two independent wells for each treatment condition are shown.
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in the case of �-lactams, and the deleterious effect of combining MmpL3 inhibitors with
agents affecting energy metabolism (CFZ and BDQ) (14, 16–20). RIF is a cornerstone of
TB multidrug therapy and is required for the clearance of persister cells. RIF, however,
is a potent inducer of cytochrome P-450 enzymes and the P-glycoprotein transport
system and reduces the efficacy of the protease inhibitors used in the treatment of HIV
(21). BDQ, CFZ, and most other second-line drugs, on the other hand, suffer from
toxicity issues that reduce their clinical relevance (22). Finally, one of the primary
limitations of using �-lactams therapeutically relates to the difficulty of achieving
sufficient drug exposure (23). By allowing the dosages of all of these drugs to be
reduced, MmpL3 inhibitors, when used in combination, may have the potential to
significantly improve the tolerability and efficacy of the drug regimens used in the
treatment of drug-susceptible and multidrug-resistant TB infections and of TB/HIV
coinfections. These considerations and the potential that MmpL3 inhibitors have to
reduce TB treatment duration (1) provide a strong incentive to further evaluate

FIG 1 (Continued)
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combination regimens containing MmpL3 inhibitors in animal models of TB and
nontuberculous mycobacterial infections.
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