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ABSTRACT

Modeling of genomic profiles from the Cancer Genome Atlas (TCGA) by using recently developedmathematical frameworks has associated a genome-
wide pattern of DNA copy-number alterations with a shorter, roughly one-year, median survival time in glioblastoma (GBM) patients. Here, to experi-
mentally test this relationship, we whole-genome sequenced DNA from tumor samples of patients. We show that the patients represent the U.S. adult
GBM population in terms of most normal and disease phenotypes. Intratumor heterogeneity affects �11% and profiling technology and reference
human genome specifics affect<1% of the classifications of the tumors by the pattern, where experimental batch effects normally reduce the reproduc-
ibility, i.e., precision, of classifications based upon between one to a few hundred genomic loci by>30%.With a 2.25-year Kaplan–Meiermedian survival
difference, a 3.5 univariate Cox hazard ratio, and a 0.78 concordance index, i.e., accuracy, the pattern predicts survival better than and independent of
age at diagnosis, which has been the best indicator since 1950. The prognostic classification by the patternmay, therefore, help tomanage GBM pseudo-
progression. The diagnostic classification may help drugs progress to regulatory approval. The therapeutic predictions, of previously unrecognized tar-
gets that are correlated with survival, may lead to new drugs. Other methodsmissed this relationship in the roughly 3B-nucleotide genomes of the small,
order of magnitude of 100, patient cohorts, e.g., fromTCGA. Previous attempts to associate GBM genotypes with patient phenotypes were unsuccessful.
This is a proof of principle that the frameworks are uniquely suitable for discovering clinically actionable genotype–phenotype relationships.
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INTRODUCTION

The prognostics, diagnostics, and therapeutics of glioblastoma
(GBM), which is the most prevalent as well as most aggressive brain
cancer in adults, have remained largely unchanged for decades. Only
one drug, i.e., the alkylating agent temozolomide, has progressed from
clinical trials to standard of care since 1980, modestly improving the
median life expectancy of patients treated by surgical resection and
radiation to roughly 15months.1–3 A biomarker of response to earlier
alkalyting agents in different types of cancer, i.e., the methylation of
the promoter of the gene O6-methylguanine-DNA methyltransferase
(MGMT), is being used today also to predict GBM response to temo-
zolomide and indicate survival.4,5 Only two additional biomarkers
have progressed from omic studies to GBM standard of care, both of
which have already been used as indicators of survival in other types
of cancer, i.e., the mutation of the gene isocitrate dehydrogenase 1
(IDH1) and, most recently, the mutation of the promoter of the gene
telomerase reverse transcriptase (TERT), which is correlated with the
messenger RNA (mRNA) expression of the gene.6–9 Efforts to conclu-
sively associate outcome, e.g., survival, with GBM-specific mRNA
expression of between a few to a few hundred genes, have been unsuc-
cessful, and have not been translated into clinical use.10–12 Despite
advances in profiling technologies, including an authorization by the
Food and Drug Administration (FDA) for non-disease-specific appli-
cations of next-generation sequencing,13 and the growing numbers of

publicly available (gen)omic datasets, age at diagnosis has remained
the best indicator of GBM survival in clinical practice since 1950.14–16

At the same time, recurrent abnormal numbers and sizes of
chromosomes, which have been recognized as a hallmark of cancer
since 1914,17 have been observed in GBM for decades without being
translated to the clinic. Following the World Health Organization
(WHO) recommendations, other types of cancer are classified and
treated based upon recurrent changes in chromosome and focal
DNA copy numbers. For example, the observation of the so-called
“Philadelphia chromosome” in myeloid leukemia led to a drug that
converts most cases of the blood cancer from a fatal disease into a
manageable chronic condition.18–20 In another example, co-deletion
of the short arm of chromosome 1, i.e., 1p, and the long arm of chro-
mosome 19, i.e., 19q, is used to distinguish oligodendroglioma from
other brain cancers, including GBM, i.e., grade IV astrocytoma.
Repeated previous attempts, however, to associate GBM-specific
copy-number genotypes with clinical phenotypes, e.g., survival, were
unsuccessful.21–23

Recently, a genome-wide pattern of co-occurring DNA copy-
number alterations (CNAs) has been associated with a roughly one-
year median survival in GBM patients,24 shorter than the standard life
expectancy of roughly 15months (Fig. 1). The pattern includes most
changes in chromosome numbers and focal CNAs that were known in
GBM prior to its discovery, most of which map to the rat sarcoma

FIG. 1. The genome-wide GBM pattern encodes human normal-to-tumor cell transformation via the Ras, Shh, and Notch pathways and includes most changes in chromosome
numbers and focal CNAs that were known and at least as many that were unrecognized in GBM prior to its discovery. The genotype that the GBM pattern represents is
depicted in a diagram of the WGS technology-filled in Notch pathway (yellow) in addition to the Agilent and Affymetrix microarray-described Ras and Shh pathways, including
CNAs unrecognized in GBM prior to the discovery of the pattern (violet) and, among them, biochemically putative drug targets that are predicted to be correlated with survival
(light blue). Shown are amplifications (red) and deletions (green) of genes and transcript variants (rectangles), either GBM- and LGA-shared (black) or GBM-specific (blue),
and relationships that directly or indirectly lead to increased (arrows) or decreased (bars) activities of the genes and transcripts, the tumor suppressor proteins p53, Rb, and
Ptch1, and the oncoproteins Notch1, Notch2, and the hominin-specific Notch2nl (circles).
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(Ras) signaling pathway.25 Also included are at least as many CNAs
that were previously unrecognized in GBM, most of which map to the
sonic hedgehog (Shh) and Notch signaling pathways that are known
to induce the development of medulloblastoma and neuroblastoma
brain cancers, respectively. Some of the naturally occurring alterations
that are described by the pattern are analogous to the genetic elements
that artificially transform human normal cells and their diploid nuclei
into tumor cells with grossly polyploid nuclei.26–28

The genotype–phenotype relationship was discovered by using
the non-domain-specific, i.e., universal, mathematical framework of
the generalized singular value decomposition (GSVD)29–31 formulated
as a comparative spectral decomposition.32–35 In the modeling of pri-
mary GBM tumor and patient-matched normal genomic profiles from
the Cancer Genome Atlas (TCGA),36 the GSVD separated the tumor-
exclusive relationship from those that are common to the tumor and
normal genomes and from experimental batch effects. The genotype

was represented by the GBM pattern across the tumor set of 212 696
Agilent comparative genomic hybridization (CGH) microarray probes
mapped to the reference human genome hg18 (Figs. 2 and 3). The
phenotype was established and validated by correlating the pattern
with the tumor genomes of the mutually exclusive discovery and, sepa-
rately, validation sets of 251 and 184 GBM patients, respectively. A
non-negligible, i.e., high, correlation with the pattern conferred a
shorter, roughly one-year, median survival also among the discovery
and validation sets of 133 lower-grade, i.e., grades III and II, astrocy-
toma (LGA) patients and the discovery set of 85 GBM and LGA
patients, profiled by Affymetrix single-nucleotide polymorphism
(SNP) microarrays37 and whole-genome sequencing (WGS),38 respec-
tively, and mapped to hg19.39

Note that primary GBM and LGA are different types of cancer.
Their histopathologies overlap, but their epidemiologies differ.40 In the
modeling of tumor and patient-matched normal profiles of the 59

FIG. 2. The classifications of the Utah set of 79 patients by the genome-wide GBM pattern are 100% consistent between the duplicate hg38 and hg19 whole-genome GBM
profiles. (a) The GBM pattern, i.e., a genome-wide pattern of DNA CNAs, is displayed in a plot of relative copy numbers across the subset of 211 653 of the 212 696 Agilent
probes that maintain the same chromosomal order in both reference human genomes, ordered and colored based upon their genomic coordinates, with the previously identi-
fied segments (black lines) and GBM-specific (blue), GBM- and LGA-shared (black), and WGS technology-filled in (red) CNAs. (b) The Pearson correlations of the hg38 pro-
files of the 79 patients with the GBM pattern are displayed in a plot, with the classification of the patients into low (red) or high (blue) correlations by using the previously
established cutoff of 0.15. (c) The corresponding hg38 profiles are displayed in a raster of WGS read-count, i.e., DNA copy-number, amplification (red), no change (black), and
deletion (green), from the medians of their autosomes excluding the outlying chromosomes 10 and 7 and the short arm of chromosome 9, i.e., 9p. (d) The correlations of the
hg19 profiles, ordered by the correlations of the hg38 profiles, are displayed in a plot. (e) The corresponding hg19 profiles are displayed in a raster, showing the same genoty-
pe–phenotype relationship as the hg38 profiles.
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and, separately, 85 patients of the Affymetrix LGA and WGS astrocy-
toma discovery sets, the GSVD separated an LGA pattern and an
astrocytoma pattern across the tumor sets of �934K Affymetrix SNP
probes and 2.8M WGS 1 K-nucelotide bins, respectively. The LGA
pattern is encompassed by the GBM pattern, and the astrocytoma pat-
tern is bounded by the GBM and LGA patterns.

By identifying the shorter survival phenotype among the TCGA
patients, the GBM pattern predicted survival statistically better than
and independent of the best other indicator, i.e., age, among the GBM
patients and, in addition, grade among the GBM and LGA patients
together. The pattern also predicted survival statistically better than
and independent of the existing pathology laboratory tests, i.e., for
MGMT promoter methylation and IDH1 mutation, in general and in
patients who received treatment, i.e., chemotherapy and radiation.

That the GBM pattern is a predictor independent of age, chemo-
therapy, and radiation implies that the information that the pattern
contains is not currently being used in clinical practice. That the pat-
tern is a predictor better than age additionally suggests that using the
information can improve the prognostics, diagnostics, and therapeu-
tics of the disease.

First, the prognostic classification by the pattern may help to
manage GBM pseudoprogression for a few months after the start of
chemotherapy and radiation, until it is possible to conclusively distin-
guish it from progression.41 Pseudoprogression presents with magnetic
resonance imaging (MRI) features that mimic progression.
Progression may necessitate immediate discontinuation of the treat-
ment and intervention with a different regimen. In the case of pseudo-
progression, however, the immediate discontinuation and intervention
would be premature. A prognosis of longer survival may help to decide
against immediate changes to the treatment and continued follow up
by using MRI and other imaging modalities.42

Second, the diagnostic classification by the genome-wide GBM
pattern may prove more relevant to identifying patients who would
benefit from a drug than an assay of between one to a few hundred
genes and genomic loci, even in the case of a drug that targets only
one gene. This is because the activity of any one gene and the effect of
targeting it depend upon the whole genome. For example, the amplifi-
cation of the epidermal growth factor receptor-encoding gene (EGFR),
which is notable in the pattern, is also frequently observed in GBM
tumors. However, the effect of EGFR deficiency is known to depend

FIG. 3. Notable in the GBM pattern, the deletion of chromosome 10, amplification of chromosome 7, and deletion of chromosome arm 9p, appear in the tumor genomes of
some but not all 70 patients with high and, separately, some but not all nine patients with low correlations of their tumor profiles with the pattern. (a) The GBM pattern across
the chromosomes 1, 7, 9, 10, 11, 12, 17, 19, 20, and 22, which are with notable CNAs in the pattern. (b) The correlations of the hg38 whole-genome GBM profiles with the
genome-wide pattern. (c) The hg38 profiles across the chromosomes with notable CNAs in the pattern. (d) The correlations of the hg19 profiles with the pattern. (e) The hg19
profiles.
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upon the genetic background in which it occurs, i.e., the whole
genome.43 It may not be surprising, therefore, that in a phase II clinical
trial of an EGFR inhibitor, a patient’s survival was independent of the
tumor’s EGFR amplification.44 By better identifying patients who
would benefit from a drug, the pattern may help the drug progress
from early tests to regulatory approval. Note that in 2003–2011, <7%
of cancer drugs in general have advanced from phase I clinical trials to
FDA approval, none of which are for GBM.45

Third, the therapeutic predictions of the pattern, that previously
unrecognized, biochemically putative drug targets and combinations
of targets are correlated with survival, may lead to new agents for treat-
ment. These targets include, e.g., the transfer RNA (tRNA)
methyltransferases-encoding genes methyltransferase-like 2A and 2B
(METTL2A/B) and the serine/threonine kinase-encoding gene
tousled-like kinase 2 (TLK2).46,47

Here, to test the genotype–phenotype relationship, we used an
experimental workflow similar to that of TCGA and a computational
workflow similar to that we previously used to establish and (re)vali-
date the GBM pattern in the sets of GBM and LGA patients from
TCGA (Methods Section and Fig. S1 in the supplementary material).

RESULTS
The Utah set of 79 patients statistically represents the
U.S. adult GBM population

The distribution of the age at diagnosis of the 8001 Surveillance,
Epidemiology, and End Results (SEER) patients between � 50 years and
<50years, whose average is 63years, is statistically indistinguishable from
the distributions of the 79 Utah and 28 Case Western Reserve University
(CWRU) patients, whose averages are 63 and 64years, respectively, with
the corresponding v2 P-values >0.05 (Table S1). These distributions,
however, describe statistically significantly older populations at diagnosis
than that of the TCGA patients, whose average of 58years reflects a bias
against surgical resections in patients>65years old. The cutoff of 50years
at diagnosis has been consistent with clinical observations since 1950 and
was (re)established in clinical trials, e.g., in 1993 and 2008.

In Kaplan–Meier (KM) survival analyses,48 the approximately
11-month median survival times of the Utah and CWRU patients are
statistically indistinguishable from the nine months of the SEER
patients, with the corresponding log-rank P-values >0.05 (Fig. S2).
These median survival times, however, are statistically significantly
shorter than the 14-month median survival of the 443 TCGA patients,
and reflect the differences in the age distributions, where an older age
at diagnosis is associated with a shorter GBM survival time (Fig. S3).

We find, therefore, that the Utah set represents the U.S. GBM
population and the CWRU surgical case series in terms of the disease
phenotypes of age at diagnosis and median survival time and, simi-
larly, also in terms of the normal phenotypes of sex, race, and ethnic-
ity. By experimentally validating the genotype–phenotype relationship
in the Utah set of 79 patients, we validate its applicability to the U.S.
adult GBM population at large.

Intratumor heterogeneity affects �11% and profiling
technology and reference human genome specifics
affect <1% of the classifications by the GBM pattern

The classifications of the 79 Utah patients and, similarly, the 18
Utah-TCGA patients, are 100% consistent between the duplicate hg38

and hg19 profiles. The experimental variation, in the aliquot DNA
samples, the sequencing technologies, i.e., of the Broad Institute (BI)
vs the Beijing Genomics Institute (BGI) -Shenzhen, and the reference
human genomes, did not affect the classifications of the pairs of pro-
files of the same analyte DNA samples and, therefore, also the same
tumor portions. The same DNA analyte samples and tumor portions
of 231 of the 443 TCGA patients were profiled in either duplicates or
triplicates by using a different profiling technology for each of the rep-
licates from the three technologies of WGS and Affymetrix SNP and
Agilent CGH microarrays. The previously computed classifications of
the 231 patients are inconsistent between the two or among the three
profiles of only two, i.e.,<1%, of the 231 patients.

Note that the CGH and SNP microarrays together with WGS
represent the main genomic profiling technologies, whereas the BI and
BGI sequencing represent the main WGS technologies. Each technol-
ogy relies on specific experimental designs and computational proto-
cols, which are sensitive to changes, e.g., in the experimental batch or
computational preprocessing. This has been shown to contribute to a
low reproducibility, i.e., precision, of <70% in the classifications of
normal copy-number variants (CNVs) of between one to a few hun-
dred genes and genomic loci.49 In addition, there are disparities
between the different reference human genomes that the profiles were
mapped to by these technologies. For example, the short arm of chro-
mosome 9, i.e., 9p, for which loss is associated with GBM, spans
�51:8M, 49M, and 43M nucleotides in hg18, hg19, and hg38, respec-
tively. Most of the 2.8M- and 6M-nucleotide updates, from hg18 to
hg19, and from hg19 to hg38, map to the largest heterochromatin
block in the human autosome, which encompasses the centromere of
chromosome 9. The classifications by the genome-wide pattern, of
hundreds of thousands of loci, however, are >99% precise, i.e., robust
to changes in the genomic profiling technologies and the reference
human genomes.

Of the 18 Utah-TCGA patients, the classifications of 16 patients
are consistent between their Utah and TCGA profiles. The variation in
the tumor samples and portions, i.e., of the Utah study vs TCGA,
affected only two of the 18, i.e.,�11% of the patients. Most batch differ-
ences except for intratumor heterogeneity50 between the Utah study and
TCGA were controlled for by using an experimental workflow similar
to that of TCGA and a computational workflow similar to that previ-
ously used to classify the sets of GBM and LGA patients from TCGA.

We find, therefore, that intratumor heterogeneity affects �11%
of the classifications by the GBM pattern. In agreement with the previ-
ous modeling of genomic profiles from TCGA, profiling technology
and reference human genome specifics affect <1% of the classifica-
tions. This reflects the increased reliability of measuring DNA vs less
stable biomolecules, e.g., RNA, or biomolecules which abundance lev-
els vary in time and space even within cells that share the same
genome, e.g., RNA and proteins. This also reflects the decreased sensi-
tivity of the pattern of hundreds of thousands of genes and genomic
loci to the error in measuring any one of them vs that, e.g., of an assay
of between one to a few hundred genes and genomic loci.

The GBM pattern predicts survival better than
and independent of age at diagnosis

Of the Utah set of 79 patients, 70 patients are classified as having
high, i.e., >0.15, and nine, i.e., roughly 10%, are classified as having
low, i.e., <0.15 Pearson correlations of their tumor profiles with the
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GBM pattern (Fig. 4). These nine patients include the only two, i.e.,
�2:5%, of the 79 patients who were still alive 60months, i.e., five
years, from their diagnosis. In a KM survival analysis, the 70 patients
with high correlations are of an approximately eight-month median
survival, which is statistically significantly shorter than the 35months
of the nine patients with low correlations. The median survival differ-
ence is 27months, i.e., 2.25 years, with the corresponding log-rank
P-value of 2.5� 10�3. In a univariate Cox proportional hazards model,
a high correlation confers �3:5 times the hazard of a low correlation,
with the corresponding Wald P-value of 4.3� 10�3 (Table S2). The
concordance index, i.e., accuracy, of the classification is �0:78, i.e.,
78%. To compute the concordance index, all pairs of patients were
counted, where each patient is from a different group of the KM analy-
sis. Among these pairs, all pairs were counted where the observed
ranking of survival between the patients agrees with the predicted
ranking between the groups, based upon the median survival times
estimated by the Cox model.

The KM median survival differences and univariate Cox hazard
ratios of the 79 Utah patients and, separately, the 47 chemotherapy-
and 59 radiation-treated patients among them, when classified by the
GBM pattern, are greater than those when classified by age. The con-
cordance indices of the 79, 47, and 59 patients, when classified by the
pattern, are greater than or the same as those when classified by age.
The log-rank andWald P-values as well as the Akaike information cri-
terion (AIC) values that correspond to the pattern are less than those
that correspond to age. The bivariate hazard ratios of the classifications
of the 79 patients by the pattern and age, and the 75 of the 79 patients
with treatment information by the pattern and chemotherapy or radia-
tion, are within the 95% confidence intervals of the corresponding uni-
variate ratios.

Similarly, the median survival differences of the 52 of the 79
patients with Karnofsky performance score information and, sepa-
rately, the 28 of the 79 patients with percent primary tumor resection
information, when classified by the GBM pattern, are greater than
those when classified by the score and percent resection, respectively
(Fig. 5). The univariate ratios of the classification by the pattern are
within the 95% confidence interval of the corresponding bivariate
ratios of the classification by the pattern and the score or percent
resection. The cutoff of a Karnofsky score of 60 is consistent with the
score of 70 established in clinical trials, when taking into account the
TCGA standard intervals of 20. A recent study suggested 70% primary
tumor resection as the lowest cutoff in increments of 5% to confer sur-
vival advantage.51 The range of resection among the 28 of the 79 Utah
patients, however, is 7%–69%. We, therefore, used the cutoff of 30%
primary tumor resection, which is the lowest cutoff in increments of
5% to confer survival advantage among the 28 patients.

Note that experimental, biological, and clinical parameters other
than survival are statistically indistinguishable in the classification of
the 79 patients by the pattern, with the corresponding Mann–
Whitney–Wilcoxon (MWW) P-values >0.05 (Fig. S4). These parame-
ters include, e.g., the patient’s diagnosis year, the tumor sample’s
weight, the slide’s percent tumor cells, the analyte and aliquot DNA
samples’ weights, and the hg38 and hg19WGS profiles’ coverages.

We find, therefore, in agreement with our previous mathematical
modeling of genomic profiles from TCGA, that the correlation of a
tumor’s whole genome with the GBM pattern predicts survival statisti-
cally better than and independent of the best other indicator, i.e., the

patient’s age at diagnosis. Combined with age, the pattern is an even
better predictor of survival. This is in general as well as in patients who
receive treatments, i.e., chemotherapy and radiation. The pattern is a
predictor of survival independent of chemotherapy and radiation and
the post-surgical resection metrics, i.e., the Karnofsky performance
score and the percent primary tumor resection.

The classifications by the existing pathology laboratory tests are
statistically insignificant for the 79 Utah patients, where only eight and
46 patients have MGMT promoter methylation and IDH1 mutation
test results, respectively (Table S3). In addition, the testing assays were
not standardized. The distributions of the test results of the Utah
patients, however, are indistinguishable from the distributions of the
443 TCGA and 28 CWRU patients for whom MGMT52 and IDH1
were consistently evaluated, with the corresponding v2 P-values
>0.05.

The univariate Cox hazard ratios of the 255 and, separately, 329
of the 443 TCGA patients with MGMT and IDH1 test results, when
classified by the GBM pattern, are greater than or the same as those
when classified by MGMT and IDH1, respectively (Fig. S5 and Table
S4). The log-rank and Wald P-values as well as the AIC values that
correspond to the classifications by the pattern are less than those that
correspond to the classifications by MGMT and IDH1. The bivariate
hazard ratios of the classifications of the 255 and 329 patients by the
pattern and MGMT or IDH1, respectively, are within the 95% confi-
dence intervals of the corresponding univariate ratios. Consistently,
e.g., among the nine Utah patients that are classified as having low cor-
relations with the pattern, IDH1 mutation was not detected in two of
the five patients with test results. Among the 70 Utah patients that are
classified as having high correlations, IDH1 mutation was detected in
two of the 41 patients with results.

Similarly, the KMmedian survival difference, univariate Cox haz-
ard ratio, and concordance index of the 107 TCGA patients with
TERT mRNA expression information,53 when classified by the GBM
pattern, are greater than those when classified by TERT (Fig. S6). The
median survival times of the 407 TCGA patients with a proneural,
mesenchymal, classical, or neural GBM subtype designation, which is
based upon the expression of a few hundred genes, when classified
into these subtypes, are statistically indistinguishable, with the corre-
sponding log-rank P-value>0.05 (Fig. S7).

As in the classification of the Utah patients, the bivariate hazard
ratios of the 335 of the 443 TCGA patients with Karnofsky perfor-
mance score information, when classified by the pattern and the score,
are within the 95% confidence intervals of the corresponding univari-
ate ratios (Fig. S8). Parameters other than survival are indistinguish-
able in the classification of the TCGA patients by the pattern, with the
corresponding MWW P-values>0.05 (Fig. S9).

The distributions of the GBM pattern of the 79 Utah, 443 TCGA,
and 28 CWRU patients are indistinguishable. Like the Utah patients,
roughly 10% of the TCGA and CWRU patients are classified as having
low correlations of their tumor profiles with the GBM pattern. These
include five of the 12, i.e.,�2:7%, of the 443 TCGA patients who were
still alive five years from their diagnosis. The CWRU patients addition-
ally represent the Utah patients in terms of the disease phenotype of
median survival conferred by a high correlation with the pattern.
Among the CWRU patients, a high correlation confers a shorter,
11-month, i.e., roughly one-year median survival time, which is indis-
tinguishable from the approximately eight-month median survival of
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FIG. 4. Among the 79 Utah patients, the GBM pattern predicts survival statistically better than the best other indicator, i.e., the patient’s age at diagnosis. (a) The KM curves of the 79
patients classified by the GBM pattern are displayed in a graph, showing a 27-month, i.e., 2.25-year median survival difference (yellow) between the patients with high (blue) and low (red)
correlations, respectively, with a corresponding log-rank P-value of 2.5� 10�3 and a univariate Cox hazard ratio of 3.5. (b) The patients classified by age at diagnosis between � 50
years and<50 years. (c) The 12-month median survival difference of the 69 patients who were� 50 years at diagnosis, and are classified by the pattern, is at least comparable to the
11-month median survival of the classification of the 79 patients by age alone. (d) The median survival of the 47 patients who were treated with chemotherapy is 14months. (e) A low cor-
relation with the pattern identifies seven patients of a 36-month median survival among the 47 chemotherapy-treated patients. (f) The median survival of the 59 radiation-treated patients is
13months. (g) A low correlation identifies the same seven patients of a 36-month median survival among the 59 radiation-treated as among the 47 chemotherapy-treated patients.
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the Utah patients, with the corresponding log-rank P-value >0.05
(Fig. S10).

We find, therefore, that the TCGA patients and the CWRU sur-
gical case series statistically represent the Utah patients in terms of the
disease phenotypes of MGMT promoter methylation, IDH1 mutation,
as well as the GBM pattern. Among the TCGA patients, the pattern
predicts survival better than and independent of the existing pathology
laboratory tests, i.e., for MGMT promoter methylation and IDH1
mutation, as well as better than TERT gene expression, the most recent
indicator of survival to have advanced to GBM standard of care.

Combined with either test, forMGMT or IDH1, the pattern is an even
better predictor of survival.

DISCUSSION

We have experimentally validated a clinically actionable genoty-
pe–phenotype relationship, where a non-negligible, i.e., high, correla-
tion of a primary GBM tumor’s genomic profile with a genome-wide
pattern of co-occurring DNA CNAs confers a patient’s shorter,
roughly one-year, median survival. That the GBM pattern recurs in,
i.e., has a high correlation with roughly 90% of the Utah and,

FIG. 5. Among the Utah patients, the GBM pattern is a predictor of survival independent of the post-surgical resection metrics, i.e., the Karnofsky performance score and the
percent primary tumor resection. (a) The median survival of the 41 patients with Karnofsky score � 60 is 16months. (b) A low correlation with the pattern identifies eight
patients of a 35-month median survival among the 41 patients. (c) The median survival of the 22 patients with tumor resection � 30% is 12 months. (d) A low correlation identi-
fies three patients of a 35-month median survival among the 22 patients.
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separately, TCGA tumor profiles, suggests that it is selected for by the
evolutionary forces that affect the brain cancer development. A ran-
domly occurring variation of copy numbers across the N � 1 genomic
loci is N � 1� 1 times more probable to have a low correlation with
the pattern. It is possible, therefore, that a low correlation with the pat-
tern reflects a detection of the tumor somewhat early in its development.

This genotype–phenotype relationship can improve the prognos-
tics, diagnostics, and therapeutics of GBM, which remained largely
unchanged for decades. The prognostic classification by the pattern
may help to manage pseudoprogression after the start of treatment,
i.e., chemotherapy and radiation. The diagnostic classification may
help drugs progress from early tests to regulatory approval. The thera-
peutic predictions, of previously unrecognized, biochemically putative
drug targets and combinations of targets that are correlated with sur-
vival, may lead to new agents for treatment.

A GBM patient’s survival is the outcome of their
tumor’s whole genome

The pattern includes most CNAs that were known to recur in
subsets of GBM tumors and at least as many that were unrecognized
in GBM prior to its discovery. Together, but not separately, these co-
occurring CNAs encode for human normal-to-tumor cell transforma-
tion, including, e.g., polyploidy, via the Ras, Shh, and Notch develop-
mental and growth signaling pathways.

For example, the deletion of chromosome 10, the amplification
of chromosome 7, and the deletion of the chromosome arm 9p, which
are notable in the pattern, are also frequently observed in GBM
tumors. Repeated previous attempts, however, to associate these chro-
mosome number changes alone with survival were unsuccessful.
Similarly, in our previous mathematical modeling of genomic profiles
from TCGA, where our classification of chromosome number changes
was confirmed by a 100% match between the sex of the patients and
the numbers of X chromosomes in their normal genomes, neither one
nor any combination of these chromosome number changes in the
tumor genomes was correlated with survival (Fig. S11).

Here, among the Utah patients, these chromosome number
changes appear in the tumor genomes of some but not all of the 70
patients with a shorter, roughly one-year, median survival as well
as, separately, the nine patients with a longer median survival (Figs. 6
and 7). While the whole of chromosome 10 appears deleted in the
tumor genomes with the hg38 profiles that are, e.g., the first, third, and
71st most correlated with the GBM pattern, with the corresponding
correlations of�0:64; 0.60> 0.15, and 0.13< 0.15, respectively, only a
partial deletion appears in the tumors with the profiles that are, e.g.,
second and 72nd most correlated, with the correlations of 0.61> 0.15
and 0.12< 0.15, and no alteration appears in the tumor with the
profile that is, e.g., the 70th most correlated, with the correlation of
0.17> 0.15.

In another example, among the TCGA patients, log-rank test
P-values that are statistically significant, i.e.,<0.05, were computed for
only 12 of the 130 segments identified in the GBM pattern by circular
binary segmentation.54 The KM median survival time difference com-
puted for an alteration in either one of these 12 segments is at most
�11 months, i.e., roughly two thirds of the 16months observed in the
classification of the patients by the pattern. Median survival differences
of at least five months, i.e., roughly a third of the 16months in the
classification by the pattern, were computed for only six of the

12 segments. Two of these six segments include biochemically putative
drug targets that were previously unrecognized in GBM (Fig. S12).
One segment encompasses the tRNA methyltransferase-encoding
METTL2B. The other encompasses the METTL2B-homologous gene
METTL2A and the nuclear localization sequence-encoding part of the
serine/threonine kinase-encoding TLK2.55

We conclude that a GBM patient’s survival is the outcome of
their tumor’s co-occurring, possibly coordinated, DNA CNAs across
the whole genome.

Proof of principle that comparative spectral
decompositions are uniquely suitable for discovering
clinically actionable, accurate, and precise,
genotype–phenotype relationships

That the prognostics, diagnostics, and therapeutics of GBM
remained largely unchanged for decades illustrates the challenges of
discovering genotype–phenotype relationships in cancer and other dis-
orders in general. This is especially so for DNA copy-number geno-
types. Copy-number changes overlap �12% of the normal human
genome, where they are 102–104 times more frequent than point
mutations,56 and are implicated in both normal and tumor develop-
ment.57 Yet, to date, efforts to link disease susceptibility with CNVs vs
those with, e.g., SNPs, yielded less than one CNV association to each
50 SNP associations.58 Similarly, repeated previous attempts to associ-
ate DNA CNAs with GBM survival were unsuccessful.

The GBM pattern was only recently discovered, and only by
using the GSVD formulated as a comparative spectral decomposition.
A chromosome arm-wide pattern of co-occurring DNA CNAs that
has been associated with shorter survival in lung, ovarian, and uterine
adenocarcinomas was only recently discovered, and only by using the
GSVD and the tensor GSVD, which is another comparative spectral
decomposition.59,60 We defined the comparative spectral decomposi-
tions to simultaneously identify the similarities and dissimilarities
among multiple datasets recording different aspects of interrelated
phenomena.

For example, the GSVD separates any two datasets that record
patient-matched tumor CNAs and normal CNVs into pairs of combi-
nations of variations. In each pair, the variation across the set of
patients is shared by both the tumor and normal combinations. In
addition, the tumor combination includes a variation across the tumor
genomic loci, and the normal combination includes a variation across
the normal genomic loci, which, in general, are different. Each pair of
combinations corresponds to a pair of weights, i.e., superposition coef-
ficients, one in the tumor dataset and the other in the normal dataset.
When neither weight is negligible relative to the other, both the nor-
mal and tumor combinations are interpreted to represent a normal
genotype–phenotype relationship that is conserved in the tumor, e.g.,
a pattern of X chromosome variation relative to the autosome in both
the normal and GBM tumor genomes has been associated with the sex
of the patients. When the weight in the normal dataset is negligible rel-
ative to the weight in the tumor dataset, the tumor combination is
interpreted to represent a tumor-exclusive genotype–phenotype rela-
tionship, e.g., the genome-wide GBM pattern of DNA CNAs in the
tumor genomes has been associated with the survival of the patients.
Here, we experimentally validated this relationship, which is statisti-
cally more accurate and more precise than, as well as independent of,
the best GBM indicators and tests in clinical use.
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FIG. 6. Frequently observed in GBM tumors and notable in the GBM pattern, neither one nor any combination of chromosome 10 deletion, chromosome 7 amplification, and
chromosome arm 9p deletion, distinguishes hg38 tumor profiles that have a high correlation with the pattern from those that have a low correlation. (a) The genome-wide pat-
tern and the hg38 whole-genome profiles that are (b) first, (c) second, (d) third, (e) 70th, (f) 71st, and (g) 72nd most correlated with the pattern.
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FIG. 7. Neither one nor any combination of chromosome 10 deletion, chromosome 7 amplification, and chromosome arm 9p deletion, distinguishes hg19 tumor profiles that
have a high correlation with the GBM pattern from those that have a low correlation. (a) The genome-wide pattern and the hg19 whole-genome profiles corresponding to the
hg38 profiles that are (b) first, (c) second, (d) third, (e) 70th, (f) 71st, and (g) 72nd most correlated with the pattern.
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The unsupervised, i.e., data-driven, GSVD and other comparative
spectral decompositions in general, are sensitive to accurate and pre-
cise genotype–phenotype relationships that other machine learning
methods miss. This includes small discovery sets of only, e.g., 251 and
85 patients, and imbalanced validation sets of, e.g., 184 and 79 patients,
with large tumor and normal genomic profiles of, e.g., roughly 213K
microarray probes and 2.8MWGS bins each. This is because compar-
ative spectral decompositions, which scale to petabyte-sized datasets
and beyond, use the complex structure of the datasets, of patient-
matched minimally preprocessed genome-scale profiles, rather than
simplifying the datasets and standardizing the profiles based upon
assumptions as is commonly done.

We conclude that comparative spectral decompositions underlie
a non-domain-specific, i.e., universal mathematical description of the
genotype–phenotype relationships in cancer that other machine learn-
ing methods miss. These genome-scale relationships are clinically
actionable and can improve the prognostics, diagnostics, and thera-
peutics of the disease. Like the modeling of normal and patient-
matched tumor genomes can discover relationships relevant to cancer,
the modeling of normal and patient-matched viral genomes or
genomes of microbiomes can, respectively, inform personalized infec-
tious disease medicine or personalized health in general.

METHODS

Tumor samples were collected at the CWRU TCGA tissue source
site from adult patients diagnosed with primary GBM undergoing sur-
gical resection between 2007 and 2017, who were retrospectively
enrolled in this study (Dataset S1). DNA was extracted from the GBM
tumor samples at the Nationwide Children’s Hospital (NCH) biospe-
cimen core resource. The DNA was WGS-profiled in duplicates at a
genomic characterization center, viz., BI, and BGI-Shenzhen, and the
profiles were mapped to hg38 and hg19, respectively. The WGS com-
pressed alignment map (CRAM) and binary alignment map (BAM)
files, from BI and BGI, respectively, were minimally preprocessed at
the University of Utah. The total size of the raw BAM and CRAM files
was �13 terabytes or 0.01 petabytes. This resulted in 97 hg38 and 97
hg19 read-count profiles from the tumors of 97 patients
(Supplementary Methods in supplementary material).

Classification of the tumor profiles by correlation
with the GBM pattern

To classify the hg38 and, separately, hg19 tumor profiles of the
97 patients, the Pearson correlation was computed between each
tumor profile and the GBM pattern. The cutoff of 0.15 was used to
separate profiles of negligible, i.e., low, correlation with the pattern
from profiles of non-negligible, i.e., high, correlation. This cutoff was
previously established for the Agilent GBM discovery set of TCGA
patients and (re)validated for the Agilent GBM validation, Affymetrix
LGA discovery and validation, andWGS astrocytoma discovery sets of
patients.

The mathematical range of a Pearson correlation is 61. The
range of the correlations computed for the 248 of the 251 patients of
the Agilent GBM discovery set that are with clinical information in
TCGA is�½�0:12; 0:81�. Of the 184 patients of the Agilent GBM vali-
dation set, the correlations computed for 183 are in the range of
½�0:14; 0:77�, where the correlation computed for the remaining
patient is –0.16. Here, the ranges of correlations computed for the

hg38 and hg19 tumor profiles of the 97 Utah patients are
�½�0:02; 0:64� and ½�0:02; 0:60�, respectively. The cutoff of 0.15,
therefore, separates non-negligible correlations in the range of >0.15
from negligible correlations that range from<0.15 to roughly –0.15.

The Pearson correlation is a measure of the similarity between
the GBM pattern and a tumor profile in terms of their variations from
their means and relative to their standard deviations. At the mathe-
matical upper and lower bounds, the correlations of 61 correspond to
profiles that vary from their means and relative to their standard devi-
ations either exactly as or exactly opposite to the pattern. A correlation
of 0 corresponds to any profile, which variation is orthogonal to, i.e.,
independent of, the pattern. Across N � 1 genomic probes or bins,
there mathematically exist N � 1� 1 independent variations that are
exactly orthogonal to the pattern as well as to each other. The correla-
tion estimates the weight, i.e., superposition coefficient, of the GBM
pattern in the tumor profile, relative to the weights of these indepen-
dent variations that are exactly orthogonal to the pattern.

It is not surprising, therefore, that while the tumor profiles with
non-negligible, i.e., high, correlations with the GBM pattern are
roughly similar to each other in addition to the pattern in terms of
their variations across the genome, the profiles with negligible, i.e.,
low, correlations are different from each other as well as from the
pattern.

Construction of the Utah, Utah-TCGA, TCGA, CWRU,
and SEER sets of patients

The 97 patients were separated into the Utah-TCGA set of 18
patients, which data were included in the previous modeling of geno-
mic profiles from TCGA, and the Utah set of 79 patients, which data
were not previously modeled. For comparison with the previous
modeling, a TCGA set of 443 patients was constructed (Dataset S2).
This set combines the 248 of the 251 patients of the Agilent GBM dis-
covery set that are with clinical information in TCGA, the 184 patients
of the Agilent GBM validation set, and the 11 GBM patients of the
WGS astrocytoma discovery set that are exclusive of both Agilent sets.
For comparison with the CWRU surgical case series, a CWRU set of
28 patients was constructed. This set corresponds to those among the
TCGA set of 443 patients that enrolled in TCGA via CWRU. The pre-
viously computed classifications were used for both the TCGA and
CWRU sets. Note that the Utah set of 79 patients is exclusive of both
the TCGA and CWRU sets.

For comparison with the U.S. GBM population, a SEER set of
8001 patients was constructed from the SEER 2019 release covering
1975–2016 (Dataset S3). Adult patients diagnosed with primary GBM
in 2007–2016 were selected to approximately match the Utah set, and
from the nine registries that contributed to SEER continuously from
1989 to approximately match the TCGA set, which patients were diag-
nosed between 1989 and 2010. Patients were excluded who had more
than one primary tumor or were missing dates of diagnosis and last
contact.
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SUPPLEMENTARY MATERIAL

See the supplementary material for Supplementary Methods,
Figs. S1–S12, Tables S1–S4, and Datasets S1–S3, also available at
https://alterlab.org/GBM_retrospective_clinical_trial/.
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