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Abstract. The aim of the present study was to investigate the 
molecular mechanism of nasopharyngeal carcinoma (NPC) 
primary tumor development through the identification of key 
genes using bioinformatics approaches. Using the GSE53819 
microarray dataset, acquired from the Gene Expression 
Omnibus database, differentially expressed genes (DEGs) 
were screened out between NPC primary tumor and control 
samples, followed by hierarchical clustering analysis. The 
Search Tool for the Retrieval of Interacting Genes database 
was utilized to build a protein‑protein interaction network to 
identify key node proteins. In total, 1,067 DEGs, including 
326 upregulated genes and 741 downregulated genes, were 
identified between the NPC and control samples. The results of 
the hierarchical clustering analysis demonstrated that 95% of 
the DEGs were sample‑specific. Furthermore, PDZ binding 
kinase (PBK), centromere protein F (CENPF), actin‑binding 
protein anillin (ANLN), exonuclease 1 (EXO1) and chromo-
some 15 open reading frame 42 (C15ORF42) were included 
in the obtained network module, which was closely associ-
ated with the cell cycle and nucleic acid metabolic process 
GO functions. The results of the present study revealed that 
EXO1, CENPF, ANLN, PBK and C15ORF42 may be involved 
in the mechanism of NPC via modulating the cell cycle and 
nucleic acid metabolic processes, and may serve as molecular 
biomarkers for the diagnosis of this disease.

Introduction

The primary tumor or nasopharyngeal carcinoma (NPC) 
is a complicated malignant disease, originating from the 
epithelial cells located in the nasopharynx. There is mark-
edly higher incidence of NPC in East Asia and Africa, 
compared with other regions of the world (1). The disease 
is attributed to multiple causative factors. One of the key 
risk factors identified is the Epstein‑Barr (EB) viral infec-
tion (2,3). In addition, environmental effects and hereditary 
susceptibility contribute to the disease (4). The poor outcome 
of NPC treatment is attributed to the deficiency of effective 
therapeutic approaches and medicines, the complex structure 
of the nasopharynx, nonspecific clinical features, the diffi-
culty of early diagnosis and variations in tumor histological 
types and differentiation (5,6). Therefore, there is an urgent 
requirement to identify specific molecular biomarkers for the 
early diagnosis of NPC.

It has been previously reported in Central and Southern 
China, that the miRNA‑146a gene polymorphism is associated 
with the incidence of NPC (7). Additionally, EB virus‑encoded 
microRNA has been reported to have an active role in NPC 
via modulating E‑cadherin (8). It has been established that 
biological activities are performed by numerous interactions 
among proteins, DNA, RNA and other small molecules (9). 
Biological functions are achieved by a complex interac-
tion network constructed by several functional units  (10). 
Therefore, bioinformatics approaches have been widely used 
to investigate the associations among biological molecules, 
thus elucidating the complex mechanisms of disease (11). In 
addition, increasing studies have revealed that the roles of 
node proteins in the biological network topology are closely 
associated with their importance in cellular function, and 
networks with distinct topological features exhibit varying 
degrees of robustness in response to external environmental 
effects and internal conflicts (12,13). Consequently, the aims 
of topology‑based investigations of biological networks are to 
investigate the association of critical nodes in the network, thus 
assisting in the understanding of the interactive topology and 
complex functions in cells. This provides valuable informa-
tion for the diagnosis and treatment of disease, and designing 
novel drugs (14).
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The present study aimed to investigate the molecular 
mechanism underlying NPC, by screening for the differentially 
expressed genes (DEGs) between NPC primary tumor and 
control samples, followed by hierarchical clustering analysis. 
The subsequent construction of a protein‑protein interaction 
(PPI) network aimed to select hub proteins and perform 
network module analysis. The present study contributed to an 
enhanced understanding of the molecular mechanism of NPC 
and provided a basis for treating the disease.

Materials and methods

Microarray data preprocessing and DEG screening. The 
GSE53819 microarray dataset was downloaded from the 
Gene Expression Omnibus database (http://www.ncbi.nlm.
nih.gov/geo/), which is the largest open database of gene 
expression data (15). The data set used in the present study 
consisted of 18 samples of NPC primary tumor tissue and 
18 control samples of normal nasopharyngeal tissue, based 
on the GPL6480 Agilent‑014850 Whole Human Genome 
Microarray 4x44 K G4112F platform (Agilent Technologies, 
Inc., Santa Clara, CA, USA).

According to the platform, all probe numbers in the 
microarray data were mapped to their corresponding gene 
names. Regarding the genes corresponding to several probes, 
the average expression values of these probes were calculated 
to determine the expression value of the gene. Subsequently, 
the skewed distribution of data was converted into a normal 
distribution using a log  2 transformation, followed by 
normalization using the Median method  (16). The Linear 
Models for Microarray Analysis package (http://www.bio 
conductor.org/packages/release/bioc/html/limma.html) (17) in 
R language was used to screen for the DEGs between the NPC 
and control tissue samples. Multiple testing correction (18) was 
also performed using the Benjamini-Hochberg method (19). 

|Log fold change|>1 and false discovery rate <0.05 were set 
as the strict cutoffs for DEG identification.

Hierarchical clustering analysis. Two‑way hierarchical 
clustering analysis was performed for the identified DEGs 
using the pheatmap package in R language (http://cran.fhcrc.
org/web/packages/pheatmap/index.html) (20). The clustering 
analysis grouped together genes with similarities in expression 
patterns, evaluating whether these DEGs were sample‑specific. 
The clustering result of the DEGs enabled assessment of the 
sample type. The result was displayed as a heatmap.

PPI network construction and hub protein analysis. It has 
been established that the majority of biological networks 
are scale‑free networks, in which only a minority of nodes 
possess a large number of links, while the majority of nodes 
have few links (21). Nodes which are connected to most of 
the proteins are defined as hub proteins and are the key in 
the network. To identify the hub proteins in the present study, 
the Search Tool for the Retrieval of Interacting Genes (22) 
online database (http://string-db.org/) was used to construct 
a PPI network using the proteins encoded by the DEGs. The 
path lengths of the nodes in the network were calculated 
to determine that the constructed network was scale‑free. 
Subsequently, the degrees of the nodes corresponding to the 
links of the node protein were calculated, in order to screen 
for the hub proteins with the highest degrees.

Network modules analysis. Single proteins usually function via 
interactions with other proteins, rather than acting alone (23). 
Given that proteins in the same module are likely to perform 
similar functions, network modules with a degree  ≥2 and 
K‑core ≥2 were obtained using the Mcode plugin (24) from 
Cytoscape (www.cytoscape.org/) (25), which is software for 
network visualization and analysis. Gene ontology (GO) (26) 

Figure 1. Heatmap from hierarchical clustering analysis. Changes in color between blue and orange indicate the progression of expression values of the 
differentially expressed genes between downregulation and upregulation, respectively. X-axis, sample name; Y-axis, fold change of the expression values of 
differentially expressed genes.
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Figure 2. Protein‑protein interaction network. Green nodes represent downregulated DEGs; pink nodes represent upregulated DEGs. Blue lines indicate the 
interaction between two proteins. DEGs, differentially expressed genes. 
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functional enrichment analysis was performed for these 
obtained modules using the Bingo plugin (27) of Cytoscape. An 
adjusted P‑value <0.05 was set as the threshold.

Results

DEG screening and hierarchical clustering analysis. A total 
of 1,067 DEGs were screened between the NPC and control 
samples, including 326 upregulated genes and 741 down-
regulated genes. The heatmap demonstrated that 95% of the 
DEGs were sample‑specific (Fig. 1).

Analysis of hub proteins in the PPI network. In the PPI 
network (Fig. 2), 239 pairs of interactions among proteins 
were identified, in which 168 DEGs were involved. As shown 
in Fig. 3, the path lengths of the nodes in the network varied, 
ranging between one and nine, with the highest frequency at 
two, revealing that the network was scale‑free. The degrees 
of the nodes are shown in Fig. 4. The top 10 node genes were 
sorted by degree in descending order (Table Ⅰ). Among these 

10  genes, membrane‑spanning 4‑domains, subfamily  A, 
member 1 had the highest degree, with a degree of 13.

Network module analysis. As shown in Fig. 5, a network 
module including six  genes exhibiting high degrees was 
obtained. The six genes involved were PDZ binding kinase 
(PBK), centromere protein  F  (CENPF), anillin (ANLN), 
denticleless protein homolog (DTL), exonuclease 1 (EXO1) 
and chromosome 15 open reading frame 42 (C15ORF42). 
The results of the GO functional analysis revealed that the 
network module was closely associated with the cell cycle 
and nucleic acid metabolic process (Table Ⅱ), which were 
enriched in five of the genes exhibiting high degrees: EXO1, 
CENPF, ANLN, åPBK and C15ORF42. Of these five genes, 
PBK exhibited the highest degree (10).

Discussion

NPC is an endemic malignant tumor in Southern China. The 
present study identified 1,067 DEGs between NPC and control 

Table Ⅱ. GO functional enrichment analysis of network modules.

GO ID 	 P‑value	 Adjusted P‑value	 Description

7049	 7.30x10-7	 2.38x10-4	 Cell cycle
51726	 1.49x10-6	 2.43x10-4	 Regulation of cell cycle
90304	 4.73x10-4	 6.75x10-3	 Nucleic acid metabolic process
6139	 1.22x10-3	 1.17x10-2	 Nucleobase, nucleoside, nucleotide and
			   nucleic acid metabolic process
34641	 2.46x10-3	 1.82x10-2	 Cellular nitrogen compound 
			   metabolic process
6807	 3.16x10-3	 2.15x10-2	 Nitrogen compound metabolic process
44260	 3.79x10-3	 2.32x10-2	 Cellular macromolecule metabolic process
16043	 6.37x10-3	 2.91x10-2	 Cellular component organization
43170	 7.92x10-3	 3.31x10-2	 Macromolecule metabolic process

GO, gene ontology.

Table Ⅰ. Top 10 node genes sorted in descending order of degree.

Gene	 Path length	 Degree

MS4A1	 3.16	 13
PBK	 2.05	 10
CENPF	 2.05	 10
ANLN	 2.05	 10
DTL	 2.10	   9
EXO1	 2.10	   9
CD79B	 3.82	   8
C15ORF42	 2.65	   8
IGF2BP3	 1.80	   8

MS4A1, membrane‑spanning 4‑domains, subfamily A, member 1; PBK, PBZ binding kinase; CENPF, centromere protein F; ANLN, anillin; 
DTL, denticleless protein homolog; EXO1, exonuclease 1; C15ORF42, chromosome 15 open reading frame 42; insulin‑like growth factor 2 
mRNA‑binding protein 3.
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samples. These DEGs were revealed to be sample‑specific by 
hierarchical clustering analysis. The constructed PPI network 
was confirmed to be scale‑free and its hub proteins were 
analyzed. The results of network module analysis demonstrated 
that the obtained network module was associated with the 
cell cycle and nucleic acid metabolic process, in which EXO1, 
CENPF, ANLN, PBK and C15ORF42 were enriched DEGs 
with high degrees. These DEGs were downregulated, with the 
exception of C15ORF42. In agreement with the results of the 
present study, increasing studies have reported that cell cycle 
function is closely associated with the initiation and progression 
of NPC (28,29).

EXO1, one of the five DEGs identified, is an enzyme 
encoded by the EXO1 gene, which is involved in DNA repair 
and homologous recombination (30). It has been reported that 
genes associated with DNA repair are involved in the molecular 
mechanism underlying NPC (31). Similarly, the present study 
found that EXO1, the critical node protein in PPI network, was 
associated with the nucleic acid metabolic process, suggesting 
that EXO1 may be critically involved in the mechanism of NPC 
via regulating the nucleic acid metabolic process.

CENPF, a member of the centromere protein family, is 
involved in the formation of the nuclear matrix during the G2 
phase of the cell cycle and is involved in mitosis (32). Significant 
upregulation of CENPF has been previously reported in NPC 
cells, relative to normal nasopharyngeal cells, thus CENPF 
may be a molecular biomarker for the progression of NPC (33). 
Centromere protein H is also considered as a prognostic marker 
for the progression of NPC (34). In agreement with these reports, 
the present study demonstrated that CENPF was a critical node 
protein, exhibiting a high degree in the network module, indi-
cating its importance in the mechanism of NPC.

Anillin, encoded by the ANLN gene, is a scaffolding 
actin‑binding protein, which is involved in cytokinesis via 
connecting RhoA, actin and myosin (35). It has been demon-
strated that anillin is upregulated in lung carcinogenesis, which 
may serve as a prognostic indicator for this disease (36). By 
contrast, the results of the present study suggested an unde-
termined role of anillin, which was downregulated in NPC. 
In addition, lymphokine-activated killer T-cell-originated 
protein kinase (TOPK), which is encoded by the PBK gene, 
is a serine/threonine kinase associated with mitogen‑activated 
protein kinase kinase (37). TOPK has been previously identified 
to promote proliferation of breast tumor cells via p38 mitogen 
activated protein kinase activity (38). In addition, high expres-
sion levels of TOPK have been observed in melanoma cells (39). 
However, PBK was downregulated in the present study. These 
conflicting results may be a result of discrepancies between the 
experimental models and the samples.

The function of the C15ORF42 gene remains to be fully 
elucidated. It has been reported that another member of the 
same family, C16ORF13, is overexpressed in gastric cancer 
tissues, although the precise function of C15ORF42 remains 
elusive. In the present study, C15ORF42 was identified to be an 
upregulated node protein with a high degree in NPC, indicating 
a potentially critical role of C15ORF42 in the tumorigenesis of 
NPC for the first time, to the best of our knowledge.

In conclusion, the present study identified critical node 
proteins exhibiting close interactions with other proteins in the 
network module, including EXO1, CENPF, ANLN, PBK and 

Figure 3. Analysis of the path lengths of the nodes in the protein‑protein 
interaction network.

Figure 5. Network module obtained from the protein‑protein interaction 
network. Green nodes represent downregulated DEGs; red nodes represent 
upregulated DEGs. Blue lines indicate the interaction between two proteins. 
DEGs, differentially expressed genes.

Figure 4. Analysis of the degrees of the nodes in the protein‑protein inter-
action network.
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C15ORF42. These proteins may be involved in the tumori-
genesis of NPC via modulating the cell cycle and nucleic acid 
metabolic process, and may be used as molecular biomarkers 
for the early diagnosis of NPC. The results of the present study 
assist in further understanding of the tumorigenesis of NPC, and 
provide potential targets for developing effective therapeutic 
treatment strategies for this disease.
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